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Abstract: Efficient Lewis-acid-catalyzed direct conversion of aldehydes to 1,2-diketones in the liquid
phase was enabled by using newly designed and developed ceria–zirconia-based high-entropy oxides
(HEOs) as the actual catalysts. The synergistic effect of various cations incorporated in the same
oxide structure (framework) was partially responsible for the efficiency of multicationic materials
compared to the corresponding single-cation oxide forms. Furthermore, a clear, linear relationship
between the Lewis acidity and the catalytic activity of the HEOs was observed. Due to the developed
strategy, exclusively diketone-selective, recyclable, versatile heterogeneous catalytic transformation
of aldehydes can be realized under mild reaction conditions.

Keywords: 1,2-diketone-selective conversion of aldehydes; ceria; ceria–zirconia-based multimetallic
oxides; high-entropy oxides (HEOs); Lewis acid-promoted direct synthesis of 1,2-diketone; pinacol-
type oxidative coupling of aldehydes; sol-gel synthesis

1. Introduction

With the rapid development of the industry, one of the main objectives in materials
science: finding new, advanced materials, has become a priority. One of the newest classes
of those materials, which has attracted much scientific attention, is high-entropy oxides
(HEOs). They were first reported as entropy-stabilized oxides by Rost et al. [1]. These
materials represent clear evidence that five or more different cations can be incorporated
into a single-phase oxide system. However, to obtain such a system, several conditions
need to be met. General principles, when choosing appropriate constituents, rely on the
consideration of ionic radii, the oxidation state, and the coordination number of the cations
that will occupy a single-cation sublattice, while the anion sublattice is only occupied by
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oxygen [2–8]. Since their discovery, several further studies have been reported with a focus
on the properties of these materials [9,10] and the development of new HEOs [2,3,5,7,11,12].

Ceria-based multicomponent oxides are some of the most interesting groups of HEOs,
in the application context. Such materials are top quality for application in solid-oxide
fuel cells and solid-oxide electrolysis cells (SOFCs and SOECs), which are some of the
most promising technologies that include chemical to electrical and electrical to chemical
energy conversion applications [13]. Despite the appearance of ever-newer applications
of ceria-based HEOs, there is no example of applying them as actual Lewis acid catalysts,
even though each metal oxide on its own is well known as an efficient catalyst. This
is striking because uncountable studies have already focused on the organic catalytic
transformations promoted by cerium-[14], zirconium-[15], or lanthanum-based oxides [16]
and their composites. Zirconium-based oxides seem to be the most attractive water-
resistant Lewis acids to catalyze redox (MPVO) or coupling reactions under exceedingly
mild reaction conditions [17].

Because of their antitumor and photochemical activities, among others, much attention
has been given to the synthesis of 1,2 diketones and their derivatives for a long time [18–22].
In this context, several synthesis strategies have been designed and developed along with
methodologies under catalytic conditions [23–25]. Although notable progress has been
attained with precious noble metal catalysts [26], considerable advances have been obtained
by using Lewis acids, which have more profitable qualities than noble metals [27,28].
Moreover, these catalysts have proven to be well fitted to other catalytic views, such as low
toxicity and significant functional group tolerance. However, to perform the well-optimized
reaction sequence, which consists of a Sonogashira-type decarboxylative coupling and
oxidation, the application of arylboronic acids or aryl iodides with alkynyl carboxylic
acids as raw materials is essential, substantially reducing the eco-friendly feature of these
systems [26–28]. There is a less familiar fact that an oxidative pinacol-type coupling should
be also sufficient to produce diketones that can be also promoted by Lewis acids [29].
However, maximum efficiency can be achieved by adding organic additives in these
cases. Notably, to the best of our knowledge, there are no heterogeneous counterparts
of these Lewis acid catalysts that were able to provide such a versatile catalytic behavior
as homogeneous ones. All the reported examples to perform efficient synthesis of 1,2-
diketones require the precious noble metal palladium [30].

The above trends have motivated research to explore the (Lewis) catalytic ability of
HEOs to promote organic transformations in the liquid phase. To present their capacity,
the liquid phase synthesis of 1,2-diketones from aldehydes was chosen as a test reaction.
Notable advances of our approach, including (I) unusual recyclable Lewis-acid-catalyzed
reaction, (II) an effective 1,2-diketone yield with sufficient scope, and (III) mild reaction
conditions were to be enabled by the application of HEOs as the actual catalysts. Further-
more, a clear relationship between the catalytic activity and the Lewis acidity of HEOs was
able to be identified.

