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ABSTRACT

Bacterial carbapenem resistance, especially when mediated by transferable carbapenemases, is of
important public health concern. An increased number of metallo-b-lactamase (MBL)-producing
Klebsiella pneumoniae strains isolated in a tertiary hospital in Thessaloniki, Greece, called for further
genetic investigation.

The study included 29 non-repetitive carbapenem resistant K. pneumoniae isolates phenotypically
characterized as MBL-producers collected in a tertiary hospital in Greece. The isolates were screened for
the detection of carbapenemase genes (K. pneumoniae carbapenemase (blaKPC), Verona-integron-
encoded MBL-1 (blaVIM-1), imipenemase (blaIMP), oxacillinase-48 (blaOXA-48) and New Delhi MBL
(blaNDM)). The genetic relationship of the isolates was determined by Random Amplified Polymorphic
DNA (RAPD) analysis. The whole genome sequences (WGS) from two NDM-positive K. pneumoniae
isolates were further characterized.

The presence of New Delhi MBL (blaNDM) gene was confirmed in all K. pneumoniae isolates,
while blaKPC and blaVIM-1 genes were co-detected in one and two isolates, respectively. The RAPD
analysis showed that the isolates were clustered into two groups. The whole genome sequence analysis
of two K. pneumoniae isolates revealed that they belonged to the sequence type 11, they carried the
blaNDM-1 gene, and exhibited differences in the number and type of the plasmids and the resistant
genes.

All MBL-producing K. pneumoniae isolates of the study harbored a blaNDM gene, while WGS
analysis revealed genetic diversity in resistance genes. Continuous surveillance is needed to detect the
emergence of new clones in a hospital setting, while application of antimicrobial stewardship is the only
way to reduce the spread of multi-resistant bacteria.
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INTRODUCTION

Klebsiella pneumoniae is a notorious opportunistic nosocomial pathogen involved in serious
and often life-threatening hospital-acquired infections; therefore, the emergence of multi-
drug-resistant, and especially carbapenem-resistant strains, is considered as a major public
health problem [1, 2]. Carbapenem resistance is mainly mediated by enzymes able to hy-
drolyze carbapenems and almost all other b-lactams [3]. They are encoded by carbapene-
mase-encoding genes, mainly blaKPC, blaVIM, blaIMP, blaOXA-48, and lately, blaNDM, that
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emerged in the Indian subcontinent [4] and subsequently
has been reported in Europe and other continents [5–8].

According to the most recent annual surveillance report
from the European Centre for Disease Prevention and
Control (ECDC), Greece presents high percentage of car-
bapenem-resistant isolates among invasive K. pneumoniae
strains [9] and is considered endemic for KPC and VIM-
producing K. pneumoniae [10, 11]. Since 2011, when the
first detection of NDM-producing strains was reported in
Greece [12], several sporadic cases and outbreaks have been
reported causing great concern [13–17]. Up to now the
NDM K. pneumoniae strains in Greece belong to the
sequence type (ST) 11. The present study presents the mo-
lecular epidemiology and resistance mechanisms of NDM-
encoding K. pneumoniae isolated in a tertiary hospital in
Greece.

MATERIAL AND METHODS

Strains

From August 15, 2019 to February 15, 2020, during the
routine phenotypic screening for carbapenemase production
among carbapenem-resistant Gram-negative pathogens
isolated at a 270-bed tertiary hospital in Greece, an unusual
increase of metallo-b-lactamase (MBL)-producing K. pneu-
moniae was observed prompting for further investigation.
Twenty-nine non-repetitive K. pneumoniae isolates which
phenotypically gave an evidence for MBL production were
included in the study. Seventeen isolates were recovered
from blood, urine and pus samples and twelve were recov-
ered during surveillance (5 from pharyngeal and 7 from
rectal swab cultures). Most patients (17/29, 63%) were
hospitalized in the intensive care unit (ICU).

Bacterial identification and antimicrobial susceptibility
testing were performed by the Vitek2 automated system
(bioM�erieux, Marcy l'�Etoile, France), while the MICs of
imipenem and meropenem were further determined by E-
test (bioM�erieux, Marcy l'�Etoile, France); results of anti-
microbial testing were interpreted in accordance to Clin-
ical and Laboratory Standards Institute (CLSI) 2019
guidelines.

