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Abstract. We introduce and examine two variants of networks of re-
action systems, called communicating reaction systems with direct com-
munication, where the reaction systems send products or reactions to
each other. We show that these types of networks of reaction systems
can be obtained by simple mappings from single reaction systems. We
also discuss some aspects of communication within these networks, and
suggest open problems for future research.

1 Introduction

The theory of reaction systems has been a vivid research area recently. The
concept of a reaction system was introduced by A. Ehrenfeucht and G. Rozenberg
as a formal model of interactions between biochemical reactions. The interested
reader is referred to [8] for the original motivation. The main idea of the authors
was to model the behavior of biological systems in which a large number of
individual reactions interact with each other.

A reaction system consists of a finite set of objects that represent chemicals
and a finite set of triplets that represent chemical reactions. Each reaction con-
sists of three nonempty finite sets: the set of reactants, the set of inhibitors, and
the set of products. The set of reactants and the set of inhibitors are disjoint.
Let T be a set of reactants. A reaction is enabled for T and it can be performed
if all of its reactants are present in T and none of its inhibitors is in T . When the
reaction is performed, then the set of its reactants is replaced by the set of its
products. All enabled reactions are applied in parallel. The final set of products
is the union of all sets of products that were obtained by the reactions that were
enabled for T . For further details on reaction systems consult [9].

Reaction systems (R systems) are qualitative models, opposed to P systems
(membrane systems) that are quantitative ones. The model of reaction systems
focuses only on the presence or absence of the chemical species, and does not
consider their amounts. Multiple reactions that have common reactants do not
interfere. All of the reactions that are enabled at a certain step are performed
simultaneously. Another feature of reaction systems which makes them different
from other bio-inspired computational models, as for example, P systems, is the
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lack of permanency: the state of the system consists of only products of those
reactions that took place in the last step. Those reactants that were not involved
in any reaction disappear from the system. This property is widely used in the
theory.

R systems have been studied in detail over the last 16 years. One interesting
topic of their study is the theory of networks of reaction systems [4]. Such a
construct is a virtual graph with a reaction system in each node. The reaction
systems are defined over the same background set and work in a synchronized
manner, governed by the same clock. After performing the reactions enabled for
the current set of reactants at a node, certain products from other nodes can be
added to the set of products at the node. The nodes, thus the reaction systems
interact with each other using distribution and communication protocols. The
set of products of each reaction system in the network forms a part of the
environment of the network. Important ideas and results on these constructs
can be found in [3, 4].

In this paper we introduce the concept of communicating R systems with two
variants of direct communication (cdcR systems, for short). These constructs are
particular variants of networks of reaction systems [4]. Such a system consists of
a finite set of extended versions of reactions defined over the same background
set. These extended reaction systems (the components of the cdcR system),
in addition to performing standard reactions, communicate either products or
reactions to certain predefined target components. In the case of product com-
munication, the products are associated with targets, i.e. labels of components
which the product is sent to. In the case of reaction communication, each reac-
tion is associated with a set of targets, labels of components. In this case, after
performing the reaction, it is communicated to the target component. We note
that the sender component can also be the target component. In both cases,
after performing the reactions and the communication, the system performs a
new transition. Communication is direct in these systems since the target of the
product or the reaction to be communicated is explicitly given together with the
cdcR system. We prove that for every cdcR system using any of the two types
of direct communication (product or reaction), a reaction system can be con-
structed which simulates, up to some simple mapping(s), the given cdcR system.
That is, these reaction systems provide representations of cdcR systems. We also
discuss communication within the network, define static and active communi-
cation links, graphs, and describe how to represent active communication links
and graphs of the cdcR systems under operation. We also compare the two com-
munication variants. Finally, we provide conclusions and suggestions for future
research.

2 Preliminaries

For basic notions of formal language and computation theory, the reader is re-
ferred to [11].
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The set of all strings over an alphabet V is denoted by V ∗, the set of non-
empty strings by V +. The empty string is denoted by λ and |w| denotes the
length of string w. A language L is a subset of V ∗.

We recall the notions concerning reaction systems; most of them are taken
from [8, 9]. Some notations slightly differ from the standard ones; these changes
are for technical reasons.

Definition 1. Let S be a finite nonempty set; S is called the background set. A
reaction ρ over S is a triplet (Rρ, Iρ, Pρ) where Rρ, Iρ, Pρ are nonempty subsets
of S such that Rρ ∩ Iρ = ∅.

Sets Rρ, Iρ, Pρ are called the sets of reactants, inhibitors, and products of ρ,
respectively.

For convenience, reaction ρ will be given in the form ρ : (Rρ, Iρ, Pρ) in the
sequel.

We consider now the effect of a reaction in a specific state of a reaction
system; states are finite sets of entities.

Definition 2. A reaction system is an ordered pair A = (S,A), where S is a
background set and A is a finite nonempty set of reactions over S.

