
1

Resilient Control Plane Design for Virtual Software
Defined Networks

Péter Babarczi, Member, IEEE

Abstract—Control plane survivability in virtual software-
defined networks (vSDN) – where multiple tenants share the
same physical infrastructure – is even more critical than in
normal SDN networks. A reliable communication channel from
the switches through the network hypervisor to the virtual
controller is inevitable in order to avoid state inconsistencies,
tenant isolation and security issues on the virtual switches.
Although reliable controller placement and control plane design
was thoroughly investigated in SDNs, there was a lack of attention
for resilient hypervisor placement and control path design for
vSDNs. Therefore, in this paper we make a two-fold contribution
towards a survivable vSDN control plane. First, we propose an
approximation algorithm for (hypervisor) placement which – in
contrast with traditional approaches which minimize the average
latency to the hypervisors as an objective function – focuses
on finding the appropriate number of hypervisor instances to
satisfy the control path length constraints declared in the service
level agreements, leaving enough options open for self-driving
network designs and intelligent algorithms. Second, we propose
a general dynamic program that calculates minimum length paths
traversing specific type of nodes in a given order, and apply it to
find control paths from the virtual controller of the slice to the
virtual switches traversing the corresponding hypervisor location.
We conduct thorough simulations on real-world topologies to
demonstrate the effectiveness of our approaches in no failure
and single link failure scenarios.

Index Terms—virtual networks, resilient hypervisor placement,
facility location, function chain routing, intelligent algorithms

I. INTRODUCTION

In the last decades communication networks transformed
from a best-effort network connecting a handful of super-
computers to a critical infrastructure connecting millions of
devices. During this evolution the complexity of networks
increased, and the management of nowadays Internet is a hard
task for human operators and often leads to misconfiguration
and service outages. However, network reliability is crucial
both for mission-critical applications built on these networks
(e.g., telesurgery) and for service providers to reach high
Quality of Experience and hence, user satisfaction for their
customers. These challenges fostered the concept of self-
driving networks [1], which can react to unforeseen challenges
in a timely manner without the need of human intervention.

The proliferation of Software Defined Networking (SDN)
and network (function) virtualization eases the reconfiguration

The work of P. Babarczi was supported in part by Project no. 134604 that
has been implemented with the support provided by the National Research,
Development and Innovation Fund of Hungary, financed under the FK 20
funding scheme, and in part by the Alexander von Humboldt Foundation.

P. Babarczi is with the MTA-BME Future Internet Research Group, Dept. of
Telecommunications and Media Informatics, Faculty of Electrical Engineering
and Informatics (VIK), Budapest University of Technology and Economics
(BME), Hungary (e-mail: babarczi@tmit.bme.hu).

of networks to respond to challenges, thus, providing enough
flexibility [2] and tool-set for self-driving networks to control
themselves based on their own observations and analysis of the
network states. Therefore, “intelligent” algorithms are required
for such self-driving networks to steer themselves into stable
states upon traffic fluctuations or provide enough resilience
against network failures [1]. By intelligence in this context we
mean that the intrinsic motivation of these algorithms should
be to keep as many future options open as possible (e.g., do not
reserve or create bottlenecks), which can be used to react to
unforeseen challenges [3]. Hence, intelligent algorithms need
to be general enough and cannot rely on finely tuned objective
functions tweaked to the current parameters of the network.

In virtual Software-Defined Networks (vSDN) multiple ten-
ants share the same physical SDN network [4]. Each tenant
is provided by a given slice of network resources (e.g.,
forwarding table space at switches, link bandwidth, CPU cores,
etc.), where they can configure their virtual switches with
their own controller and operate their own virtual network.
The network hypervisor layer (consists of a single or multi-
ple hypervisor instances) ensures isolation (virtualization) of
network attributes between different tenants, and also provides
the abstraction of the reserved resources to the controller(s). In
order to provide these functionalities, all control traffic of the
slices between the switches and the controller goes through
the hypervisor layer; therefore, even the failure of a single
hypervisor instance could disrupt the traffic of several virtual
networks. Although resilience of SDN transport networks
against single link failures was thoroughly investigated [5],
despite of its criticality hypervisor placement and control path
resilience of vSDNs was barely considered. Hence, in this
paper we will focus on this problem while we keep intelligent
algorithm design and self-driving networks in mind.

It was shown [6]–[8] that the 50 ms recovery time re-
quirement of carrier SDN networks can be achieved only
if the switches do not have to contact the controller during
the recovery process. Hence, protection paths have to be pre-
computed and backup rules have to be deployed in the switches
in advance of service disruptions both for data plane flows
and in-band control plane paths. Thus, in this paper we will
investigate the resilient hypervisor placement problem together
with pre-calculating control paths for the virtual networks.
Instead of optimizing for a given objective function and finding
the best possible placement, we are looking for a “good
enough” solution which satisfies the service level agreements
(SLA) and might leave enough options open for future self-
driving designs and intelligent algorithms. We believe that the
additional freedom provided by our approach (i.e., selecting
from multiple acceptable hypervisor locations rather than

2

having a single one as the result of a fine-tuned optimization
objective) can serve as the building block of these future
networks.

The rest of the paper is organized as follows. Section II sum-
marizes the related work on resilient control plane design. We
formulate our problem in Section III and propose an algorithm
based on minimum set cover for resilient hypervisor placement
in Section IV. After the hypervisor locations are fixed, we
investigate the problem of finding the controller location of
dynamically arriving virtual network requests and calculate
the corresponding unprotected and resilient control paths with
a general dynamic program proposed for arbitrary function
chains in Section V. Finally, we present our simulation results
in Section VI and conclude the paper in Section VII.

II. RELATED WORK

A. Pro-Active Resilient Control Path Design

It was shown that the strict 50 ms failure recovery time
requirement (RFC 5654) for the data plane is achievable only
if the recovery paths are pre-computed and established together
with the working paths [6]. Although implementing protection
approaches for single link failure resilience [9], [10] requires
extra entries in the switches (using the group table concept),
it avoids the sudden increase of traffic load on the single
controller instance upon failure detection and loss of data
packets due to the lengthy recovery time of the restoration
approaches. This concept [6] was extended to in-band control
channel failure recovery [11] for a single controller instance,
as standard control traffic recovery time in OpenFlow falls in
the order of seconds. As restoration of control traffic delays
the restoration of data traffic as well (flow modification might
be required at the disconnected switches), rapid recovery of
control paths has utmost importance. Hence, an OpenFlow
framework implementing in-band control with priority queuing
and failure recovery functions was proposed [12]. Experiments
were conducted, and shown that restoration of either data plane
or control plane traffic does not allow achieving the 50 ms
recovery time; hence, pro-active approaches are required [13].
Furthermore, as protection does not require controller inter-
vention, it is less dependent on the network topology.

The design of an in-band routing tree spanning all switches
and rooted at the single controller was investigated in [14].
Built on previous local route repair mechanisms from IP Fast-
ReRoute (e.g., protection routing [15]) a primary tree and
secondary (protection) next hops for each switch are designed,
where the objective is to minimize the number of unprotected
switches upon a single switch or link failure. However, the
existence of a secondary next-hop which by-passes the parent
switch along the tree is not guaranteed, i.e., full single failure
coverage can not be provided. The concept was later extended
to in-band trees rooted at different controller instances [16].

B. Resilient Controller Placement

In [17] resilient control plane design was investigated based
on partitioning the network and assigning a controller to the
centroid of each cluster in order to minimize control latency
and the number of controller-less nodes upon link and node

failures. It is shown that finding an operating controller upon
failure and reassigning the switch might lead to long outages
and performance degradation owing to the increased load
(i.e., queuing delay) at some controllers. Thus, pro-actively
designing a list of backup controllers to each switch and
auxiliary connections towards them might be beneficial [18].

Resilient controller placement was thoroughly investigated
in [19], where the authors considered controller failures,
network disruptions affecting in-band communication chan-
nels, load-balancing of the traffic on each controller instance
and inter-controller latency as objectives. The multi-objective
framework provides Pareto-optimal solutions by an exhaustive
evaluation of the design space for the combination of these
design goals in small- and moderate-size network topologies,
and allows network operators to choose the most appropriate
solution to their requirements. For large scale topologies
where the exhaustive search is not possible owing to mem-
ory constraints, or for dynamically changing environments
where prompt reconfiguration of controller placement might
be needed a heuristic approach is proposed [20] based on
Pareto simulated annealing for providing a solution in a timely
manner for the placement of a fixed number k of controllers.

Joint optimization of placement of multiple controllers and
disjoint in-band control path design to the same controller
instance or to two different controller locations was tackled
in [5] (similarly as choosing K server locations connected with
disjoint path-pairs in optical grids/clouds [21]). Although from
a scalability perspective it requires much more forwarding
table entries than a single control tree, with this approach
all single link and node (switch or controller) failures can be
protected.