Detection of b-lactamase genes

Phenotypic testing for the presence of MBL and/or KPC
carbapenemases was performed with the combined disk test
(CDT) using meropenem disks without and with phenyl
boronic acid and/or EDTA [18]. The presence of blaKPC,
blaIMP, blaOXA-48-like, and blaNDM genes was investigated by
a multiplex PCR [19], while an additional PCR was applied
for the detection of blaVIM-1 gene [20]. The genetic rela-
tionship of the isolates was determined by random ampli-
fication of polymorphic DNA test (RAPD) [21]. The
clustering analysis on RAPD patterns and the dendrogram
construction were performed based on the pairwise simi-
larities among the RAPD profiles applying the UPGMA
method in the BioNumerics software package (version 5.1,

Applied Maths available from: http://www.applied-maths.
com/bionumerics).

Whole Genome Sequence analysis

The whole genome sequence (WGS) of two randomly
selected NDM-producing K. pneumoniae isolates (213A and
248D) was obtained and analyzed by next generation
sequencing. Specifically, following DNA extraction, the
concentration of double strand (ds) DNA was measured
with Qubit using Qubit ds DNA HS assay kit (Q32851, Life
Technologies) and NGS was performed using the Ion
Torrent S5 PGM Platform (Life Technologies Corporation,
Grand Island, NY, USA); shearing, purification, ligation,
barcoding, size selection, library amplification and quanti-
tation, emulsion PCR and enrichment were performed ac-
cording to manufacturer’s instructions and the products
were loaded on a 316 chip. The Ion PGMHi-Q (200)
chemistry (Ion PGM Hi-Q Sequencing kit, A25592) was
applied (Thermo Fisher Scientific).

Identification of multi-locus sequence type (MLST),
plasmids and antimicrobial resistance genes was performed
applying the tools using MLST 2.0, Resfinder 4.1, KmerRe-
sistance 2.2, Comprehensive Antibiotic Resistance Database
(CARD), and PlasmidFinder 2.1 [22–26].

RESULTS

All isolates were resistant to imipenem, meropenem, cefta-
zidime, piperacillin/tazobactam, while 37.94 and 44.83%
were non-susceptible to amikacin and gentamicin, respec-
tively; aztreonam and colistin resistance was observed in
79.31 and 10.34% of the isolates, respectively. The blaNDM
gene was detected in all K. pneumoniae isolates, while blaKPC
and blaVIM genes were co-detected in one (33AP) and two
(3051D and 322D) isolates, respectively (Table 1).

RAPD DNA profiles of the 29 K. pneumoniae isolates
showed bands ranging from 200-to 3,000 base pairs. Based
on RAPD patterns the isolates were divided into two major
groups (A and B) which differed by 28.4%. A clear chro-
nological grouping of the isolates was observed, with group
A containing isolates collected during August-November
2019 (with 4 subgroups), and group B containing isolates
collected during December 2019–February 2020 (with 7
subgroups) (Fig. 1). The in-group difference was <10%.

The two isolates from which the WGS was obtained,
presented high minimum inhibitory concentrations to
imipenem, meropenem, ceftazidime, piperacillin/tazo-
bactam, and aztreonam; 213A was sensitive to amikacin
and gentamicin and colistin resistant, while 248D was
resistant to amikacin and gentamicin and colistin sensitive.
The main characteristics of their whole genome analysis are
seen in Table 2. Both isolates belonged to MLST ST11 and
carried the blaNDM-1 gene. In silico analysis revealed that
only IncFIA (HI1) plasmid was present in both isolates,
with the rest belonging to various incompatibility groups
(Table 2).
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Regarding genes conferring resistance to antibiotics,
most were detected in K. pneumoniae 248D (Table 2). Co-
occurrence of beta-lactamases was observed. Besides the
blaNDM-1 gene, several additional chromosomal and
plasmid-mediated beta-lactamase genes were detected,
including blaCTX-M-15, blaOXA-1, blaOXA-10, blaSHV-11, bla-
TEM-1B, and blaVEB-1 genes. Both strains harbored the
plasmid-mediated quinolone resistance genes oqxA and
oqxB, while genes conferring resistance to doxycycline,
penicillins and rifampicin were detected only in 248D.
Both strains harbored the aminoglycoside-modifying en-
zymes genes aac(6)-Ib-cr, and aph (3)-Ib, while 248D co-
harbored the aac(6)-Ib, ant(20)-Ia, ant(300)-IIe genes and
the 16S rRNA methylase gene rmtB. A variety of genes
associated with efflux pump and reduced permeability
were also detected.