In this research study, we synthesized and characterized four single-phase ceria–
zirconia rare-earth high-entropy oxides in the cubic phase, as shown in Table 1. The in-
volved cations were selected because of their similar ionic radii, similar oxidation state, and
the same coordination number. It has been previously reported that the method of doping
ceria with rare-earth cations has been widely used to improve the activity, selectivity, and
thermal stability of ceria catalysts and to increase oxygen vacancy concentrations [31–33].

Table 1. Synthesized HEOs with their corresponding chemical formulae.

Compound Chemical Formula

CZLEY Ce0.2Zr0.2La0.2Eu0.2Y0.2O2
CZLPY Ce0.2Zr0.2La0.2Pr0.2Y0.2O2
CZEYG Ce0.2Zr0.2Eu0.2Y0.2Gd0.2O2
CZLPG Ce0.2Zr0.2La0.2Pr0.2Gd0.2O2
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2. Results and Discussion
2.1. Structural Characterization of the HEOs

To investigate the crystal structure, along with the structural parameters and phase
purity of the synthesized materials, powder X-ray diffraction was performed. Structural
details were provided by Rietveld refinement and are shown in Table S1. All Rietveld
output plots reveal the phase purities of the synthesized catalysts and are presented in
Figure 1. The investigated HEOs crystallized in the fluorite structure with the cubic
Fm-3m space group, with similar densities and cell volumes. The lattice parameters are
similar, equal to a = 5.4558(2) Å for CZLEY, a = 5.4517(2) Å for CZLPY, a = 5.4583(2) Å
for CZEYG, and a = 5.4601(2) Å for CZLPG, but differ from the pure CeO2 extracted by
Sarkar et al., where a = 5.4073(1) Å [34]. This shows that, the addition of cations, with
the same coordination number and similar ionic radii (0.97 Å for Ce4+, 0.84 Å for Zr4+,
1.16 Å for La3+, 1.126/0.96 Å for Pr3+/4+, 1.066 Å for Eu3+, 1.019 Å for Y3+, and 1.053 Å
for Gd3+) into a single-crystal lattice, originates the expansion of the lattice. Additionally,
one can notice that the lattice parameter values depend solely on the values of the ionic
radii, since they remain similar. The average crystallite size is 6 nm for CZLEY, CZLPY, and
CZLPG and 5 nm for CZEYG, as calculated by the line broadening method. Microstrain
values (Table S1) vary for different compositions of the HEOs, which shows that CZLPY
has the highest, while CZEYG has the lowest degree of crystal lattice order. The visualized
structure shows that there are five different cations on the same crystallographic position,
which occupy a highly symmetric, fluorite structure of CeO2 and are coordinated with
eight O atoms on the edges, as shown in the insets of Figure 1A–D.
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Figure 1. Rietveld plot of the investigated compounds: (A) CZLEY; (B) CZLPY; (C) CZEYG; (D) CZLPG. Along with Bragg
reflections, the observed (red), calculated (black), and difference (blue) plots are shown for the fit of the PXRD pattern. In
the insets of each figure, the fluorite-type crystal structure of the corresponding HEO is visualized.

For advanced structural characterization of the synthesized catalysts, Raman spec-
troscopy was performed. Figure 2 shows the Raman spectra (λ = 532 nm) for the different
synthesized catalysts. A single sharp band at 464 cm−1 is typical for CeO2 with the fluorite
structure [35] and represents the F2g symmetric vibration mode of the eight-fold Ce-O
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bonds. The intensity of the sharp F2g band decreases with the addition of more elements
into a ceria crystal lattice [34]. Due to the five cations incorporated into a single-crystal
lattice of CeO2, there is an F2g band shift of ~15 cm−1, which is related to the expansion of
the crystal lattice, the bond lengths, and the formation of oxygen defects [34,36,37]. Addi-
tional bands, which for which the synthesized HEOs differ from pure CeO2, are visible at
597 cm−1 for CZLPG, 605 cm−1 for CZEYG, 600 cm−1 for CZLPY, and 603 cm−1 for CZLEY,
and they are related to oxygen defects [38,39]. Quantitative information about the amount
of oxygen vacancies cannot be provided from Raman spectra. However, to compare the
number of oxygen defects presented in the synthesized HEOs, relative oxygen vacancy
concentrations were calculated as the ratio of the integral intensities of additional, defect
bands (IID) and the integral intensities of the corresponding F2g bands (IIF2g) [34,40]. The
relative oxygen vacancy concentrations are shown in Table S2. Although oxygen vacancy
concentrations are responsible for the catalytic activity of a material, it is hard to elucidate
the catalytic activity only from the Raman data. Therefore, a few more parameters need
to be considered, such as acidity, crystallite size, surface area, etc., as explained further in
the text.