C. Hypervisor Placement Problem

Although data plane virtualization has been thoroughly
investigated, [22] was the first work which introduced flex-
ible control plane virtualization techniques. A comprehensive
survey of different network hypervisors was presented in [4],
and they were categorized based on their architecture (i.e.,
centralized or distributed) and their execute platform (i.e.,
software programs on general compute platforms and special-
purpose network elements). As the control plane performance
impacts the data plane performance, besides abstraction of
resources the hypervisor should provide the isolation of both
data- and control plane traffic of different tenants.

In [23], [24] the Hypervisor Placement Problem (HPP)
was considered, where all virtual networks – set of virtual
switches and their controllers – are known in advance and
are given as input (i.e., off-line problem), and the task is to
find the number and locations of hypervisors which minimizes
maximum or average latency both for all control paths and per
individual virtual network. In order to avoid control conflicts
and state inconsistencies, each physical SDN switch should be
controlled by a single hypervisor instance in the distributed
single-controller switch architecture [24] investigated in our
paper. In [25] it was demonstrated that with fixing hypervisors
first and determining controller locations in a second step
could lead to a better performance than vice versa [24] in

3

s

s

ch1

s

h2

s
h3

h4

Fig. 1. Network locations (V) hosting both a physical switch and a server to
run hypervisors and/or controllers. Four hypervisors h1 − h4 are deployed,
each responsible for a disjoint set of physical switches (marked with clouds).
A possible virtual SDN embedding is shown with four virtual switches s
and virtual controller location c with the corresponding switch-to-hypervisor
(solid) and hypervisor-to-controller (dashed) pre-allocated control paths.

some networks, while a joint optimization of both controller
and hypervisor locations would yield to the best performance
among the three approaches. Therefore, we will use these
observations in our resilient placement problem for the on-
line case where virtual network requests arriving one after the
other. The disjoint set of physical switches controlled by their
assigned hypervisor are marked with clouds in Fig. 1. After
the hypervisors are placed, we find the controller location for a
set of switches of a single virtual network request in a second
step, and design resilient control channels in the form of link-
disjoint paths between them.

Although resilient controller placement is a well investi-
gated topic, to the best of our knowledge, our work is the first
which considers resilient hypervisor placement and in-band
control channel design pro-actively before the failure occurs.
A re-active approach called Dynamic Hypervisor Placement
Problem was proposed in [26], where the embedding of virtual
networks might be changed owing to a disaster alert [27],
which requires the redesign of the control plane and hypervisor
assignment. Two approaches were investigated [27], namely
when the virtual network to hypervisor assignment is fixed
but the hypervisor can be migrated, and when the hypervisor
assignments are fixed but the virtual networks can be reas-
signed to different hypervisors. However, these methods are
not suitable for the instantaneous reaction to link failures on
the control path.

Minimizing the latency of the switches to the controller(s)
or hypervisor(s) as a single objective optimization boils down
to the traditional mathematical problem of facility location.
The closest to our work is [28], where the idea of using
set cover for the disjoint-path facility location problem was
used for Internet traffic monitoring and content distribution.
In [28] each customer must be served by two locations and
be connected on shortest disjoint paths. It is proved that no
polynomial-time algorithm can guarantee good solutions for
the problem, and efficient heuristic algorithms are proposed.

In contrast to [23]–[27] minimizing for (average) control
path lengths with complex Integer Linear Programs (ILPs),
in our novel resilient self-driving control-plane design we
will propose a polynomial-time placement algorithm without

using any task-specific objectives, without relying on a pre-
defined number of hypervisor instances or having a priori
knowledge about virtual network demands. As a result the
resilient control path lengths will not be optimal in our
hypervisor placement but still satisfy the SLAs for all (future)
virtual networks where possible. Furthermore, in the dynami-
cally changing network environment considered in this paper
(i.e., link failures, unknown future vSDN requests) intelligent
algorithms and heuristics which leave enough options open
and have low computational complexity are required for the
flexible reconfiguration of the network when a new placement
is needed suddenly, e.g., in reaction to hypervisor failures,
disaster alerts or load imbalance on the hypervisors.

D. Function Chain Routing Algorithms

With the proliferation of SDN and virtualization techniques,
shortest path routing problems traversing specific types of
functions in a given order (called function chains) to enforce
security policies or visiting ordered sequence of middle-
boxes [29] become a hot research topic. Although the problem
is hard on general network topologies if capacity constraints
have to be fulfilled along the links for data plane traffic,
in [29] the authors characterize the families of graphs for
which polynomial-time algorithms exist. In [30] a Lagrange-
relaxation technique was applied for the constrained shortest
path problem, i.e., find shortest paths visiting nodes in a
specific order. However, the proposed methods cannot guaran-
tee link-disjointness of different segments of the paths; thus,
cannot be used for resilient routing.

Resilient allocation of whole functions chains (i.e., joint
optimization for placement and control path design) was
investigated in [31], [32] against both single link and node
failures. In [31] three ILPs were proposed to solve the virtual
network function (VNF) placement and resilient control path
allocation problem for different failure scenarios. In [32] the
service is decomposed into possible realizations of the chain,
and in a second step one of the realizations is embedded
into the physical substrate using a backtracking algorithm.
For the latter problem, backup paths are calculated between
two subsequent VNFs, between their backups and between a
primary VNF and the backup of its subsequent one in the
function chain. With this approach, failure resilience can be
ensured upon physical node failures hosting a given VNF. Al-
though these general methods would be applicable in our case,
they use complex ILPs with fine-tuned objective functions to
solve the problem. In contrast, in our hypervisor placement
problem we use a polynomial-time algorithm built on minimal
set cover, which can be used in self-driving networks as
well. Furthermore, in our control path design problem we can
exploit the special structure of paths for the virtual network
slices (i.e., our function chains consist of switch-to-hypervisor-
to-controller paths), resulting in faster algorithms.

On one hand, fully link- and node-disjoint paths can guaran-
tee 100% resilience against single failures. On the other hand,
in several use cases sharing some common elements of the
paths might be beneficial. For example, formal language con-
strained routing can be used to find shortest paths traversing

4

s

c

h

P1(s, h) P2(s, h)

P1(h, c) P2(h, c)

(a) Logical view

s

c

hx

(b) Physical view

Fig. 2. Pre-allocated link-disjoint control paths between the switch and
hypervisor, and the hypervisor and the virtual controller in our resilient control
plane. The shortest control path in the no failure case is shown with dotted
lines. Note that, a single link failure (x, h) might affect multiple paths.

given links (even multiple times) [33], or common links in
the disjoint path-pair can be allowed to reduce routing cost
while a certain level of availability is maintained [34]. These
concepts were extended for link-disjoint problems, where the
paths can share minimum, maximum or exactly k nodes, and
it was shown that only the upper-bound problem is solvable
in polynomial-time [35]. The authors introduced a dynamic
program for the above problem variants, as well as for the
task when the primary path of the connection is already part
of the input, and the goal is to find a secondary path sharing
a given number of common nodes with it [35].

E. Our Contribution

In this paper we propose an intelligent self-driving frame-
work which pro-actively designs the resilient control paths
for dynamically arriving vSDN requests. First, in Section IV
we extend the concepts of resilient (controller) placement and
control path design [5] with set cover [28] to our resilient
hypervisor placement problem. However, in contrast with [5]
we do not fix the number of hypervisors in advance and in
contrast with [28] we calculate resilient paths to a single
location. In our model the hypervisor locations are selected
based on the length of the link-disjoint path-pair to their
controlled physical switches, which differentiates our work
from [23], [28]. Furthermore, considering dynamic vSDN
requests sets apart our placement model from [24], [25], where
all requests are given as the input of the problem. Second,
after the hypervisor location(s) are fixed, we use a dynamic
program extending the concept of [35] to support the control
path design of dynamically arriving virtual network requests
in Section V.

III. PROBLEM FORMULATION

As we have seen, pro-active design of backup SDN control
paths [11]–[13], [17], [18] are required if we want to meet
the strict timing requirements declared in the service level
agreements. This statement holds for vSDNs as well, where all
control traffic between the virtual switches and its controller
needs to traverse (one of) the hypervisor(s). Hence, in this

TABLE I
NOTATION LIST FOR THE RESILIENT CONTROL PLANE DESIGN PROBLEM

Notations Description

G(V,E)
directed graph with node set V , link set E,

and link lengths l(e) ∈ R+

P (v1, vp)
path (ordered sequence of links) from node v1
to vp, with length l(P) =

∑
e∈P (v1,vp)

l(e)

nodeDistance()
resilient control distance of nodes calculated as

the average length of a disjoint path-pair
L maximum allowed switch-to-hypervisor distance

hs ∈ H
hypervisor hs responsible for physical switch s

from the set of hypervisor locations H

N (h)
set of physical switches within control
distance ≤ L to hypervisor location h

S(s) set of candidate hypervisor locations which can
serve physical switch s (i.e., distance ≤ L)

I(h)
number of switches s within distance ≤ L to h
without candidate hypervisors (i.e., S(s) = ∅)

R ⊆ V set of nodes representing the virtual switch
locations of an embedded virtual network request

D
sum of all switch-to-hypervisor-to-controller

distances for virtual network request R
Vf ⊆ V locations hosting network function type f

d[i][v][f]
path length from s to v with at most i links that
visits network functions in V1, . . . , Vf in order

π[i][v][f]
last node on path s to v with at most i links that
visits network functions in V1, . . . , Vf in order

paper we pro-actively design the resilient control paths for
each slice.