Thus, a reaction system A is simply a set of reactions. In specifying A, we also
give its background set S.

Definition 3. Let S be a background set, T ⊆ S, ρ : (Rρ, Iρ, Pρ) be a reaction
over S, and let A be a finite set of reactions over S. Then

1. ρ is enabled for T if Rρ ⊆ T and Iρ ∩ T = ∅;
2. the result of applying ρ to T , denoted by resρ(T ), equals Pρ if ρ is enabled

for T and ∅ otherwise;

3. the result of applying A to T , denoted by resA(T ), is
⋃
ρ∈A resρ(T ).

Thus, reaction ρ is enabled for T if T contains all of the reactants of ρ and none
of its inhibitors. If ρ is enabled for T , then its product will be a subset of the
successor set of reactants. For T ⊆ S, enA(T ) denotes the set of reactions of
A that are enabled for T . Notice that resA defines a function on 2S , called the
result function.

Definition 4. The state sequence of a reaction system A with initial state T is
given by successive iterations of the result function:

(resnA(T ))n∈N = (T, resA(T ), res2A(T ), ...).

Since the background set of a reaction system is finite, the state space is also
finite; thus, every state sequence is either finite or ultimately periodic.
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3 Communicating Reaction Systems with Direct
Communication

We introduce the concept of communicating R systems (cdcR systems) with
two variants of direct communication. The concept is strongly related to the
notion of a network of R systems [4] and it has been inspired by several vari-
ants of bio-inspired networks of language generating devices [6, 5, 7]. A cdcR
system consists of a finite number of components, each component is a finite
set of extended variants of reactions. Every component is defined over the same
background set. The components, in addition to performing standard reactions,
communicate products or reactions, according to the used protocol, to certain
predefined target components. The components of the cdcR system work in a
synchronized manner, governed by the same clock. In the case of product com-
munication, the products are associated with targets, i.e. with the label of the
component which the product is sent to. In the case of reaction communication,
each reaction is associated with a set of targets, labels of a component. In this
case, after performing the reaction, it is sent to the target components. We note
that the target component can also be the sender component. In both cases,
after performing the reactions and the communication, the system performs a
new transition, i.e. the procedure is repeated. The reader may easily see that
the targets define direct communication between the components. We show that
for every cdcR system using any of the two types of communication a standard
R system can be constructed which provides a representation of the given cdcR
system; the operation of the two systems correspond to each other.

3.1 Communication by products

We first define the notion of a cdcR system communicating by products.

Definition 5. A cdcR system communicating by products (a cdcR(p) system,
for short), of degree n, n ≥ 1, is an (n+ 1)-tuple ∆ = (S,A1, . . . , An), where

– S is a finite nonempty set, the background set of ∆;
– Ai, 1 ≤ i ≤ n, is the ith component of ∆, where
• Ai is a finite nonempty set of extended reactions of type pc (pc-reactions,

for short).
• Each pc-reaction ρ of Ai is of the form ρ : (Rρ, Iρ, Πρ), where Rρ and
Iρ are nonempty subsets of S, Rρ ∩ Iρ = ∅, and Πρ ⊆ Pρ × {1, . . . , n} is
a nonempty set with Pρ being a nonempty subset of S. Rρ, Iρ, Πρ are
called the set of reactants, the set of inhibitors, and the set of products
with targets. A pair (b, j), 1 ≤ j ≤ n in Πρ means that product b ∈ S is
communicated to component Aj.

The term pc-reaction means that the reaction communicates products.
We extend notions and notations concerning reaction systems to cdcR(p)

systems. If it is clear from the context, for singleton sets {ρ} we use notation ρ.
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A pc-reaction ρ : (Rρ, Iρ, Πρ) is enabled for the set U ⊆ S if Rρ ⊆ U and
Iρ∩U = ∅ as in case of standard reaction systems; this fact is denoted by enρ(U).
Let U ⊆ S be a set of reactants and let ρ be a pc-reaction at component Ai.
Then we define resρ(U) = {b | (b, i) ∈ Πρ} if enρ(U) and resρ(U) = ∅ otherwise.

Let ∆ = (S,A1, . . . , An) be a cdcR(p) system and let U ⊆ S. We define
resAi

(U) = {b | (b, i) ∈ Πρ, ρ ∈ Ai, enρ(U)} if at least one pc-reaction in Ai is
enabled for U and resAi

(U) = ∅ otherwise.
cdcR(p) systems operate by transitions, i.e. by changing their states. A state

of a cdcR(p) systems ∆ = (S,A1, . . . , An) is an n-tuple (D1, . . . , Dn) where
Di ⊆ S, 1 ≤ i ≤ n; Di is called the state of component Ai, 1 ≤ i ≤ n. Notice
that Di can be the empty set.