To investigate the morphology, SEM and STEM-EDX measurements were performed.
Figure S1 reveals the surface morphology of the prepared catalysts. To visually inspect
crystallites in the powder samples, the CZLPY compound was additionally inspected by
high-resolution transmission electron microscopy (HRTEM). Figure 3 confirms that this
compound consists of agglomerated crystallites with values slightly below 10 nm, which
corroborates the microstructural results obtained from the Rietveld refinement of powder
XRD patterns.
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Qualitative EDX maps (Figure S2) reveal the uniform distribution of the involved
elements inside the powder sample. Since La-Ce-Pr and Y-Zr have similar molar mass
values, it is difficult to precisely quantify the atomic content of the sample. This explains
the slight deviation in the nominal and experimental values (Table S3). The EDX spectrum
(Figure S3) also shows the presence of the Au, C (from the TEM grid), and Cu (TEM holder)
signals. Additionally, the empirical formula of CZLPY was calculated from atomic fractions
obtained from quantitative EDX. The oxygen content was further normalized to the value
of two [41] giving the formula of Ce0.18Zr0.14La0.2Pr0.2Y0.18O2, which is very close to the
actual formula of Ce0.2Zr0.2La0.2Pr0.2Y0.2O2. Since quantitative EDX analysis is of limited
accuracy and reliability, ICP-MS elemental analysis was used for the quantification of the
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metal cations for all four compounds. The obtained elemental compositions (Table S4)
are expressed as measured mass percent fractions accompanied by theoretical (nominal)
elemental compositions. Taking into account the error bars for the measured mass per-
cent fractions, one can rationalize that the elemental compositions of the studied HEOs
correspond to their aimed chemical compositions.
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2.2. Catalytic Ability of the HEOs

The catalytic activities and the chemo-selectivities toward the different products
formed during the pinacol-type oxidative coupling reaction of the aldehydes are presented
using the HEOs as the actual catalysts. The physicochemical properties of the HEO catalysts
are summarized in Table 2. It was found that all textural and structural characteristics of the
different HEOs—such as the crystallite sizes and structural parameters—are very similar,
while the specific surface areas (48–103 m2/g) and total pore volumes (0.08–0.33 cm3/g) are
not very different. However, CZLPY has a significantly higher surface area than the other
HEOs. Several authors [42–46] suggested that the addition of rare-earth cations affects the
change in the specific surface area values. CZLPY consists of three cations (Zr, Pr, Y), which
are responsible for an increase in its specific surface area, while all the others consist of two.
Therefore, a much higher specific surface area of CZLPY could be the result of the synergis-
tic effect of the involved cations. Moreover, significant differences could be observed in
the acidities of HEOs, which increase in the order of CZLEY < CZLPG < CZEYG < CZLPY.
Consequently, the effect of the acidity should be mainly studied when comparing the
catalytic indicators of the different samples presented in Table 1.

Table 2. Physicochemical characteristics of the investigated compounds.

Compound Pore Volume
(cm3/g)

SBET
(m2/g)

Average Crystallite Size
(nm)

Acidity
(a.u./g)