Most of the works assume that control paths are either
out-of-band or control traffic has high priority even with in-
band control [5], [19], [23], [24], [28]. Built on this fact, the
most important difference of our control plane design approach
compared to data plane design methods and complexity results
there [29] is that we do not consider link capacities in our
formulations [5], [24]. Note that, without these constraints the
control paths of different switches do not influence each other,
hence, can be calculated independently, which provides us the
opportunity for an intelligent algorithm design and improved
complexity results.

A. Resilient Control Plane Model

A network is represented by a directed graph G(V,E),
where V is the set of nodes and E is the set of links. Each
node v ∈ V represents a physical location in the network with
a physical SDN switch. Furthermore, we assume that each
location can host virtual network functions such as hypervisors
or controllers. Each link e = (u, v) ∈ E is assigned with a
positive length l(u, v) ∈ R+ which can represent physical
length or delay. A path P (v1, vp) is an ordered sequence of
links < e1 = (v1, v2), e2 = (v2, v3), . . . , ep−1 = (vp−1, vp) >
which provides a communications channel between v1 and
vp. The total length of a path l(P) is the sum of the
link’s lengths in the path. We assume symmetric links, i.e.,
∀e = (u, v) ∈ E : l(u, v) = l(v, u), thus, the minimum length
(i.e., shortest) paths are the same in both directions. Hence,
we will calculate the control path only in one direction, but
we assume these channels are bidirectional, as well as a link
failure affects both directions at the same time. The notations
used throughout the paper are summarized in Table I.

5

In Fig. 2 we present the considered architecture [24]
in this paper. We assume pre-allocated link-disjoint control
paths between the locations, which can be calculated in
advance (consequence of no link capacity constraints), shown
in Fig. 2(a). Assuming that l(P1(s, h)) ≤ l(P2(s, h)) and
l(P2(h, c)) ≤ l(P1(h, c)), the actual control path in the no
failure case is shown with dotted lines. However, if a link
failure occurs along this path, the control flow must be rerouted
to the other one. Hence, as both lengths impact the overall
performance of the virtual network, we will consider the
average length of these paths in our algorithms.

Definition 1. Function nodeDistance(s, h) represents the
resilient control distance between nodes s and h, defined as

nodeDistance(s, h) = [l(P1(s, h)) + l(P2(s, h))]/2.

Note that, for the shortest P ∗(s, h) path: l(P ∗) ≤
nodeDistance(s, h), where equality holds when both
paths in the disjoint path-pair are shortest P (s, h) paths.

B. Reaction to Single Link and Hypervisor Failures

One can observe that in our resilient design both the switch-
to-hypervisor and hypervisor-to-controller control channel is
a disjoint path-pair by the definition. Although a single link
failure can disrupt one of the paths of the path-pairs for
both channels if they share a common link (e.g., link (x, h)
Fig. 2(b)), a pre-configured control path will still remain to
satisfy our resiliency requirement. We assume the same fail-
over mechanisms to the pre-calculated backup path upon link
failure as previous control plane design approaches for SDN
networks [5], [12] or traditional protection approaches. Sim-
ilarly to data plane traffic, the pre-installed backup resources
can be used in the no failure case to forward low-priority traffic
or for load-balancing purposes.

As each hypervisor is responsible for a disjoint partition
of physical switches [24] as shown in Fig. 1, its failure will
affect only the isolation and abstraction of the virtual networks
running on these switches. Although it would be possible
to rerun a HPP algorithm to recalculate a whole switch-to-
hypervisor assignment, creating new partitions of the network
controlled by new hypervisor instances at new locations would
cause unnecessary disruptions for all tenants with running
virtual networks. Instead of this, we either suggest to migrate
the hypervisor to a different location within the partition if the
disruption can be forecasted [27], or run an HPP algorithm
only to the subset of physical switches which were assigned
to the failed hypervisor. Note that, owing to the increased
shortest path lengths caused by the node failure, there might
be multiple new partitions as well.

C. Intelligent Self-Driving Network Operation

In our model self-driving networks are measure, analyze
and control themselves and are able to react to changes
in the environment (e.g., network failures or new vSDN
requests in our case) based on their observations. In such
dynamic environment having multiple options to choose from
in response to unknown challenges is inevitable, as well as

the ability to instantaneously realize this potential. Being
prepared for the future – i.e., maximizing the number of
options – is a desired property and well-investigated area
in communication networks as well (e.g., in resilience), and
several definitions agree that such behaviour is considered to
be intelligent [1], [3]. On the one hand, this can be achieved
in a self-driving manner with algorithms that aim to maximize
preparedness as an intrinsic motivation, without relying on
comprehensive mathematical models or task-specific objective
functions. For example, minimum interference routing [36]
keeps bottleneck resources open, which makes more unknown
connection requests acceptable in the future without having it
as an explicit objective.

On the other hand, without the knowledge of such intrinsic
motivation (e.g., in case of our placement problem in Sec-
tion IV), a weaker approach can be used and formulate the
problem in a way that several states satisfy the constraints the
self-driving network can choose from in response to changes
(in contrast with the single solution of an optimization problem
with fine-tuned objective). We note that the algorithm which
solves this intelligent formulation can be an optimization
method if the parameters should not be tweaked on a case-
by-case basis, and if the increased complexity still suits the
reaction time requirements of the self-driving network.

IV. HYPERVISOR PLACEMENT WITH GREEDY SET COVER

In this section we propose a polynomial-time algorithm to
the resilient hypervisor placement problem, and show that it
approximates the optimal solution in terms of the number of
hypervisors. Formally, the problem is defined as follows:

Problem 1. Resilient Hypervisor Placement: Given a net-
work G(V,E), link lengths l(u, v), and constraint L on
the maximum switch-to-hypervisor distance. Find a minimum
number of hypervisor locations H ⊆ V , where ∀s ∈ V : ∃h ∈
H | nodeDistance(s, h) ≤ L.

Our resilient hypervisor placement algorithm is presented
in Alg. 1. We assume that the network topology and the
maximum switch-to-hypervisor distance1 is given as the input,
and the algorithm returns the hypervisor locations and switch
assignment satisfying this constraint. The algorithm consists
of three stages as follows. First, in Step (2) to Step (6) the
nodeDistance() between every node-pair in the topology
is calculated and switches within L are given to set N (h) for
every location. Note that, distance could represent several dif-
ferent metrics. In Alg. 1 we use Suurballe’s algorithm [37] to
get a disjoint path-pair between s and h with minimal average
length of the path-pair and use this as nodeDistance(s, h)
in our resilient placement. However, it can be the distance
using a disjoint path-pair which was obtained by minimizing
for the shorter path’s length (i.e., minimize control plane
latency when all links are operational), or by minimizing the
longer path’s length (i.e., minimum latency upon link failures),

1The SLAs declare only the maximum switch-to-hypervisor-to-controller
distances. Without any further information about future vSDN requests we
set the switch-to-hypervisor distance L as half of the total control distance,
which might exclude some acceptable solutions.

6

Algorithm 1: Hypervisor Placement with Set Cover
Input: G(V,E) - network, l(u, v) - link lengths, L -

maximum distance;
Output: H - hypervisor locations, ∀s ∈ V : hs -

hypervisor assignment;
1 Initialize H := ∅;∀v ∈ V : N (v) := ∅,S(v) := ∅, where
S(v) - hypervisors in range, N (v) - switches covered;

2 for h ∈ V do
3 for s ∈ V do
4 Calculate nodeDistance(s, h) with

Suurballe’s algorithm;
5 if nodeDistance(s, h) ≤ L then
6 Add s to set N (h);

7 while ∃s ∈ V : |S(s)| < 1 do
8 for h ∈ V do
9 Calculate importance

I(h) := |{w ∈ N (h) : |S(w)| = ∅}|;
10 Find best location h∗ := argmaxh I(h);
11 Add h∗ to hypervisors H := H ∪ h∗;
12 for v ∈ N (h∗) do
13 Add h∗ to switches in range S(v) := S(v) ∪ h∗;

14 for s ∈ V do
15 Assign switch s to hypervisor hs ∈ S(s), where

hs := argminh nodeDistance(s, h);

or the length difference of the two disjoint paths. However,
all of these problem variants are NP-hard [35], and we will
show in Section VI-B that their performance gain compared
to Suurballe’s algorithm is negligible for the price of the
increased computational complexity.