A transition in ∆ means that every component of the cdcR(p) system per-
forms all of its enabled pc-reactions on the current set of reactants and then
communicates the obtained products to their target components, indicated in
the corresponding pc-reaction. It is important to note that the same object
(product) can be communicated to a component from several components and
by several pc-reactions.

The sequence of transitions starting with an initial state forms a state se-
quence of ∆. Notice that by the definition of the pc-reactions, for a given initial
state there is only one state sequence of ∆, i.e. for a given initial state, the
sequence of transitions is deterministic.

Definition 6. Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system.
The sequence D̄0, . . . , D̄j , . . . is called the state sequence of ∆ starting with

initial state D̄0 if the following conditions are met:
For every D̄j, j ≥ 0 where D̄j = (D1,j . . . , Di,j , . . . , Dn,j), 1 ≤ i ≤ n it holds
that D̄j+1 = (D1,j+1 . . . , Di,j+1, . . . , Dn,j+1) with
Di,j+1 = ∪1≤k≤nComk→i(resAk

(Dk,j)) where Comk→i(resAk
(Dk,j)) = {b |

(b, i) ∈ Πρ, ρ : (Rρ, Iρ, Πρ) ∈ enAk
(Dk,j)}.

Sequence Di,0, Di,1, . . . is said to be the state sequence of component Ai of
∆, 1 ≤ i ≤ n.

Notice that the state sequence does not end if resAi
(Di,j) is the empty set,

since products can be communicated to the component in some later step.
Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system and let D̄0, D̄1 . . . be

the state sequence of ∆ starting with D̄0. Then every pair (D̄i, D̄i+1), i ≥ 0 is
said to be a transition in ∆ and is denoted by D̄i =⇒ D̄i+1.

We give an example for cdcR(p) systems.

Example 1. Let ∆ = (S,A1, A2, A3) be a cdcR(p) system where S = {a, b, c, d}
and components A1, A2 and A3 are defined as follows. Let

A1 = {ρ1 : ({a, b}, {d}, {(a, 2)}), ρ2 : ({b}, {d}, {(b, 2)})},

A2 = {ρ3 : ({a, b}, {c}, {(c, 3)}), ρ4 : ({a}, {c}, {(a, 3)})},

A3 = {ρ5 : ({a, c}, {b}, {(a, 1)}), ρ6 : ({a}, {d}, {(b, 1)})}.
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Let D̄0, the initial state of ∆ be given as D̄0 = ({a, b}, {a, b}, {a, c}). Then
component A1 performs both of its pc-reactions, ρ1 and ρ2, and communicates
products a and b to component A2. Similarly, A2 performs both of its pc-
reactions, ρ3 and ρ4, and communicates products c and a to component A3.
As in the previous two cases, A3 also performs both of its pc-reactions, ρ5 and
ρ6. It communicates products a and b to component A1. Thus, the new state of
∆ will be D̄1 = ({a, b}, {a, b}, {a, c}), the same as D̄0.

If we change pc-reaction ρ3 to ρ′3, where ρ′3 : ({c}, {a, b}, {(c, 3)}), then
only pc-reaction ρ4 is enabled on {a, b}. Thus, after performing ρ4 only prod-
uct a is communicated to A3. Thus, the new state of ∆ in this case will be
({a, b}, {a, b}, {a}).

Next we show that every cdcR(p) system can be represented by an R system
which provides a simulation as well in the following sense: the state sequences
of the components of the cdcR(p) system can be obtained by simple mappings
from the state sequence of the R system.

Theorem 1. Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system and let
D̄0 = (D1,0, . . . , Dn,0) be initial state of ∆. We can give a reaction system A =

(S′, A′), initial state W0 of A, and mappings hi : 2S
′ → 2S such that for each

i, 1 ≤ i ≤ n, the state sequence Di,0, Di,1, . . . of component Ai of ∆ is equal
to the sequence hi(W0), hi(W1), . . ., where W0,W1, . . . is the state sequence of A
starting from initial state W0.

Proof. To prove the statement, we first define the components of A. Let S′ =
{[x, i] | x ∈ S, 1 ≤ i ≤ n} be the background set of A. For every i, 1 ≤ i ≤ n let
S′i = {[x, i] | x ∈ S}.

For any pc-reaction ρ : (Rρ, Iρ, Πρ) of component Ai, 1 ≤ i ≤ n, we define
reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A as follows: Rρ′ = {[x, i] | x ∈ Rρ}, Iρ′ = {[y, i] |
x ∈ Iρ}, Pρ′ = {[x, k] | (x, k) ∈ Πρ, 1 ≤ k ≤ n}. A has no more reactions. It can
immediately be seen that every reactant [x, i] of A represents a reactant x in S
that can be found at component Ai, and reversely. Thus, ∆ and A correspond
to each other, since by definition any reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A where each
element of Rρ′ , Iρ′ is of the form [x, i] corresponds to a pc-reaction ρ : (Rρ, Iρ, Πρ)
of component Ai, and reversely.