CZLEY 0.14 48 6 31
CZLPY 0.27 103 6 77
CZEYG 0.08 51 5 54
CZLPG 0.33 60 6 44

The oxidative pinacol-type couplings (Scheme 1) were performed in the presence of
catalytic amounts of the HEOs (5 mol% for metal ions) by using diphenylphosphoryl azide
(DPPA) or organic acids as the external acids at reflux temperature, in 1,2-dichloromethane,
for 24 h. Our studies were initiated by probing reaction conditions to maximize the dike-
tone yield upon converting benzaldehyde in the presence of CZLPY and DPPA. Although
the desired transformation was slightly viable in the absence of HEO and external acid,
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respectively, CZLPY seemed effective, providing an acceptable diketone yield with minor
diketone selectivity in the case of employing DPPA as the additive (Table S5). Lower
reaction temperatures induced a significant decrease in the aldehyde conversion, as well
as a notable decrease in the diketone selectivity; thus, the reflux temperature was used
as follows (Tables S6 and S8). By screening the potential solvents for oxidative coupling,
besides the dichloromethane, only the acetonitrile proved to be useful, achieving almost
the same reaction rate as in the halogenated solvent (Table S7). The most relevant effects
on the diketone yields and selectivities could be attributed to the quality and the quantity
of the additive. By systematically altering the additive dropped, it could be easily assumed
that the application of organic acids with higher pKa values led to a significant increase in
the aldehyde conversions, however with a dramatic decrease in the diketone selectivities
(Figure 4A). The use of benzoic acid seemed to be the best choice taking into account that
a highly diketone-selective (~85%) reaction with average aldehyde conversion could be
realized in the presence of it. Additionally, upon reducing the amount of benzoic acid
added, higher reaction rates were able to be obtained as long as a limit value was obtained
(Figure 4B). Under that value, the benzoic acid transformed totally into chalcone in the
presence of the catalyst in such a way that the benzaldehyde remained unchanged. Finally,
the catalyst loading was optimized. It was found that the use of catalyst portions other than
5 mol% led to significant erosion in either diketone selectivity (10 mol%) or aldehyde con-
version (1.25–2.5 mol%) (Table S9). Nevertheless, up to 90% benzaldehyde conversion with
90% diketone selectivity could be accomplished under the optimized reaction conditions.
These results are very competitive compared even to Pd-based homogeneous catalysts as
well [30]. The kinetic profile of the oxidative coupling indicated that the initial reaction
rate for the catalyst was more than one, which may indicate that the aldehyde activation is
the rate-limiting step of the overall catalytic reaction (Figure 4C). This activation step may
be related to the additive with a Brønsted acid character [47].
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With the optimized reaction conditions in hand, the catalytic abilities of the HEOs with
different compositions and acidities were compared to each other. For a valid comparison,
all the reactions were carried out keeping the ratio of the aldehyde-to-metal ion constant
at 5 mol%. On the one hand, in all cases, the desired diketone was produced with almost
the same selectivity (Figure 5). Consequently, the quality of the additive and its measure
dictated the ratio of the desired product. On the other hand, CZLPY exhibited the highest
activity of the series, and the order in the total activity followed the same trend as during
the acidity measurements (Figure 5). A general trend in increasing aldehyde conversions
with increasing acidity was observed. The remarkable activity of the HEOs, especially
CZLPY, was reflected by carrying out oxidative coupling with a pure/single oxide of the
framework cations and their physically mixed composites, all falling short of providing
the desired product with comparable efficiency (Table S10). As can be seen in Table S10,
Zr-containing probe catalysts proved to be more efficient compared to other ones. This fact
enabled us to suppose that the Zr centers played the key role during the catalytic reactions,
the activities of which were enhanced by synergetic effects established in the mixed oxide
lattice. Though there is no concrete evidence of the reaction mechanism, similar to the
work of Chen et al. [48], a cooperative interplay of Brønsted acid and Lewis acid sites,
including dehydrogenation of the product of the coupling under Brønsted acid sites, is the
most probable way, which could be related to this reaction. Because HEOs have more than
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one type of active Lewis acid dispersed uniformly, unlike a physically mixed composite,
their activities were notably enhanced compared to the oxides used for the comparison.
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24 h.

The possible deactivation of CZLPY and its reusability were studied by recycling
the used HEO after each cycle followed by being intensively washed with acetonitrile,
and the reaction was upscaled six times. It could be determined that the conversion was
practically complete even after six reuses. In addition, surprisingly, higher selectivities
(~95%) to the desired product were detected starting with the third cycle (Figure 6A). The
Raman analysis performed on the used catalyst, after the washing step, revealed that no
relevant gradual destruction of the HEO had occurred from one to six runs, except for a
slight decrease in the intensity of the F2g and defect bands, as shown in Figure S4.
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pinacol-type coupling reaction of the benzaldehyde. Reaction conditions: 1 mmol benzaldehyde,
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Figure 6. Recyclability test of the CZLPY catalyst (A). Heterogeneity (hot filtration) test of the pinacol-type oxidative
coupling reaction of the benzaldehyde catalyzed by the CZLPY catalyst (B). Reaction conditions: 1 mmol benzaldehyde,
2 cm3 acetonitrile, 0.25 mmol benzoic acid, 5 mol% catalyst, reflux temperature, 24 h.