DISCUSSION

Since the early 2000s, Greece is affronting a critical situation
regarding the presence of carbapenemase-encoding genes in
hospitals, as VIM-1 carbapenemases emerged in 2002, KPC-
2 in 2007, NDM-1 in 2011, OXA-48 in 2012 [27] and, since

2010, K. pneumoniae strains co-producing two carbapene-
mases have been also detected [28]. As reported recently, the
Greek situation differs greatly from other European coun-
tries where OXA-48, is the most frequently encountered
carbapenemase [16]. The increased number of metallo-b-
lactamase (MBL)-producing K. pneumoniae isolates
observed in the summer of 2019 in a tertiary hospital in
Thessaloniki, Greece, called for further genetic investigation
since MBL–producing K. pneumoniae are associated with
high rates of morbidity and mortality in nosocomial settings
[29]. It was shown that all isolates of the study harbored the
blaNDM gene, while three NDM-producing isolates carried
additional carbapenemase genes (two blaVIM and one
blaKPC). A previous 4-year (January 2013–December 2016)
survey in 8 Greek hospitals showed that 71% of 481
phenotypically MBL positive carbapenem non-susceptible K.
pneumoniae isolates carried the blaNDM-1 gene [30]. Since
2016, there was a clear predominance of KPC over metallo-
b-lactamases in the country [31, 32] which recently seems to
change. This could be at least partially attributed to the
implementation of ceftazidime/avibactam [33] that shows
optimal results against KPC-producers [34].

Epidemiological data showed that the detection of NDM-
producing K. pneumoniae was not limited in certain units,

Table 1. Characteristics and detection of b-lactamase-encoding genes in carbapenem-resistant Klebsiella pneumoniae isolates

Isolate Hospital unit Isolation date Source KPC NDM VIM-1 IMP OXA-48

1972Α Int. Medicine 20/8/2019 blood neg pos neg neg neg
2270Ο Urology 25/8/2019 urine neg pos neg neg neg
2989O Urology 10/9/2019 urine neg pos neg neg neg
2185D Urology 12/9/2019 pus neg pos neg neg neg
3202O Urology 26/9/2019 urine neg pos neg neg neg
267Y ICU 22/10/2019 pus neg pos neg neg neg
2569B ICU 11/11/2019 blood neg pos neg neg neg
3879O Int. Medicine 16/11/2019 urine neg pos neg neg neg
2964D ICU 9/12/2019 pharyngeal swab neg pos neg neg neg
149MB ICU 11/12/2019 BAL neg pos neg neg neg
3051D ICU 16/12/2019 rectal swab neg pos pos neg neg
3045D ICU 16/12/2019 rectal swab neg pos neg neg neg
3053D ICU 16/12/2019 rectal swab neg pos neg neg neg
4299Ο Urology 18/12/2019 urine neg pos neg neg neg
331Υ Gen. Surgery 25/12/2019 pus neg pos neg neg neg
4053Ο Int. Medicine 27/12/2019 urine neg pos neg neg neg
81O ICU 8/1/2020 urine neg pos neg neg neg
33AP Int. Medicine 13/1/2020 pharyngeal swab pos pos neg neg neg
37AP Int. Medicine 13/1/2020 pharyngeal swab neg pos neg neg neg
86D ICU 13/1/2020 rectal swab neg pos neg neg neg
165O Int. Medicine 15/1/2020 urine neg pos neg neg neg
127D ICU 17/1/2020 rectal swab neg pos neg neg neg
213A ICU 27/1/2020 blood neg pos neg neg neg
248D ICU 3/2/2020 pharyngeal swab neg pos neg neg neg
264A ICU 3/2/2020 blood neg pos neg neg neg
255D ICU 3/2/2020 rectal swab neg pos neg neg neg
314A ICU 6/2/2020 blood neg pos neg neg neg
221D ICU 10/2/2020 pharyngeal swab neg pos neg neg neg
322D ICU 10/2/2020 rectal swab neg pos pos neg neg