In the second stage from Step (7) to Step (13) we perform
the greedy set cover, where the base set is the physical nodes
V and the set system is the N (h) at every possible location.
In each iteration we greedily select the location which covers
the most uncovered switches by the previous iterations, which
is calculated in importance I(h). If a location h∗ is selected,
it serves as a possible hypervisor for all switches s ∈ N (h∗),
as the nodeDistance(s, h∗) is at most L; thus, h∗ is in
the range of s and added to S(s). Finally, in the last stage in
Step (14) to Step (15) we assign the physical switches to one
of the hypervisor instances in H, which will perform resource
isolation of the virtual switches allocated on them. In Alg. 1
we assign every switch s to the closest hypervisor instance
hs ∈ H, but a self-driving network could use other objectives
as well, e.g., for load balancing or if a constraint is given on
the maximum number of switches controlled by a hypervisor.

Lemma 1. The time-complexity of Algorithm 1 is
O(|V |2(|E|+ |V | log2 |V |)).

Proof: Calculating nodeDistance() with Suurballe’s
algorithm [37] for all node-pairs and to fill in N (h) from
Step (2) to Step (6) takes O(|V |2(|E| + |V | log2 |V |)). For
every iteration in Step (7) to Step (13) we have to determine
the switches without a hypervisor in range (i.e., |S(s)| = 0),

and importance I(h) has to be calculated for each possible
location. This process requires to check N (h) at most in |V |
steps for each node, resulting in O(|V |2). Selecting the best
location and updating sets can be done in linear time in |V |.
Finally, closest hypervisor assignment in Step (14) to Step (15)
is O(|V |), which gives an overall complexity of O(|V |2(|E|+
|V | log2 |V |)) for Alg. 1.

In Lemma 1 we have shown that in Alg. 1 we can create
a set system N (h) (with set sizes 1 ≤ |N (h)| ≤ |V |) on the
base set V and perform a greedy set cover [28] in polynomial
time. Together with the classical results [38], [39] which state
that the number of sets in the greedy cover approximates the
optimal number of sets within a factor of

∑|V |
i=1 1/i ≤ ln |V |+

1 for the general unweighted case (by analyzing the structure
of the sets lower factor might be achievable), we can make
the following observation:

Corollary 1. Alg. 1 is a polynomial-time (ln |V | + 1)-
approximation algorithm on the number of hypervisors for
Problem 1.

As a result of Alg. 1, the hypervisor locations in H are
fixed, and together with their assigned switches they partition
the network into disjoint parts (shown in Fig. 1), where all
control traffic of the partition goes through the corresponding
hypervisor.

V. CONTROL PLANE DESIGN FOR VIRTUAL SDNS

In this paper we investigate an on-line problem, i.e., where
the virtual SDN network requests are not known in advance
and can dynamically arrive and leave the network. Hence, the
hypervisor locations were designed for all physical switches
in Section IV. In this section we use the already pre-calculated
distances in Alg. 1 in our resilient virtual controller placement
method in Section V-A for a given set of virtual switches.
Once the virtual network is embedded, in Section V-B we
present a dynamic program to find minimum length switch-
to-hypervisor-to-controller paths both for the unprotected and
for the single link failure resilient scenarios.

A. Controller Placement for vSDN Requests

As in our control plane design the capacity limitations
of the data plane is not considered, we treat the virtual
network embedding algorithm in the data plane as a black
box. Therefore, we do not assume anything about the ar-
rival process, holding time, graph structure or the resource
requirement of these virtual network requests as they have no
influence on our problem. However, the number and location
of the virtual switches specifies the hypervisor instance(s)
involved in the resilient control plane design and need to be
analyzed [23], [24]. Thus, we only assume that the embedding
algorithm returns us the virtual switch locations of the new
request in the topology, which are given as the input of our
virtual controller placement method, and our task is to find a
location which minimizes total control distance while bounds
the maximum distance for individual switches. Note that, if
all virtual switches are controlled by the same hypervisor

7

instance, then the best virtual controller location will be the
hypervisor’s location for that virtual network.

Formally, for each individual virtual network request we
perform the following steps:
• As virtual network embedding is out of the scope of this

paper, we assume that the virtual network is embedded
on a set of physical switches R ⊆ V , which serves as
the input request to our problem.

• For each possible virtual controller location (∀v ∈ V in
our model) we calculate total control distance D as∑

s∈R
{nodeDistance(s, hs)+ nodeDistance(hs, v)},

where hs ∈ H is the hypervisor for physical switch s.
• Select node c ∈ V as the virtual controller location if it

minimizes D while ∀s ∈ R : nodeDistance(s, hs)
+ nodeDistance(hs, c) ≤ 2 · L. If no such location
exists, we pick the one with minimum D and count it as
an SLA violation.

Note that, nodeDistance() values were already calcu-
lated in Alg. 1 and can be reused in the controller placement.
After the virtual controller location c of the slice is selected,
all node locations are fixed for the virtual network, and all
disjoint path-pairs are pre-allocated for the control messages.
However, the actual minimum length control path along these
pre-allocated channels will depend on the actual link failures
in the network, and will be calculated in Section V-B.

B. General Dynamic Program for vSDN Control Paths

In our virtual SDN control path design we are dealing with
the problem of minimizing the length of a single control path
P (s, c) from a given virtual switch s ∈ V to the virtual
controller c ∈ V which traverses the hypervisor location
hs ∈ H responsible for switch s. Furthermore, with the
pre-allocated disjoint path-pairs between s − hs and hs − c,
path P (s, c) can be selected from four different combinations
depending on the actual link failure (see Fig. 2). Therefore,
instead of dealing only with this particular special case, we
propose a more general routing algorithm for the following
problem:

Problem 2. Minimum Length Path for Function Chains:
Given a network G(V,E), a source node s ∈ V , a destination
node c ∈ V , link lengths l(u, v), and a set of nodes Vf ⊆ V
hosting network function type f = 1, . . . , k. Find a minimum-
length path P (s, c) between s and c which visits network
functions in an ordered sequence from 1 to k.

Note that, for k = 1 and |V1| = 1 without any disjoint-
ness requirement the minimum length switch-to-hypervisor-
to-controller path can be obtained through two shortest path
calculations. However, for the sake of completeness, we will
propose an algorithm for the general resilient vSDN control
plane design problem, which can be directly used if the
hypervisor virtualization functions are decomposed and placed
at different locations [22] (i.e., k > 1), if the switches have
the functionality to support multiple hypervisors in a multi-
controller switch architecture [24] (i.e, |V1| > 1), or can be

Algorithm 2: Minimum Length Path for Function Chains
Input: G(V,E) - network, s - source, c - target, l(u, v)

- link lengths, ∀f = {1, . . . , k} : Vf - locations of
function f ;

Output: d[][|V |][k] - path length with a given sequence
of network functions, π[][|V |][k] - shortest path;

1 d[0][s][0] = 0, d[0][v][0] =∞ for v ∈ V \ {s};
2 d[0][v][f] =∞ for f ≥ 1, ∀v ∈ V ;
3 for i = 1 to (k + 1)(|V | − 1) do
4 foreach v ∈ V do
5 for f = 0 to k do
6 if v ∈ Vf , f ≥ 1 then
7 d[i][v][f] = min

(
d[i− 1][v][f],

8 min(y,v)∈E
(
d[i− 1][y][f − 1] + l(y, v)

))
9 if v /∈ Vf then

10 d[i][v][f] = min
(
d[i− 1][v][f],

11 min(y,v)∈E
(
d[i− 1][y][f] + l(y, v)

))

modified in an auxiliary network if there are multiple backup
hypervisors which require disjoint control paths [5].

We assume that the Vf ⊆ V location(s) of network function
type f is fixed and is given as the input of our routing
problem2. The presented algorithm follows a similar procedure
as the Minimum-Length Link-Disjoint Second Path algorithm
presented in [35]. We maintain 3-dimensional arrays d (for
the path length) and π (for the paths). For a node v ∈ V
and f ∈ [0, k], after the ith iteration, we would like the value
of d[i][v][f] to describe the length of a minimum-length path
between s to v in G that has at most i links and visits network
functions from V1 to Vf in an ordered sequence. Similarly, we
maintain in π[i][v][f] the previous node in such a path between
s to v. The whole procedure is summarized in Algorithm 2.