Let W0 = {[x, i] | x ∈ Di,0, 1 ≤ i ≤ n} be the initial state of A. It is easy
to see that elements of W0 correspond to elements of the initial states of the
components of ∆.

Let us define for i, 1 ≤ i ≤ n, mapping hi : 2S
′ → 2S as follows. Let U ⊆ S′.

If U ∩ S′i 6= ∅, then let hi(U) = {x | [x, i] ∈ U}, otherwise let hi(U) = ∅.
We prove that the state sequence of component Ai of ∆ starting from initial

state Di,0 corresponds to the state sequence of A starting from W0. For j = 0 and
for any fixed i, i ∈ {1, . . . , n}, Di,0 = hi(W0), thus the statement for j = 0 holds.
Suppose now that the statement holds for l, where l ≥ 1, i.e. Di,l = hi(Wl). We
show that Di,l+1 = hi(Wl+1) holds as well. The set of reactants Di,l+1 is the
union of two sets of reactants Ui,l+1 and Vi,l+1. Ui,l+1 consists of all products
that are obtained by all enabled reactions of Ai performed on Di,l and which
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products do not leave the component Ai, i.e. which should be communicated to
Ai. Vi,l+1 consists of all products of all enabled reactions performed on some Dk,l

which products leave component Ak, k 6= i. (Notice that the two sets Ul+1 and
Vi,l+1 can have joint elements.) Since Di,l+1 = ∪1≤k≤nComk→i(resAk

(Dk,l))
where Comk→i(resAk

(Dk,l)) = {b | (b, i) ∈ Pρ × {1, . . . , n}, ρ = (Rρ, Iρ, Πρ) ∈
enAk

(Dk,l)} and each pc-reaction ρ = (Rρ, Iρ, Πρ) of component Ai corresponds
to exactly one reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A and reversely, where Rρ′ = {[x, i] |
x ∈ Rρ}, Iρ′ = {[y, i] | x ∈ Iρ}, Pρ′ = {[x, k] | (x, k) ∈ Πρ, 1 ≤ k ≤ n}, it can
be seen that Di,l+1 = hi(Wl+1) holds. This implies that the statement of the
theorem holds.

In the sequel, we also call reaction system A the flattened reaction system of
∆ or a flattened version of ∆. Notice that a cdcR(p) system is allowed to have
only one component, thus the use of the term flattened version is justified.

Definition 7. Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. Let reac-
tion system A = (S′, A′) be defined as follows. Let S′ = {[x, i] | x ∈ S, 1 ≤ i ≤
n} be the background set of A. For any pc-reaction ρ : (Rρ, Iρ, Πρ) of compo-
nent Ai, we define reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A with Rρ′ = {[x, i] | x ∈ Rρ},
Iρ′ = {[y, i] | x ∈ Iρ}, Pρ′ = {[x, k] | (x, k) ∈ Πρ, 1 ≤ k ≤ n}. No other reaction
is in A′. Then A is called the flattened reaction system of ∆.

Based on the proof of Theorem 1 some observations can be made. We present
the next statement without proof, since it is a direct consequence of Theorem 1
and its proof.

Corollary 1. Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system and let
A = (S′, A′) be an R system given as in Theorem 1. Furthermore, let D̄0 be the
initial state of ∆ and let W0 be the initial state of A given as in the proof of
Theorem 1. Then, for m ≥ 0, a reactant b ∈ S occurs at component Ai in the
mth element of the state sequence of ∆ starting with initial state D̄0 if and only
if reactant [b, i] ∈ S′ occurs in the mth element of state sequence of A starting
with initial state W0.

In [12, 10] the following problem was discussed: For a given reaction system
A = (S,A), a reactant a ∈ S and m ≥ 2 the decision problem whether a appears
at the mth step of at least one state sequence of A is called the occurrence
problem. Note that any nonempty subset of S can be considered as initial state
of A, thus the reaction system may have more than one state sequences. For
some fixed values of the parameter m, the occurrence problem was shown to be
NP-complete [12] and when m is given as input it is a PSPACE-problem [10].

We can formulate the occurrence problem for cdcR(p) systems as well. For
a given cdcR(p) system ∆ = (S,A1, . . . , An), n ≥ 1, the problem whether a
reactant a ∈ S occurs at some component Ai at the mth element of the state
sequence of ∆ starting with some some initial state D̄0 is called the occurrence
problem of cdcR(p) systems. By Theorem 1, Corollary 1 and because to any
reaction system we can construct a cdcR(p) system with only one component,
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we may state that the occurrence problem of cdcR(p) systems for some fixed
values of m is NP-complete and it is a PSPACE-problem when m is given as
input.

Next we deal with the communication of products within the cdcR(p) system
under operation.