Next, to establish the heterogeneity of the reaction, a hot filtration test was carried out
by separating the catalyst from the reaction mixture (filtrate) after 16 h (60% conversion).
This filtration test made it clear that the reaction does not proceed further in the filtrate.
This test exhibited that CZLPY mixed oxide can be handled as a heterogeneous catalyst
(Figure 6B).

Subsequently, the scope of the multimetallic CZLPY proved to be good under other-
wise identical reaction conditions (Table 3.). An appropriate substrate tolerance could be
seen, exhibiting the versatility and flexibility of this multimetallic catalyst.
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Table 3. Pinacol-type oxidative coupling reactions of the different aldehydes promoted by the CZLPY
catalyst. 1 mmol aldehyde, 2 cm3 acetonitrile, 0.25 mmol benzoic acid, 5 mol% catalyst, reflux
temperature, 24 h.

Aldehydes Products Aldehyde
Conversion (mol%)

Product Yield
(mol%)

Acetaldehyde Diacetyl 80 70
Propionaldehyde 3,4-hexanedione 76 68

Butyraldehyde 4,5-octanedione 71 61
Benzaldehyde Benzil 90 81

Furfural Furil 73 66

Vanillin 1,2-bis-benzo(1,3)diioxol-
5-yl-ethane-1,2-dione 67 60

3. Materials and Methods
3.1. Materials

Commercially available chemicals were used for syntheses as follows: cerium(III)
nitrate hexahydrate 99.99%, zirconium(IV) oxynitrate hydrate 99%, lanthanum(III) ni-
trate hexahydrate 99.99%, praseodymium(III) nitrate hexahydrate 99.9%, europium(III)
nitrate hexahydrate 99.9%, gadolinium(III) nitrate hexahydrate 99.9% from Sigma Aldrich,
Germany; yttrium(III) nitrate hexahydrate 99.9% from Alfa Aesar, Germany; concen-
trated ammonia solution 25% from Gram-Mol, Croatia; citric acid monohydrate 99.9%
from T.T.T., Croatia. To perform the catalytic reactions the analytical grade products ac-
etaldehyde (97%), propionaldehyde (97%), butyraldehyde (97%), benzaldehyde (97%),
furfural (97%), vanillin (94%), acetonitrile (99%), benzoic acid (98%), 1,2-dichloromethane
(99%), 2-methylhydrofuran (99%), heptane (99%), dimethyl sulfoxide (DMSO) (99%),
ethyl-acetate (EtOAc) (99%), and EtOH (96%) from Sigma-Aldrich were applied with-
out further purification.

3.2. Synthesis of the HEOs

The high-entropy oxides were synthesized using a modified, aqueous sol-gel citrate
route [49,50] previously reported as a successful route for metal oxides’ synthesis. The
synthetic procedure is shown in Scheme 2 below. Metal precursors were dissolved in
their nitrate forms in a previously prepared 10% aqueous solution of citric acid (10 g of
citric acid in 100 mL of MiliQ water) in a total amount of 1 mmol, following the targeted
formula (Ce0.2Zr0.2C0.2D0.2E0.2O2, where C-E are different rare-earth metal cations and O
is oxygen). The solution with dissolved metal precursors was stirred on a magnetic stirrer
(IKA C-MAG HS 7, Staufen, Germany) for 30 min before adjusting pH value to 5 using
concentrated ammonia solution (pH-meter 211, HANNA, Zagreb, Croatia). The reaction
mixture was then treated with constant mixing on a magnetic stirrer, followed by heating
at 120◦ until the water evaporated and black resin formed. The black resin was further
dried overnight at 120 ◦C in a drying oven (Instrumentaria ST-01/02, Sesvete, Croatia)
to evaporate excess water. After that, it was ground with a pestle in a mortar, followed
by one-step calcination (Furnace SN 342689, Nabertherm GmbH, Lilienthal, Germany) at
600 ◦C for 8 h, with a heating rate of 4 ◦C/min.
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3.3. Methods
3.3.1. Powder X-ray Diffraction

Powder X-ray diffraction patterns were collected on a PANalytical Aeris Research
Diffractometer in θ-θ geometry (Malvern PANalytical, Malvern, UK), using CuKα radiation
(40 kV, 15 mA) at 298 K. The range of 2θ was from 20◦–100◦, with a step size of 0.02. Rietveld
refinement was provided by the computer program FULLPROF [51]. The crystal structures
of the synthesized compounds were visualized using the VESTA software [52].