We first initialize values d[0][s][0] = 0, d[0][v][0] = ∞ for
v ∈ V \ {s}, d[0][v][f] = ∞ for f ≥ 1 and any node v ∈ V
in Step (1) and Step (2), respectively. In order to calculate the
value d[i][v][f] for a node v ∈ V in iteration i from Step (3)
to Step (11), we distinguish between two cases according to
whether v is a node hosting network function type f (v ∈ Vf)
or not (v /∈ Vf) as follows.
• v ∈ Vf : We set d[i][v][f] (for f ≥ 1) as the min-

imum between its previous value d[i − 1][v][f] and
min(y,v)∈E

(
d[i− 1][y][f − 1] + l(y, v)

)
.

• v /∈ Vf : We set d[i][v][f] (for f ≥ 0) as the min-
imum between its previous value d[i − 1][v][f] and
min(y,v)∈E

(
d[i− 1][y][f] + l(y, v)

)
.

The length of the minimum cost path (if exists) is given by
d[(k+1)(|V | − 1)][c][k]. In order to obtain the corresponding
path, we initialize all π[i][v][f] to empty, and during the
iterations we set it as its previous value or node y in the new

2We introduce Alg. 2 on the original G(V,E), but in problems where
subsequent network functions can be placed at the same node (as in our case)
self-loop links [31] ∀v ∈ V with l(v, v) = ε length might be added to E.

8

0.8

1.4

2

2 9 16

av
g.

di
st

an
ce

[1
00

0
km

]

hypervisors

Alg. 1
DCP

(a) COST 266 (37 nodes, 57 links)

0

0.4

0.8

1 18 35
av

g.
di

st
an

ce
[1

00
0

km
]

hypervisors

Alg. 1
DCP

(b) Germany (50 nodes, 88 links)

Fig. 3. Control distances averaged for every switch-to-hypervisor disjoint
path-pairs on two real-world topologies [40]. DCP denotes the optimal ILP
in [5], while Alg. 1 is our greedy set cover approach.

link (y, v) achieving the minimal value above. The links in
the minimum length path can be calculated in a reverse order
from the values of π starting from π[(k + 1)(|V | − 1)][c][k].

Lemma 2. The time-complexity of Algorithm 2 is O(|V |2) to
find switch-to-hypervisor-to-controller paths.

Proof: Although the path segments between subsequent
network functions are simple paths, with adversarial Vf sets
all segments might contain |V | − 1 links, resulting in (k +
1)(|V | − 1) iterations on the maximum number of links. In
each iteration, we consider k + 1 different traversed network
function types for each of the |V | nodes, resulting in a
complexity of O(k2|V |2) for the general case in Problem 2. In
the vSDN control plane design k = 1, which gives us O(|V |2),
which is slightly worse than two shortest path algorithms
O(|E|+ |V | log2 |V |) [37] applicable if |V1| = 1, too.

In our resilient design, we will use Algorithm 2 to calculate
the shortest switch-to-controller pre-allocated control paths
along the disjoint path-pairs both in the no failure case and
with single link failures. Furthermore, we will apply Alg. 2 to
calculate minimum length switch-to-hypervisor-to-controller
control paths in G(V,E) as a benchmark for the unprotected
case in Section VI-D.

VI. EXPERIMENTAL RESULTS

We conducted thorough simulations to demonstrate the
efficiency of our polynomial-time algorithms. Section VI-A
presents the performance results of Alg. 1 compared to the
optimal methods in terms of hypervisor number and av-
erage switch-to-hypervisor distance. The effect of different
nodeDistance() functions on Alg. 1 is investigated in
Section VI-B. Section VI-C introduces our virtual network
generation and virtual controller placement approach. In Sec-
tion VI-D we calculate the length of pre-allocated resilient
control paths upon single link failures with Alg. 2, and com-
pare it with the unprotected scenario. In these simulations we
have selected two larger topologies for comparison (in terms
of locations V) from [5] with real-world link lengths [40].

0

10

20

30

40

1 2.5 4

#
hy

pe
rv

is
or

s

L [1000 km]

Alg. 1
ILP

(a) COST 266 (37 nodes, 57 links)

0

10

20

30

40

50

0.1 0.8 1.5

#
hy

pe
rv

is
or

s

L [1000 km]

Alg. 1
ILP

(b) Germany (50 nodes, 88 links)

Fig. 4. Number of hypervisor locations |H| calculated with the greedy
(Alg. 1) and optimal (ILP in Appendix A) set cover approaches with different
constraints L on the maximum switch-to-hypervisor control distances.

Finally, in Section VI-E we analyzed the average control
plane performance of our sub-optimal resilient control plane
design compared to an optimal hypervisor placement approach
introduced for a static set of virtual network requests in several
synthetic and real-world topologies.

A. Resilient Hypervisor Placement with Set Cover

In Fig. 3 we compared Alg. 1 to the optimal solution in
terms of control distance nodeDistance() in an optimal
placement with k locations between every physical switch
and the corresponding hypervisor. Because it boils down to
the same underlying mathematical problem, for comparison
we have implemented the ILP which minimizes average SDN
control distance for the Disjoint Control Path (DCP) approach3

for controller placement with at most k controllers [5]. Note
that in DCP the number of controllers k is the input of the
problem, while in Algorithm 1 the number of hypervisors
is the output of the set cover. Hence, we can not compare
the approaches in Fig. 3 for the same controller/hypervisor
number all the time. However, we observed that even in the
European-size topology in Fig. 3(a) the total distance of the
disjoint path-pair in Alg. 1 is at most about 60 km longer
(with 9 locations) than the optimal pair (max. 5% increase).
We also measured about 60 km distance increase compared to
the optimum with Alg. 1 in Fig. 3(b) for 6 locations, but it
results in an 18% distance increase for this national topology
owing to the shorter physical link lengths between nodes.

Although DCP provides optimal control distance averaged
for all switch-to-hypervisor paths, the maximum distance of
some switches was about twice as much as the average for
some controller numbers k in our measurements for the real-
world networks in Fig. 3. Therefore, it can not guarantee
worst case control distances as Alg. 1 can with the pre-defined

3Note that, the original formulation in [5] introduces variables to calculate
a disjoint path-pair for each pair of nodes. However, as no capacity constraints
are considered in the control path design, these paths are independent from
each other and can be pre-calculated with nodeDistance() as in Alg. 1.
Hence, we simplified and speed up their ILP in this way.

9

10

20

30

1 6 11

av
g.

di
st

an
ce

[k
m

]

hypervisors

Alg. 1
Alg. 1’

ILP
ILP’

(a) Average control distances

0

10

20

25

15 25 35 45
#

hy
pe

rv
is

or
s

L [km]

Alg. 1
Alg. 1’

ILP
ILP’

(b) Number of hypervisors

Fig. 5. Comparison of distance functions in a 100 node 287 link maximum
planar graph. Alg. 1 and ILP use Suurballe’s algorithm [37] to calculate
control distance, while Alg. 1’ and ILP’ minimize the shorter path’s length.

constraint L. For a fair comparison we formulated a novel
ILP which bounds the maximum control path lengths while
minimizes the number of required hypervisors, i.e., provides
the optimal set cover in Alg. 1. For the sake of completeness,
we present the ILP formulation in Appendix A, while our
results are shown in Fig. 4. Note that, in the investigated
topologies the hypervisor number provided by Algorithm 1
were maximum two instances more than the optimum (but the
same or only 1 more in 90% of L values), which is much better
than suggested by the approximation ratio in Corollary 1.
Hence, we believe that the additional freedom provided by the
general formulation of Problem 1 for self-driving networks
comes for a manageable price both in terms of hypervisor
number and average control distance, while Alg. 1 ensures a
low computational complexity as well.

B. Comparison of Different Node Distance Functions

Here we compared the nodeDistance() calculation
approach where the shorter path’s length is minimized from
the disjoint path-pair [35] (denoted as Alg. 1’ and ILP’ in
Fig. 5) to Suurballe’s algorithm [37] (i.e., average length
is minimized) proposed for Alg. 1 and for the ILP in Ap-
pendix A. In order to have several options for a disjoint path-
pair between the nodes (more than in the 2-connected real-
world networks), we have generated a 100 node maximum
planar graph [41] with an average nodal degree of 5.74, and set
the link lengths uniformly random between 1 and 10 km. As
expected, the optimal set cover ILPs performed better in both
average control distance in Fig. 5(a) and hypervisor number
in Fig. 5(b) than the greedy set cover approaches.