Definition 8. Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. The static
communication graph of ∆ is a directed graph Γ = (V,E), where V is the set of
vertices (nodes) labeled with Aj, 1 ≤ j ≤ n, and the set of edges E is defined by
E ⊆ Ā× Ā, where Ā = {A1, . . . , An} and (Ai, Aj) ∈ E if and only if there is a
pc-reaction ρ : (Rρ, Iρ, Πρ) in Ai such that Πρ contains an element (b, j).

That is, from node Ai there is a directed edge to node Aj if and only if
component Ai of ∆ has at least one pc-reaction that communicates at least one
product to component Aj .

Definition 9. Let ∆ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. Let D̄0

be an initial state of ∆ and let trl : D̄l =⇒ D̄l+1, l ≥ 0 be a transition in the
state sequence σ : D̄0, D̄1, . . . , D̄l, . . . of ∆. If under transition trl, at component
Ai at least one reaction is performed that communicates at least one product to
component Aj, 1 ≤ i, j ≤ n, then we say that there is an active communication
link from component Ai to component Aj under transition trl : D̄l =⇒ D̄l+1 in
state sequence σ.

The active communication graph Γtrl = (V,Etrl) of ∆ under transition trl
in σ is defined as follows: V is given as for Γ and Etrl consists of all edges
(Ai, Aj), 1 ≤ i, j ≤ n in E such that there is an active communication link from
component Ai to component Aj under transition trl : D̄l =⇒ D̄l+1.

Notice that the active communication graph is associated to a transition.
Thus, if σ : D̄0, D̄1, . . . of ∆ is the state sequence of ∆ starting from initial state
D̄0, then σ defines a sequence of graphs Γtri , i ≥ 1, where Γtri is the active
communication graph associated to transition tri, tri : D̄i−1 =⇒ D̄i.

In the following we provide a representation of communication graphs (static
and active) of cdcR(p) systems. In the proof of Theorem 1, we assigned to
each product b of cdcR(p) system ∆ a location, i.e. the number (label) of the
component where the reactant is currently located. Thus, we used products of the
form [b, i] instead of b. This idea is extended in the following manner. In addition
to the current place, the symbol describing the product will also code its previous
location, the component from which it was communicated to its recent location.
Thus, we will use symbols of the form [b, i, j] meaning that a product b from
component Ai is/was sent to component Aj . Using this variant of flattening
the cdcR(p) system, we find a method for tracking active communication links
associated to transitions in every given state sequence in ∆.

Theorem 2. Let ∆ = (S,A1, . . . , An), n ≥ 1 be a cdcR(p) system and let D̄0

be initial state of ∆. Let A = (S′, A′) be a reaction system and let W0 be initial
state of A where
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– S′ = {[x, i], [x, i, k]′ | x ∈ S, 1 ≤ i, k ≤ n}, and
– A′ consists of the following reactions.

• For any pc-reaction ρ : (Rρ, Iρ, Πρ) of component Ai, there is reaction
ρ′ : (Rρ′ , Iρ′ , Pρ′) in A′ with Rρ′ = {[x, i] | x ∈ Rρ}, Iρ′ = {[y, i] | y ∈
Iρ}, Pρ′ = {[x, i, k]′ | (x, k) ∈ Πρ, 1 ≤ k ≤ n}.

• For every x ∈ S and 1 ≤ i, k ≤ n there is a reaction
ρ[x,i,k]′ : ({[x, i, k]′}, {[x, k]}, {[x, k]}) in A′.

– W0 consists of all reactants [x, h] where x ∈ S and [x, h] is an element of
Dh,0, 1 ≤ h ≤ n.

Then for any j, j ≥ 0, under transition tr : D̄j =⇒ D̄j+1 in the state
sequence D̄0, D̄1, . . . , D̄j , D̄j+1, . . . of ∆ there is an active communication link
from component Ai to component Ak of ∆ if and only if for some x ∈ S there is
a reactant [x, i, k]′ ∈ S′ which is a product of an enabled reaction of A on W2j

in transition W2j =⇒W2j+1 of the state sequence W0,W1, . . . of A.

This statement can be proven by modifying the proof of Theorem 1, we leave
the details to the reader.

3.2 Communication by reactions

Under operation, the architecture of the cdcR(p) system remains unchanged in
the sense that the set of reactions of the component does not change. An inter-
esting question is the following: What can we say about communicating reaction
systems where the current sets of reactions of the components are allowed to
change from state to state. One possible variant of this model is where the (suc-
cessfully) performed reactions can be communicated to the other components
and if a reaction is available at some component in some state then it had to be
performed at some component in the previous state (except the case of the initial
state). This type of cdcR systems can be considered as a dynamically evolving
system and represents a communication model where rules and not data are
communicated.