3.3.2. Brunauer–Emmett–Teller Surface Area Measurement

Pore volumes and surface areas were investigated by Autosorb iQ-MP (Quantachrome,
Boynton Beach, FL, USA), using multipoint BET. All compounds were previously degassed
at 200 ◦C for 2 h.

3.3.3. Raman Spectroscopy

Raman spectra were recorded with a Raman Senterra II (Bruker, Billerica, MA, USA)
microscope at an excitation wavelength of 765 nm applying a 12.5 mW laser power and
averaging 20 spectra with an exposition time of 20 s.

3.3.4. SEM, TEM, and STEM-EDX Measurements

A scanning electron microscope (Thermo Fisher Scientific Apreo C, Thermo Fisher
Scientific, Waltham, MA, USA ) was employed to examine the surface structure. TEM and
STEM-EDX data were collected using a double-aberration-corrected Themis-Z microscope
(Thermo Fisher Scientific, Waltham, MA, USA ) at an accelerating voltage of 300 kV, which
was equipped with a Oneview IS camera (Ametek) and a Super-X EDX detector (Thermo
Fisher Scientific). The powder sample was dispersed on a lacey carbon-coated gold grid
and loaded onto a TEM holder for measurements. For the STEM-EDX maps, the probe
current was about 0.2 nA with a dwell time of 10 µs. The EDX data were prepared using
the Velox (Thermo Fisher Scientific, Version 2.12.1.37) software.
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3.3.5. ICP-MS Measurements

An inductively coupled plasma mass spectrometer, Agilent 7900 ICP-MS (Agilent
Technologies, Singapore, Singapore), was used for all measurements. The instrument was
equipped with standard nickel sampling and skimmer cones, a standard glass concentric
nebulizer, a quartz spray chamber, and a quartz torch with a 2.5 mm ID injector. All
samples were analyzed as two replicates. A certified reference material of rare-earth ore
was used to test the accuracy of the method.

3.3.6. Temperature-Programmed Desorption of NH3

The temperature-programmed desorption (TPD) was performed in a BELCAT-A
apparatus (BEL Japan, Inc., Osaka, Japan) using a reactor (quartz tube with a 9 mm outer
diameter) that was externally heated. Before the measurements, the catalyst samples were
pretreated at 473 K. Then, the sample was cooled in flowing He to 323 K and equilibrated
for 15 min. The samples were flushed with NH3 for 30 min and then flushed with He for
15 min at 323 K. The reactor was heated at a heating rate of 10 K·min−1 up to 800 K. The
amount of the ammonia was detected by a thermal conductivity detector (TCD).

3.4. Catalytic Reaction Procedures
3.4.1. Pinacol-Type Oxidative Coupling of the Aldehydes

The optimized procedure for the catalytic pinacol-type oxidative coupling of the
aldehyde was as follows. Acetonitrile (2 cm3), the corresponding aldehyde (1.0 mmol,
1.0 equiv.), benzoic acid (0.25 mmol, 0.25 equiv.), and the corresponding HEO as the cata-
lyst (corresponding to a 5 mol% metal ion loading) were combined in a nitrogen-flushed
Schlenk tube equipped with a magnetic stir bar. The reaction mixture was stirred at
reflux temperature for 24 h. Then, the mixture was cooled to room temperature, and
the resultant liquid was extracted with brine (3 × 15 mL). The organic layer was dried
over Na2SO4 and concentrated under reduced pressure. Not only the activity, but also
the reusability of the potential catalyst was investigated in the heterocyclization reaction.
The conversion and selectivity were determined after each reaction by GC-MS using a
Thermo Scientific Trace 1310 Gas Chromatograph (Thermo Fisher Scientific, Waltham,
MA, USA) coupled to a Thermo Scientific ISQ QD Single Quadrupole Mass Spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) using a Thermo Scientific TG-SQC column
(15 m × 0.25 mm ID × 0.25 µm film) (Thermo Fisher Scientific, Waltham, MA, USA). Dur-
ing the measurements, the parameters were as follows: column oven temperature: from
50 ◦C to 300 ◦C at 15 ◦C min−1; injection temperature: 240 ◦C; ion source temperature:
200 ◦C; electrospray ionization: 70 eV; carrier gas: He at 1.5 mL min−1; injection volume:
2 µL; split ratio: 1 to 33.3; mass range: 25–500 m/z. Starting materials, products, and
byproducts were identified using reference samples.