One can observe, that even in this dense communication
topology with multiple paths between node-pairs the difference
between the two nodeDistance() functions is negligible
in both metrics. Furthermore, in our implementation the run-
ning time of Alg. 1’ (paths are calculated with an ILP owing
to its computational complexity) was about 250 times longer
than Alg. 1 using Suurballe’s algorithm. Therefore, we believe
that for real-world topologies in disaster areas [42] where

0.7

1

1.3

1 2.5 4

av
g.

pa
th

le
ng

th
[1

00
0

km
]

L [1000 km]

P (s, c)
Alg. 2

Alg. 1+2

(a) No failures

0.7

1

1.3

1 2.5 4

av
g.

pa
th

le
ng

th
[1

00
0

km
]

L [1000 km]

P (s, c)
Alg. 2

Alg. 1+2

(b) All single link failures

Fig. 6. Control path lengths with and without link failures in the 37 node
European network [40] averaged for all virtual control paths in the 1000 virtual
network requests (3547 in total). Alg. 1+2 returns the shortest pre-allocated
control path with and without link failures in the architecture of Fig. 2.

network resources should be rapidly evacuated [27] upon
receiving a disaster alert (e.g., in milliseconds for earthquakes
or in seconds or minutes for tornadoes and hurricanes), or for
topologies where placements might be recalculated frequently
owing to day-night or hourly traffic fluctuations, Suurballe’s
algorithm is the better choice to obtain nodeDistance()
and the pre-allocated control paths in Alg. 1 compared to the
ILP formulations with high computational complexity.

C. Embedding Virtual Network Requests

In order to calculate the minimum length virtual switch-
to-hypervisor-to-controller control paths for vSDNs in the
presence of link failures (shown in Fig. 2) with Alg. 2, in
this section we discuss our virtual network request generation
and placement approach. In our simulation framework, first
we obtained and fixed the hypervisor placement and switch
assignment with Alg. 1 for all physical switches (discussed in
Section VI-A), without any knowledge of dynamically arriving
virtual network requests. In the next step, we generated 1000
virtual network requests, each R containing between 2 and 5
virtual switches [23], [24], selected uniformly random from
V . Finally, we selected the location of the virtual controller
independently for each slice as discussed in Section V-A,
i.e., minimizing total control distance D, and where possible
satisfy constraint ∀s ∈ R : nodeDistance(s, hs) +
nodeDistance(hs, c) ≤ 2 ·L. When the constraint cannot
be satisfied, there exists at least one switch inR which violates
the maximum switch-to-controller control distance constraint,
thus, violates the SLA.

As data-plane embedding algorithms, policies and capacity
constraints are out of the scope of the paper, for a fair com-
parison we assumed that in our simulations all virtual network
requests are embedded regardless of whether they satisfy the
SLA or not (discussed in Section V-A). Therefore, although
we keep track and report SLA violations, their effect is not
present in our figures. However, we also implemented the cases
when a request should be dropped when the SLA is violated
in a real environment, and when the controller placement is

10

200

250

300

350

0.1 0.8 1.5

av
g.

pa
th

le
ng

th
[k

m
]

L [1000 km]

P (s, c)
Alg. 2

Alg. 1+2

(a) No failures

200

250

300

350

0.1 0.8 1.5
av

g.
pa

th
le

ng
th

[k
m

]

L [1000 km]

P (s, c)
Alg. 2

Alg. 1+2

(b) All single link failures

Fig. 7. Control path lengths with and without link failures in the 50 node
German network [40] averaged for all virtual control paths in the 1000 virtual
network requests (3547 in total). Alg. 1+2 returns the shortest pre-allocated
control path with and without link failures in in the architecture of Fig. 2.

done purely on total control distance without maximum control
distance constraint. Note that, the differences we observed
between these methods were negligible, thus, we followed the
procedure proposed in Section V-A which gives us the most
comparable results.

D. Minimum Length vSDN Control Paths upon Link Failures

As a result of the vSDN generation in Section VI-C,
for each virtual network request we have all locations fixed
(i.e., switches, hypervisor, controller), and also we have the
pre-allocated disjoint path-pairs which can be used to send
control messages for the given slice (shown in Fig. 1). In
our simulations we calculated the minimum length control
paths depending on the current link failures with three shortest
path approaches. First, as a reference on the basic topo-
logical properties, we show the minimum length switch-to-
controller paths calculated with Dijkstra’s algorithm [43],
which does not take into account the hypervisor locations
(P (s, c) in the figures). As a second approach we use Alg. 2
to find shortest switch-to-hypervisor-to-controller paths upon
link failures, which demonstrate the minimum path lengths
obtainable with a re-active restoration approach (denoted as
Alg. 2 in Fig. 6-7). Finally, we calculate our resilient shortest
switch-to-hypervisor-to-controller control paths with Alg. 2
along the pre-allocated disjoint path-pairs provided by Alg. 1
(denoted as Alg. 1+2). When measuring the increased control
path lengths upon link failures, we considered all single link
failures in the topology in order to avoid distortion of the
results because of randomly generated failures. Therefore, our
results represent the control path lengths averaged for all
switch-to-hypervisor-to-controller paths and for all possible
single link failures.

In Fig. 6 we present the measured switch-to-hypervisor-to-
controller path lengths averaged to all 3547 control paths in the
1000 virtual network requests for the European-size network
both with and without single link failures. One can observe that
the average SDN control path P (s, c) length (no hypervisor

considered) is about 800–1000 km in this topology without
failures in Fig. 6(a). The average length of the paths calculated
with Alg. 2 traversing the corresponding hypervisor goes up
to 1200 km at L = 3400 km with 4 hypervisor instances,
while further increases to 1250 km if we use the pre-allocated
paths with Alg. 1+2. This 50 km increase in average control
path length is what we pay for resilience and instantaneous
recovery from link failures compared to Alg. 2. Furthermore,
considering all possible single link failures in Fig. 6(b), we
observed that the length increase of the control paths is less
than 5% on average.

We measured similar trends in Fig. 7 for the 50 node
German topology [40]. Remember that as L increases, the
number of hypervisor locations decreases (shown in Fig. 4).
Therefore, owing to the lower number of hypervisors the
average control path length suddenly increases at the points
where the greedy set cover returns less locations which covers
the whole network within ≤ L, e.g., at 800 km in Fig. 7.
Furthermore, note that even with the same number of hy-
pervisors (e.g., 1 instance for L = 1200 − 1500 km), the
control path length might decrease as L increases (e.g., at
L = 1500 km), as the greedy set cover finds a better place
for the single hypervisor with a maximum control distance
of 1481.2 km. We also note that with a single hypervisor
instance the optimal place of the virtual controller will be
always at the hypervisor’s location in our model [24], which
results that P (s, c) and Alg. 2 returns the shortest P ∗(s, hs)
path, while Alg. 1+2 provides us nodeDistance(s, hs),
clearly showing the length increase we pay in our resilient
hypervisor allocation in Alg. 1 compared to the re-active and
unprotected case.

Note that, in Fig. 6 for the 37 node European network, the
number of SLA violations from 1000 requests decreases from
846 to 100 while the constraint L increases from 1000 km
to 3400 km. For the 50 node German network in Fig. 7 all
maximum switch-to-controller distances can be satisfied with
L ≥ 800 km (i.e., maximum 1600 km control distance per
virtual switch).

E. Average Control Path Lengths

In this section we compare our approach to an optimal
hypervisor placement method which finds a given number of k
hypervisor locations which minimize the average control path
lengths for a pre-defined set of static virtual network requests,
without any resilience requirement [24]. Our simulation results
are presented in Table II for several SNDLib [40] and Internet
Topology Zoo [44] topologies. Note that, in order to obtain real
physical distances of the nodes we removed locations without
coordinates from the data set, as well as did not consider
1-degree nodes because of the resilience perspective (please,
refer to Appendix B for further details). Thus, Table II contains
the properties of the resulting topologies.

As the ILP in [24] (and other traditional HPP algo-
rithms [25], too) has completely different objective function
and inputs as our self-driving problem definition in the dy-
namically changing environment, we conducted the following
procedure to obtain comparable results of the two approaches:

11

TABLE II
AVERAGE CONTROL PATH LENGTHS (UPPER PART: SNDLIB [40], MIDDLE PART: INTERNET TOPOLOGY ZOO [44], LOWER PART: SYNTHETIC PLANAR

TOPOLOGIES GENERATED WITH LEMON [41]).