Int. Medicine: Internal Medicine, Gen. Surgery: General Surgery, ICU: Intensive care unit, BAL: bronchoalveolar lavage, neg: negative, pos:
positive.
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although most (63%) were isolated from patients hospital-
ized in ICU. Twelve isolates were taken during colonization
control, which shows the value of surveillance in order to
detect silent dissemination, since carbapenem-resistant
Enterobacterales colonization may rapidly result in infection,
especially in critically ill patients [35].

A low level of similarity (<28%) was observed among the
RAPD patterns of the two time-dependent groups, sug-
gesting the circulation of two different clones. Even within
groups, the isolates differed each other (although less than
10%), reflecting the great heterogeneity of the isolates.

The analysis of the whole genome sequences of the two
K. pneumoniae isolates revealed that they belonged to ST11,
which is a common NDM-bearing lineage in several coun-
tries worldwide, and it seems that currently is established in
Greece. A noteworthy variability in the genetic characteris-
tics was observed between the two isolates, regarding the
number and content of plasmids and the number and types
of antibiotic resistance genes (Table 2). The IncFIA (HI1)

plasmid was present in both isolates, and it is known that
plasmids of the IncF group represent one of the most
common plasmid types contributing to the spread of anti-
biotic resistance genes in Enterobacteriaceae [36]. In previ-
ous studies in Greece the identified plasmids in NDM-
producing ST11 K. pneumoniae isolates belonged to the
IncFII group [12, 30]. In the present study, an IncFII
plasmid was detected in one isolate, however, a variety of
other plasmids were identified, including IncC and IncR.
The content of resistance genes differed between the two
isolates, which reflects the difference in antibiotic resistance.
A discrepancy was seen in amikacin resistance of 213A
isolate since it was found sensitive (MIC 5 16 mg/L);
however, aac (6)-Ib-cr gene which confers resistance to
certain aminoglycosides (amikacin, isepamicin, and tobra-
mycin) and fluoroquinolones was detected in the WGS. This
can be explained by the fact that AAC (60)-Ib-cr enzymes are
less effective against aminoglycosides compared to other
members of the same subclass [37]. As expected, 213A

Fig. 1. RAPD profiles of the 29 K. pneumoniae isolates of the present study
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isolate was sensitive to gentamicin, in contrast to the 248D
isolate which contained a plethora of aminoglycoside-
modifying enzymes genes and the 16S rRNA methylase gene
rmtB (Table 2).

Limitation of the study was the low number of whole
genome sequenced isolates, and especially the lack of WGS
of group A isolates. However, even the analysis of two iso-
lates of the same group showed that although the NDM-
producing K. pneumoniae strains belonged to the same
sequence type and were isolated in the same unit of the
hospital within one-week interval, they differed greatly in
their genetic characteristics. As indicated previously, the
“one size fits all” approaches to identifying effective anti-
microbial regimens against carbapenem-resistant K. pneu-
moniae strains are not effective [38].

In conclusion, all MBL-producing K. pneumoniae iso-
lates recovered from a Greek hospital during a 6-month
period carried a blaNDM gene, while WGS analysis showed
that isolates, even within similar genetic group, exhibit high
genetic diversity. Continuous surveillance is necessary to
detect the emergence of new bacterial clones in hospital
settings, while application of antimicrobial stewardship is
the only way to reduce the spread of multi-drug resistant
bacteria.

Nucleotide sequence accession numbers

The whole genome sequences of Thessaloniki-248D-2020
and Thessaloniki-213A-2020 were submitted to European
Nucleotide Archive (ENA) under the study PRJEB41773
and received the Accession numbers ERS5489252 and
ERS5489253, respectively.
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