Definition 10. A cdcR system communicating by reactions (a cdcR(r) system,
for short) of degree n, n ≥ 1, is a triplet ∆ = (n, S,R) where

– n is the number of components,
– S is a finite nonempty set, called the background set of ∆,
– R is a finite nonempty set of extended reactions of type rc (rc-reactions, for

short), where

• each rc-reaction is of the form ρ : (Rρ, Iρ, Pρ); target(ρ),
• Rρ, Iρ, Pρ are nonempty subsets of S, the set of reactants, the set of

inhibitors, and the set of products of the rc-reaction, respectively,
• target(ρ) ⊆ {1, . . . , n} is a nonempty set, the set of indices (labels) of

the target components to which the rc-reaction is communicated.
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The components are labeled by numbers i, 1 ≤ i ≤ n.
For an rc-reaction ρ = (Rρ, Iρ, Pρ); target(ρ), triplet (Rρ, Iρ, Pρ) is called its

core and is denoted by core(ρ). For a nonempty set R′ ⊆ R we define core(R′) =
{core(ρ) | ρ ∈ R′}. An rc-reaction ρ is enabled for a nonempty subset U of S
if core(ρ) is enabled for U ; the result of performing ρ on U means the result
of performing core(ρ) on U . Notations enρ(U), resρ(U), and enR′(U), resR′(U)
where ρ is an rc-reaction and R′ is a set of rc-reaction systems are used in the
usual manner.

If no confusion arises, from now on ρ will be called the label of reaction ρ as
well.

Next we define the operation of cdcR(r) systems. These systems work with
changing their configurations, i.e. changing the current reaction sets and the
current sets of reactants that are at the disposal of the components. While the
behavior of cdcR(p) systems can be represented by the state sequences, in case
of cdcR(r) systems we speak of configuration sequences, since reaction sets are
allowed to be changed as well.

Definition 11. Let ∆ = (n, S,R), n ≥ 1, be a cdcR(r) system with n compo-
nents. Let C̄0 be the initial configuration of ∆ where C̄0 = ((A1,0, D1,0) . . . ,
(An,0, Dn,0)) with Ai,0 ⊆ R (the initial rc-reaction set of component i) and
Di,0 ⊆ S (the initial reactant set of component i), 1 ≤ i ≤ n. The pair (Ai,0, Di,0)
is called the initial configuration of component i.

The configuration sequence C̄0, C̄1, . . . of ∆, where C̄j = ((A1,j , D1,j) . . . ,
(An,j , Dn,j)), j ≥ 0, is defined as follows:

For each component i, 1 ≤ i ≤ n, for each j, j ≥ 0 and for every subsequent
configurations (Ai,j , Di,j), (Ai,j+1, Di,j+1) of component i the following hold:

– Ai,j+1 = {ρ ∈ R | i ∈ target(ρ), ρ ∈ Ak,j , encore(ρ)(Dk,j), 1 ≤ k ≤ n} and
– Di,j+1 = rescore(Ai,j)(Di,j)

That is, after performing the reactions that are enabled for the current reac-
tant sets at the components, the products stay with the components and those
reactions that were enabled for the reactant set are communicated. This means
that these reactions are added to the reaction sets of their target components.
(Notice that the sender component can be a target component as well). The new
set of reactions of the component consists of all reactions that were obtained by
communication. (Thus, those reactions that were not enabled for the reactant
set are erased from the set of reactions of the component.)

We give an example for a cdcR(r) system.

Example 2. Let ∆ = (3, S,R) be a cdcR(r) system where S = {a, b, c, d} and R
is defined as follows. Let
R = {ρ1 : ({a, b}, {d}, {a}); {1, 2},

ρ2 : ({b}, {d}, {b}); {1, 2},
ρ3 : ({a, b}, {c}, {c}); {2, 3},
ρ4 : ({a}, {c}, {a}); {2, 3},
ρ5 : ({a, c}, {b}, {a}); {3, 1},
ρ6 : ({a}, {d}, {b}); {3, 1}}.
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Let the initial configuration of∆, C̄0 = ((A1,0, D1,0), (A2,0, D2,0), (A3,0, D3,0))
be given as follows. Let A1,0 = {ρ1, ρ2}, A2,0 = {ρ3, ρ4}, and A3,0 = {ρ5, ρ6}.
Let D1,0 = {a, b}, D2,0 = {a, b}, D3,0 = {a, c}, i.e. the same initial states and
sets of reactants as in Example 1.

The new configuration C̄1 of ∆ will be the following. It can easily be seen that
each reaction can be performed at each component, thus the new rc-reaction sets
will be the following. The first component will have rc-reactions ρ1, ρ2, ρ5, ρ6, the
second component will have rc-reactions ρ3, ρ4, ρ1, ρ2, and the third component
will have rc-reactions ρ5, ρ6, ρ3, ρ4. The new states will be {a, b}, {a, c}, {a, b},
respectively. Repeating the procedure, the state of the first component will be
{a, b}, the state of the second component will be {a, b}, and the third component
will have state {a, b} as well.