3.4.2. Hot Filtration Test

The coupling reaction was carried out under the optimized reaction conditions. The
bulk catalyst was readily removed by a simple filtration after 12 h followed by the treatment
of the filtrate under the optimized reaction conditions for another 12 h.

4. Conclusions

Four ceria–zirconia-based high-entropy catalysts were successfully synthesized. The
applied synthetic route, the modified sol-gel citrate route, resulted in phase-pure com-
pounds with a cubic structure, with lattice parameters that differ from pure CeO2. This is
related to the lattice expansion/contraction due to the incorporation of five cations into
a single-cation lattice. The investigation of the physicochemical properties of the newly
developed and synthesized catalysts shows that the crystallite size, lattice parameters,
surface areas, and pore volumes are similar, while the Lewis acidity differs significantly.

The pinacol-type oxidative coupling reaction of the aldehydes was presented, using
HEOs as the actual catalysts, which demonstrated the catalytic abilities and chemoselec-
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tivity of the catalysts. The reaction conditions were optimized followed by a comparative
study of the HEOs under the same conditions. Upon using the HEOs as the catalysts,
the desired diketone product was produced with almost the same selectivity, unlike the
activity, which followed the trend of increasing acidity. The remarkable activity of the
HEOs was proven in comparison with the pure building block oxides and their physically
mixed composites, especially in the case of the CZLPY compound.

CZLPY oxide proved to be a versatile, reusable, and heterogeneous catalyst, taking
into account the results of the recycling and hot filtration test, as well as the scope.

Supplementary Materials: The following are available online. Table S1: Rietveld refinement pa-
rameters and crystallographic data obtained from the PXRD pattern, Table S2: Relative oxygen
vacancies’ concentration, calculated from Raman spectra, Figure S1: SEM images of: CZLEY (a);
CZLPY (b); CZLPG (c); CZEYG (d), Figure S2: Qualitative EDX elemental maps of the powder CZLPY
sample, Table S3: Quantitative results of the EDX spectrum of CZLPY, Figure S3: HAADF image and
EDX spectrum of CZLPY, Table S4: ICP-MS results of the elemental analysis of all four compounds,
Table S5: Benzaldehyde’s direct conversion to benzil. Reaction conditions: 1 mmol benzaldehyde,
2 cm3 acetonitrile, 0.5 mmol DPPA, 5 mol% CZLPY catalyst, reflux temperature, 24 h, Table S6:
Benzaldehyde direct conversion to benzil. Screening of the reaction temperature. Reaction conditions:
1 mmol benzaldehyde, 2 cm3 acetonitrile, 0.5 mmol DPPA, 5 mol% CZLPY catalyst, 24 h, Table S7:
Benzaldehyde’s direct conversion to benzil. Screening of the applied solvent. Reaction conditions:
1 mmol benzaldehyde, 2 cm3 solvent, 0.5 mmol DPPA, 5 mol% CZLPY catalyst, reflux temperature,
24 h, Table S8: Benzaldehyde’s direct conversion to benzil. Screening of the reaction temperature
(in acetonitrile). Reaction conditions: 1 mmol benzaldehyde, 2 cm3 acetonitrile, 0.5 mmol DPPA,
5 mol% CZLPY catalyst, 24 h, Table S9: Benzaldehyde’s direct conversion to benzil. Screening of the
catalyst loading. Reaction conditions: 1 mmol benzaldehyde, 2 cm3 acetonitrile, 0.25 mmol benzoic
acid, CZLPY catalyst, reflux temperature, 24 h, Table S10: Benzaldehyde’s direct conversion to benzil.
Screening of the applied catalyst. Reaction conditions: 1 mmol benzaldehyde, 2 cm3 acetonitrile,
0.25 mmol benzoic acid, 5 mol% catalyst, reflux temperature, 24 h, Figure S4: Comparison of the
Raman spectra of the CZLPY catalyst as synthesized and after the washing step.
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