Graph Average switch-to-hypervisor-to-controller path lengths [km]

|V | |E| diam. L = 1/2 diameter L = diameter
k OPT [24] Alg. 1+2 (N) Alg. 1+2 (F) k OPT [24] Alg. 1+2 (N) Alg. 1+2 (F)

Polska 12 18 812.53 12 256.94 257.29 270.65 3 277.09 331.60 344.43
India 35 80 6417.47 10 2118.21 2510.68 2530.17 4 2194.54 2561.28 2582.02
COST 266 37 57 4036.96 13 856.37 1073.49 1100.17 2 1015.18 1181.21 1204.19
Janos 39 61 5022.24 13 1463.34 1732.99 1763.02 4 1579.45 2009.18 2061.88
Germany 50 88 935.87 12 259.52 312.94 316.58 3 264.84 321.47 326.11
Abilene 11 14 4829.04 11 1562.23 1563.83 1727.01 3 1551.02 1556.05 1800.58
BtEurope 17 30 2716.41 11 719.27 719.40 732.65 4 719.27 719.40 732.65
Quest 19 30 15843.80 13 5554.15 5963.10 6186.57 9 5267.13 5311.14 5598.21
BtNorthAmerica 33 70 4810.12 11 1523.34 1623.28 1640.01 2 1646.28 2109.06 2154.17
Dfn 51 80 778.53 27 254.87 279.16 282.01 2 278.96 314.01 316.97
n100e287 unit 100 287 8 11 3.10 3.76 3.77 4 3.55 4.41 4.42
n100e287 random 100 287 33 23 10.15 12.03 12.09 3 12.29 13.91 13.99
n100e145 unit 100 145 11 68 4.07 4.38 4.43 5 4.78 5.65 5.73
n100e145 random 100 145 58 64 18.53 20.39 20.77 5 22.73 30.10 30.58

• Find a hypervisor placement in G(V,E) with Alg. 1 for
a given maximum distance L. As an output it gives us
the k number of hypervisors (and their locations).

• Generate 100 virtual network requests R1, . . .R100 with
each containing 2 to 10 random virtual switches and
find controller locations c1, . . . c100 based on total control
distance D according to Section V-A. We decreased the
number of request from 1000 to avoid memory constraints
of the ILP [24].

• Calculate the average length of all control paths in all
requests along the pre-allocated resilient path-pair with
Alg. 2 without link failures and the increased control path
lengths upon all single link failures (columns Alg. 1+2
(N) and Alg. 1+2 (F) in Table II, respectively).

• Define the input parameters of the ILP [24] as topology
G(V,E), hypervisor number k, and virtual network re-
quests {Ri, ci}, i = 1, . . . 100. For our use case we have
implemented the ILP in [24] with the average latency
objective function and without the multi-controller switch
constraints. Therefore, the solution of the ILP gives
the optimal hypervisor locations for the given set of
requests and the optimal average switch-to-hypervisor-to-
controller path lengths, denoted as OPT [24] in Table II.

The diameter and the half of the diameter of the topologies
were considered as maximum switch-to-hypervisor distances
L in Table II in order to produce significantly different number
of hypervisors k. However, in this setting if the L = 1/2
diameter is considered, the SLA violations are above 50%
owing to the shorter allowed control distances. For this tighter
constraint with more hypervisor instances and more partitions
one would expect decreased control path lengths, which can
be observed in most topologies. However, in some Internet
Topology Zoo [44] networks one can observe that the more
locations result in the same or even increased average control
path lengths. First, in case of the BtEurope topology the path
lengths are exactly the same for both distance constraints,
because there is a central node with high betweenness value
which acts as the hypervisor location for most physical
switches. Furthermore, our algorithm in Section V-A places the

controller to this node for almost every virtual network request.
Therefore, increasing the number of hypervisor instances has
no additional benefit. Second, more hypervisor instances can
cause increased average control path length as well which is
counter-intuitive. However, note that owing to the resilience
requirement we selected the controller location in each virtual
network based on total control distance D from the involved
hypervisor instances and not on average control path length.
Hence, in topologies like Abilene or Quest where a detour path
could be extremely long, this resilient controller placement
metric performs poor in terms of average control path length
for specific virtual network requests.

We conducted simulations on synthetic 100-node planar
topologies generated with LEMON [41] to investigate the
effect of the network density and varying link lengths on the
performance in Table II, and to analyze the running time on
larger topologies. Our observation is that with large number
of hypervisors the gap between the optimal average control
path length and our resilient average control path length
is larger in denser topologies, while with a few hypervisor
locations link lengths have higher influence on the perfor-
mance. Furthermore, the running time for the unit case (i.e.,
∀e ∈ E : l(e) = 1) is lower for both algorithms than the
uniformly random link lengths, i.e., in the 287-link network
it is 8.45 s compared to 9.35 s for Alg. 1+2, and 150.94 s
compared to 375.42 s for OPT [24], measured on a machine
running Debian Linux version 4.9, with four 2.59 GHz Intel
processors and with 8 GB RAM.

The difference between OPT [24] calculated with the
knowledge of all virtual network requests and without any
resilience requirement, and our resilient Alg. 1+2 without
any a priori knowledge of the requests varies significantly
in different topologies. In smaller sparse networks where
the number of options is limited the difference is negligible
and our approach provides instantaneous single link failure
recovery for the optimal placement. However, as the size
and density of the network increase, the price we pay for
resilience and for supporting dynamic behaviour can be up
to 20-25% increased average control path length depending

12

on the maximum allowed switch-to-hypervisor distance L.
As in our self-driving framework the network continuously

measures and analyzes itself, it can compare the current
placement with other possible available solutions satisfying the
constraints owing to the general formulation of Problem 1. In
case the trade-off between the increased control path length
and the benefits of Alg. 1+2 is not acceptable anymore for
the currently embedded vSDNs (e.g., the performance gap
becomes larger than a threshold), the network can invoke a new
resilient control plane design (which might induce some extra
migration or resource cost). However, we were focusing on
the resilience aspect in this paper and leave such performance-
based reactions for future work.

VII. CONCLUSIONS

In this paper we introduced a polynomial-time resilient
hypervisor placement algorithm based on greedy set cover to
satisfy a maximum distance between the physical switches and
the hypervisor instances. Our simulation results show that this
general method approaches the optimal solution both in terms
of hypervisor number and average distance. Furthermore, with
defining sets and using a greedy cover instead of defining
finely tuned objective functions on a case-by-case basis we
make our algorithm applicable in self-driving networks. Al-
though it does not fully satisfy the original definition, we
still claim that our approach shows some sort of intelligent
behaviour by keeping options (e.g., number of hypervisors)
open and let the algorithm decide their outcome instead of
giving them as input parameters. As a second contribution
we have also proposed a general dynamic program to cal-
culate shortest paths between virtual switches and controllers
traversing the corresponding hypervisor locations. Although
we introduced our algorithms for the control path design
of virtual SDN networks, both our placement and routing
algorithm can be applied for more general facility location
and arbitrary function chain routing problems without capacity
constraints as well.

APPENDIX

A. Integer Linear Program to Minimize Hypervisor Locations

Here we shortly present the ILP for the optimal set cover
in Problem 1. We use binary variable yj to denote if node j
was selected as a hypervisor location and xi,j to represent if
switch i is controlled by hypervisor j. We want to minimize
the number of hypervisor locations as a primary objective,
and among these solutions we are interested in the one with
minimal average control distance. Hence, we use a large
enough constant λ to stress the primary objective as follows:

min
∑
j∈V
{λ · yj +

∑
i∈V

nodeDistance(i, j) · xi,j}.

The following constraints are required:

∀i ∈ V :
∑
j∈V

xi,j = 1, (1)

∀i, j ∈ V : xi,j ≤ yj , (2)

TABLE III
MODIFIED INTERNET TOPOLOGY ZOO [44] GRAPHS

Graph |V | |E| no coord. 1-deg. δorig δmod

Abilene 11 14 0 0 2.54 2.54
BtEurope 24 37 2 5 3.08 3.52
Quest 20 31 0 1 3.10 3.16
BtNorthAmerica 36 76 3 0 4.22 4.24
Dfn 58 87 7 0 3.00 3.13

∀i, j ∈ V : nodeDistance(i, j) · xi,j ≤ L. (3)

Eq. (1) states that each physical SDN node is controlled by
one hypervisor to avoid control conflicts and state inconsis-
tencies [23]. Eq. (2) says that if a switch is controlled by a
location, a hypervisor must be placed at that location. Finally,
we bound the maximum control distance between any switch
and its corresponding hypervisor in Eq. (3).

B. Real-World Topology Modifications

The investigated SNDLib [40] topologies were two-
connected with available longitude and latitude coordinates, so
no modifications were necessary on those inputs. For the orig-
inal Internet Topology Zoo [44] graphs (data shown in the first
columns of Table III) in a first step we removed nodes with
insufficient information (i.e., without coordinates), and in a
second step eliminated the 1-degree nodes from the remaining
graph. The number of deleted nodes in the subsequent steps is
given as no coord. and 1-deg. in Table III. The links having at
least one end-node removed were discarded as well, resulting
in the topologies used in Table II. Because in both steps low-
degree nodes were dropped, the modified topologies used in
the simulations have slightly higher average nodal-degree than
the original ones, denoted as δmod and δorig, respectively, and
are shown in the last two columns of Table III.

REFERENCES

[1] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and
S. Schmid, “Empowering self-driving networks,” in ACM SIGCOMM
Workshop on Self-Driving Networks (SelfDN), Aug 2018, pp. 8–14.