As with cdcR(p) systems, to every cdcR(r) system ∆ we can construct an R
system A which represents ∆.

Theorem 3. Let ∆ = (n, S,R), n ≥ 1 be a cdcR(r) system of degree n, and let
LabR = {lρ | ρ ∈ R} be the set of labels associated to the elements of R; LabR
and S are disjoint sets.

Let σ = C̄0, C̄1, . . . be the configuration sequence of ∆ starting from initial
configuration C̄0, where C̄j = ((A1,j , D1,j) . . . , (An,j , Dn,j)), j ≥ 0.

We can construct a reaction system A = (S′, A′), give initial state W0 of A
and mappings hi, gi, 1 ≤ i ≤ n such that for every pair (Ai,j , Di,j), j ≥ 0, in
the configuration sequence σ it holds that hi(Wj) = Di,j and gi(Wj) = LabAi,j

where LabAi,j
denotes the set of labels of rc-reactions that are elements of Ai,j

and W0,W1, . . . is the state sequence of A starting from W0.

Proof. Let us define A = (S′, A′) as follows. Let S′ = {[a, i] | a ∈ (S∪LabR), 1 ≤
i ≤ n}. To each rc-reaction ρ : (Rρ, Iρ, Pρ); target(ρ) in R and for each i, 1 ≤ i ≤
n, we define a reaction (ρ′, i) : ({[lρ, i]}∪{[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] |∈
Pρ} ∪ {[lρ, k] | k ∈ target(ρ)}).

Let W0 =
⋃n
i=1({[lρ, i] | lρ ∈ LabR, ρ : (Rρ, Iρ, Pρ); target(ρ) ∈ Ai,0}∪ {[b, i] |

b ∈ Di,0}).
Let us define mapping hi : 2S

′ → 2S , 1 ≤ i ≤ n as follows. For U ⊆ S′

with U ∩ S′ 6= ∅, let hi(U) = {x | [x, i] ∈ U}, otherwise let hi(U) = ∅. (Notice
that if U = {[x, i], [y, j]} where j 6= i, then hi(U) = {x}.) Let mapping gi :
2S

′ → 2LabR , 1 ≤ i ≤ n be defined as follows. For V ⊆ S′ and V ∩ S′ 6= ∅ let
gi(V ) = {lρ | [lρ, i] ∈ V, V ⊆ LabR}, otherwise let gi(V ) = ∅.

By definition, it is obvious that hi(W0) = Di,0 and gi(W0) = LabAi,0
, where

LabAi,0
denotes the labels of reactions in Ai,0.

Suppose now that for any fixed i, and up to certain j, j ≥ 1 for (Ai,j , Di,j)
in the configuration sequence of ∆ it holds that hi(Wj) = Di,j and gi(Wj) =
LabAi,j

where LabAi,j
denotes the set of labels of reactions that are elements of

Ai,j , and Wj is the jth element in the state sequence of δ starting from its initial
state W0. We show now that the statement holds for j + 1 as well.

Notice that due to the form of the reactions of A, for any j, where j ≥ 1,
[lρ, i] appears in Wj if and only if it was obtained as a product in the previous
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step by some reaction of A. By the reactions of A this is possible if and only if
(Rρ, Iρ, Pρ) was performed at some component of ∆ and ρ was communicated
to component i. Thus, reactants of the form [lρ, i] in Wj and reactions in Ai,j
correspond to each other. Analogously, any reactant of the form [b, i] occurs in
Wj if and only if it is an element of Di,j . Applying reactions of A to Wj , elements
of Wj+1 will be of the form [γ, i] and [c, i] where γ ∈ LabAi,j+1

and c ∈ S meet
the previously listed conditions. Notice that labels of reactions of ∆ are reactants
of A that indicate the simulation of a reaction in ∆ with a reaction of A. Thus,
that the statement of the theorem holds.

Analogously to Theorem 1, the previous statement has a direct consequence.
So the proof is left to the reader.

Corollary 2. Let ∆ be a cdcR(r) system of degree n, n ≥ 1, and let A be an R
system given as in Theorem 3. Let C̄0 be the initial configuration of ∆ and let
W0 be the initial state of A given as in Theorem 3. Then rc-reaction ρ occurs at
component i in the mth element of state sequence of ∆ starting from C̄0 if and
only if reactant [lρ, i] occurs in the mth element of state sequence of A starting
from W0, where m ≥ 1.

As for cdcR(p) systems, the reaction system A constructed to cdcR(r) system
∆ in Theorem 3 can be called the flattened reaction system of ∆ and we can
formulate an occurrence problem to cdcR(r) systems as follows. For a given
cdcR(r) system ∆ = (n, S,R), n ≥ 1, the problem whether an rc-reaction ρ ∈ R
occurs at the ith component at the mth element of the state sequence of ∆
starting with some initial configuration C̄0 is called the occurrence problem of
cdcR(r) systems. By Theorem 3 and Corollary 2, and by [12, 10] we may state
that the occurrence problem of cdcR(r) systems for some fixed values of m is
NP-complete and it is a PSPACE-problem when m is given as input.