[2] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klügel,
and A. M. Alba, “How to measure network flexibility? A proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
vol. 56, no. 10, pp. 186–192, 2018.

[3] A. D. Wissner-Gross and C. E. Freer, “Causal entropic forces,” Phys.
Rev. Lett., vol. 110, p. 168702, Apr 2013.

[4] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on net-
work virtualization hypervisors for software defined networking,” IEEE
Communications Surveys Tutorials, vol. 18, no. 1, pp. 655–685, 2016.

[5] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement
strategies for a resilient SDN control plane,” in 2016 8th International
Workshop on Resilient Networks Design and Modeling (RNDM), Sept
2016, pp. 253–259.

[6] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Openflow: Meeting carrier-grade recovery requirements,” Computer
Communications, vol. 36, no. 6, pp. 656 – 665, 2013.

[7] N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers, “Fast recovery in
software-defined networks,” in European Workshop on Software-Defined
Networks (EWSDN), 2014, pp. 61–66.

[8] P. Thorat, R. Challa, S. M. Raza, D. S. Kim, and H. Choo, “Proactive
failure recovery scheme for data traffic in software defined networks,” in
IEEE NetSoft Conference and Workshops (NetSoft), 2016, pp. 219–225.

[9] P. Babarczi, G. Biczók, H. Overby, J. Tapolcai, and P. Soproni, “Re-
alization strategies of dedicated path protection: A bandwidth cost
perspective,” Elsevier Computer Networks, vol. 57, no. 9, pp. 1974 –
1990, 2013.

13

[10] P. Babarczi, A. Pašić, J. Tapolcai, F. Németh, and B. Ladóczki, “Instan-
taneous recovery of unicast connections in transport networks: Routing
versus coding,” Elsevier Computer Networks, vol. 82, pp. 68 – 80, 2015,
Special Issue on Robust and Fault-Tolerant Communication Networks.

[11] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Fast
failure recovery for in-band openflow networks,” in Proc. IEEE Design
of reliable communication networks (DRCN), 2013, pp. 52–59.

[12] ——, “In-band control, queuing, and failure recovery functionalities for
openflow,” IEEE Network, vol. 30, no. 1, pp. 106–112, 2016.

[13] R. Khalili, Z. Despotovic, and A. Hecker, “Flow setup latency in sdn
networks,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 12, pp. 2631–2639, 2018.

[14] N. Beheshti and Y. Zhang, “Fast failover for control traffic in software-
defined networks,” in Global Communications Conference (GLOBE-
COM), 2012 IEEE. IEEE, 2012, pp. 2665–2670.

[15] K.-W. Kwong, L. Gao, R. Guérin, and Z.-L. Zhang, “On the feasibility
and efficacy of protection routing in ip networks,” IEEE/ACM Transac-
tions on Networking (ToN), vol. 19, no. 5, pp. 1543–1556, 2011.

[16] Y. Jiménez, C. Cervelló-Pastor, and A. J. Garcı́a, “On the controller
placement for designing a distributed sdn control layer,” in 2014 IFIP
Networking Conference, 2014, pp. 1–9.

[17] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in 2011 IEEE Global Telecommunications Con-
ference (GLOBECOM), 2011, pp. 1–6.

[18] B. P. R. Killi and S. V. Rao, “Optimal model for failure foresight
capacitated controller placement in software-defined networks,” IEEE
Communications Letters, vol. 20, no. 6, pp. 1108–1111, 2016.

[19] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in sdn-based core
networks,” in Teletraffic Congress (ITC), 2013 25th International. IEEE,
2013, pp. 1–9.

[20] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale sdn networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[21] C. Develder, J. Buysse, B. Dhoedt, and B. Jaumard, “Joint dimensioning
of server and network infrastructure for resilient optical grids/clouds,”
IEEE/ACM Transactions on Networking (TON), vol. 22, no. 5, pp. 1591–
1606, 2014.

[22] A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: An sdn virtualiza-
tion architecture with flexible hypervisor function allocation,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), 2015, pp. 397–405.

[23] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, “Pairing sdn with
network virtualization: The network hypervisor placement problem,”
in IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), 2015, pp. 198–204.

[24] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control
plane latency with sdn network hypervisors: The cost of virtualization,”
IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 366–380, 2016.

[25] B. P. R. Killi and S. V. Rao, “On placement of hypervisors and
controllers in virtualized software defined network,” IEEE Transactions
on Network and Service Management, vol. 15, no. 2, pp. 840–853, 2018.

[26] A. Blenk, “Towards virtualization of software-defined networks: Analy-
sis, modeling, and optimization,” PhD Dissertation, Technische Univer-
sität München, 2018.

[27] M. Tornatore, P. Babarczi, O. Ayoub, S. Ferdousi, R. Lourenco, J. Zer-
was, A. Blenk, M. Klügel, and W. Kellerer, “Alert-based network
reconfiguration and data evacuation,” in Guide to Disaster-resilient
Communication Networks, J. Rak and D. Hutchinson, Eds. Springer,
2020, ch. 14, pp. 353–377.

[28] D. S. Johnson, L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M. Ha-
jiaghayi, H. Karloff, M. G. C. Resende, and S. Sen, “Near-optimal
disjoint-path facility location through set cover by pairs,” Operations
Research, vol. 68, no. 3, pp. 896–926, 2020.

[29] S. A. Amiri, K. Foerster, R. Jacob, M. Parham, and S. Schmid, “Way-
point routing in special networks,” in 2018 IFIP Networking Conference
(IFIP Networking) and Workshops, 2018, pp. 1–9.

[30] A. Van Bemten, J. W. Guck, P. Vizarreta, C. M. Machuca, and
W. Kellerer, “Larac-sn and mole in the hole: Enabling routing through
service function chains,” in 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), 2018, pp. 298–302.

[31] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina, “Vir-
tual network function placement for resilient service chain provisioning,”
in 2016 8th International Workshop on Resilient Networks Design and
Modeling (RNDM), 2016, pp. 245–252.

[32] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of
service function chains,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2016, pp.
128–133.

[33] C. Barrett, R. Jacob, and M. Marathe, “Formal-language-constrained
path problems,” SIAM Journal on Computing, vol. 30, no. 3, pp. 809–
837, 2000.

[34] J. Yallouz and A. Orda, “Tunable qos-aware network survivability,”
IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 139–149,
2017.

[35] J. Yallouz, O. Rottenstreich, P. Babarczi, A. Mendelson, and
A. Orda, “Minimum-weight link-disjoint node-“somewhat disjoint”
paths,” IEEE/ACM Transactions on Networking, vol. 26, no. 3, pp. 1110–
1122, June 2018.

[36] K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum interference
routing of bandwidth guaranteed tunnels with MPLS traffic engineering
applications,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 12, pp. 2566–2579, Dec 2000.

[37] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[38] L. Lovász, “On the ratio of optimal integral and fractional covers,”
Discrete Mathematics, vol. 13, no. 4, pp. 383–390, 1975.

[39] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
J. Comput. Syst. Sci., vol. 9, no. 3, pp. 256–278, Dec. 1974.

[40] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. INOC, 2007.

[41] “LEMON: A C++ library for efficient modeling and optimization in
networks.” [Online]. Available: http://lemon.cs.elte.hu

[42] A. Pašić, R. Girão-Silva, F. Mogyorósi, B. Vass, T. Gomes, P. Babarczi,
P. Revisnyei, J. Tapolcai, and J. Rak, “eFRADIR: An Enhanced FRAme-
work for DIsaster Resilience,” IEEE Access, vol. 9, pp. 13 125–13 148,
2021.

[43] T. Gomes, L. Jorge, R. Girão-Silva, J.Yallouz, P. Babarczi, and J. Rak,
“Fundamental schemes to determine disjoint paths for multiple failure
scenarios,” in Guide to Disaster-resilient Communication Networks,
J. Rak and D. Hutchinson, Eds. Springer, 2020, ch. 17, pp. 429–453.

[44] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, October 2011.

Péter Babarczi (M’11) received the M.Sc. and
Ph.D. (summa cum laude) degrees in computer
science from the Budapest University of Technol-
ogy and Economics (BME), Hungary, in 2008 and
2012, respectively. In 2017-2019 he was an Alexan-
der von Humboldt Post-Doctoral Research Fellow
with the Chair of Communication Networks at the
Technical University of Munich, Germany. He is
currently working as an Assistant Professor with
the Department of Telecommunications and Media
Informatics at BME. His current research interests

include intelligent self-driving networks, multi-path Internet routing, network
coding in transport networks, and combinatorial optimization in softwarized
networks. He received the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences in 2013, and the Post-Doctoral Research Fellowship
of the Alexander von Humboldt Foundation in 2017. Since 2020, he is the
lead researcher of an OTKA FK Young Researchers’ Excellence Programme
supported by the National Research, Development and Innovation Fund of
Hungary.