Analogously to cdcR(p) systems, we define the flattened reaction system of
cdcR(r) systems ∆.

Definition 12. Let ∆ = (n, S,R), n ≥ 1 be a cdcR(r) system of degree n, and
let LabR = {lρ | ρ ∈ R} be a set of labels associated to the elements of R.
Let LabR and S be disjoint sets. Let us define reaction system A = (S′, A′)
as follows. Let S′ = {[a, i] | a ∈ (S ∪ LabR), 1 ≤ i ≤ n}. To each rc-reaction
ρ : (Rρ, Iρ, Pρ); target(ρ) in R and for each i, 1 ≤ i ≤ n, we define a reaction
(ρ′, i) : ({[lρ, i]} ∪ {[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] |∈ Pρ} ∪ {[lρ, k] | k ∈
target(ρ)}). A has no more reactions. Then A is called the flattened reaction
system of cdcR(r) system ∆.

We have shown that both cdcR(p) systems and cdcR(r) systems can be flat-
tened, i.e. we can construct simulating reaction systems to both types of cdcR
systems. To obtain the simulating reaction system, either we indicated the lo-
cation of the reactant or we indicated both the location of the reactant and
the location of the reaction in the set of new reactants. In the case of cdcR(r)
systems, we added the labels of rc-reactions to the reactant set of the reactions.
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Studying the proofs, the reader may notice that the simulating reaction systems
are similar. Based on this observation, we show that to any cdcR(r) system we
can construct a cdcR(p) system such that there exists a reaction system which
is the flattened version of both.

Theorem 4. Let ∆ = (n, S,R), n ≥ 1 be a cdcR(r) system of degree n and let
A be the flattened reaction system of ∆ given as in Definition 12. Then there
exists a cdcR(p) system ∆′ such that for its flattened reaction system A′, given
as in Definition 7, A = A′ holds.

Proof. Let us consider ∆ = (n, S,R), n ≥ 1 and let LabR = {lρ | ρ ∈ R}
be a set of labels associated to the elements of R. Let LabR and S be disjoint
sets. By Definition 12 the flattened reaction system A of ∆ is defined as follows:
A = (S′, A′) where S′ = {[a, i] | a ∈ (S ∪LabR), 1 ≤ i ≤ n}. To each rc-reaction
ρ : (Rρ, Iρ, Pρ); target(ρ) in R and for each i, 1 ≤ i ≤ n, there is a reaction
(ρ′, i) : ({[lρ, i]} ∪ {[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] |∈ Pρ} ∪ {[lρ, k] | k ∈
target(ρ)}). A has no more reactions.

Let us define cdcR(p) system ∆′ as follows. Let ∆′ = (S′, A′1, . . . , A
′
n), n ≥ 1,

where S′ = {[a, i] | a ∈ S, 1 ≤ i ≤ n} ∪ {[lρ, i] | ρ ∈ R, 1 ≤ i ≤ n}. Let A′i
be defined as follows: for ρ : (Rρ, Iρ, Pρ); target(ρ) in R we define pc-reaction
ρ′ : ({lρ} ∪Rρ, Iρ, {[c, i] | c ∈ Pρ} ∪ {lρ(j) | j ∈ target(ρ)}).

It is easy to see that after performing the pc-reaction ρ′, elements of S that are
products in ρ stay with the component, while the label of ρ, lρ, is communicated
to those components that are given as targets of ρ in ∆.

Now let us construct the flattened version of∆′, given in Definition 7, denoted
by A′. Then for each reaction ρ′ of ∆′, see above, we obtain reaction (ρ′′, i) :
({[lρ, i]} ∪ {[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] | c ∈ Pρ} ∪ {[lρ, k] | k ∈
target(ρ)}). Then it is easy to see that A′ = A holds.

4 Conclusions

In this paper we introduced new variants of networks of reaction systems where
the components communicate with each other by sending products or reactions.
We proved that these networks can be represented by single reaction systems
(flattened reaction systems), and discussed some aspects of communication in
these networks. We pointed out a connection between the occurrence of a reac-
tant (a reaction) at some component of the cdcR(p) system (cdcR(r) system)
at some step of the operation and the occurrence of the corresponding reactant
in the same step of the operation of the corresponding flattened reaction sys-
tem. Occurrence problems and their complexity for reaction systems have been
studied in [12, 10] and were shown to be NP-complete (or PSPACE-complete)
problems, depending on how the problem is formulated. These studies and re-
sults can be interpreted in terms of cdcR(p) systems (cdcR(r)) systems. In the
future, we plan to study the connections between R systems and P systems (see,
for example [1, 2]). Further types of direct communication protocols, dynamic
behavior would also be of interest to investigate.
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