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Abstract: Bonus-malus system (BMS) is a risk managing method primarily used in liability
insurances. In a BMS there are finitely many classes, each having a different premium. At
the start of the contract each policyholder is assigned to the ‘initial class’. In each period, the
policyholders are reclassified based on the number of claims. In Ágoston and Gyetvai (2020)
we introduced a MILP model for the joint optimization of premiums and transition rules.
The computational time of the model can be very long with realistic parameters. However,
we may approximate the optimal solution by iteratively optimizing the premiums and then
the transition rules. In this paper, we compare the computation of the MILP model and the
iterative heuristic.
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1 INTRODUCTION

Bonus-malus systems (BMS) are used in Motor-third party liability insurances. The
BMS is applied to distinguish the risky drivers from the less risky ones and incentivize
drivers to be more careful.

In a BMS there are finitely many classes. For each period of the insurance, the
policyholders are classified into one of these classes. Each class has a premium, so the
policyholder’s payment depends on the class where he/she is classified. At the beginning
of the contract, each policyholder is classified into the so-called initial class. Then the
classification depends on the previous period’s classification and the number of claims
reported in the present period. Suppose the policyholder has a claim in a period. In
that case, he/she moves to a worse class with a higher premium. On the other hand, if
he/she does not have a claim in the period, then he/she moves to a better class. Hence
his/her premium will be lower. Therefore, the riskier policyholders will be in a worse
class after several periods, and they pay more in general. The less risky policyholders
will pay less in total.

Designing a BMS requires choosing the transition rules, the number of classes, the
scale of premiums, and the initial class. The objective is to form a BMS that sorts
policyholders as best as possible. There are many papers about the optimization of
BMSs (e.g., Cooper and Hayes (1987); Lemaire (1995); Denuit et al. (2007); Heras et
al. (2004); Brouhns et al. (2003); Denuit and Dhaene (2001); Mert and Saykan (2005);
Najafabadi and Sakizadeh (2017)). The premium scale is the variable in these studies,
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and the number of classes, the initial class, and transition rules are parameters. The
most relevant article for our studies is Heras et al. (2004). In this study, the authors
introduce an LP model for the optimization of premiums. In Gyetvai and Ágoston
(2018), we introduced a MILP model to find the optimal transition rules with a fixed
premium scale. We presented a modification of this model for the joint optimization of
the premiums and transition rules in Ágoston and Gyetvai (2020).

2 OPTIMIZATION MODELS

Let us assume that we can distinguish I risk-groups (types) among the policyholders.
Each type has a different risk that does not change over time. In practice, transition
rules are based only on claim numbers, without the consideration of the claim amount.

Let M > 0 be the highest number of possible claims in a period and let λim be
the probability of m claims in a period for the policyholders of type i (i = 1, . . . , I,∑M

m=0 λ
i
m = 1). We denote the risk-parameters (expected claim amount) for risk-group i

with λi, (λi =
∑M

m=0mλ
i
m). φi denotes the proportion of the type i policyholders among

all of the policyholders (
∑I

i=1 φ
i = 1). The BMS has K + 1 classes indexed from 0 to K.

The classification of a policyholder only depends on the previous period classification
and the number of claims of the current period. This is called the Markov property.
Hence the classification of the policyholders is a regular Markov chain. Therefore exists
a unique stationary probability distribution (Kemeny and Snell (1976)) that we use in
the optimization. Let cik denote the stationary probability of the type i policyholders is
classified into class k. For the optimization of the premiums, we use an LP model (the
idea appeared in Heras et al. (2004)) to minimize the difference between the expected
payment and the expected claims. We denote the premium of class k by πk. Also, let
gik denote the absolute deviation between the expected payment and claims for a type i
policyholder in class k. Then the model is written as follows:

min
I∑

i=1

K∑
k=0

φigik (1)

Subject to

πkc
i
k + gik ≥ λicik ∀i, k (2)

πkc
i
k − gik ≤ λicik ∀i, k (3)

πk−1 ≥ πk k = 1, . . . , K (4)

πk ≥ 0 ∀k
gik ≥ 0 ∀k, i

In Gyetvai and Ágoston (2018) we introduced a MILP model, where the transition
rules are in the scope of the optimization and the premiums are considered as parameters.
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Here we only give a brief description of the model. For a more detailed description, see
Gyetvai and Ágoston (2018), and Ágoston and Gyetvai (2020).

Let Tj,m denote binary variables for each possible step (j) and claim (m =
0, 1, . . . ,M). Hence if Tj,m = 1, then the policyholders with m claims move j classes
upward (downward if j < 0) in the following period. Index j can be 0 as well, which
means that they stay in the same class in the subsequent period. The domain of j is by
[−K : K]. In this model the cik stationary probabilities are variables that are determined
by the optimal Tj,m transition rules.

min
I∑

i=1

K∑
k=0

φigik (5)

Subject to

J∑
j=J

Tj,m = 1 ∀m (6)

J∑
j=1

Tj,0 = 1 (7)

−1∑
j=J

Tj,M = 1 (8)

J∑
l=j

Tl,m ≥ Tj,m+1 ∀j,m = 0, . . .M − 1 (9)

K∑
k=0

cik = 1 ∀i (10)

dik,j,m ≥ λimc
i
k − (1− Tj,m) ∀i, k, j,m (11)

cik =

min(J,k)∑
j=max(J,−(K−k))

M∑
m=0

dik−j,j,m k = 1, . . . , K − 1,∀i (12)

cik =
J∑

j=0

j∑
`=0

M∑
m=0

dik−`,j,m k = K, ∀i (13)

cik =
0∑

j=J

0∑
`=j

M∑
m=0

dik−`,j,m k = 0,∀i (14)

πkc
i
k + gik ≥ λicik ∀i, k (15)

πkc
i
k − gik ≤ λicik ∀i, k (16)
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Constraints (6)-(9) are needed for defining reasonable transition rules. Constraints
(10)-(14) are for the calculation of the stationary probabilities cik. And constraints
(15)-(16) are for the absolute deviation of the objective function, similarily to the the
premium optimization model.

In Ágoston and Gyetvai (2020) we presented another MILP model, where both
premiums and transition rules can be optimized jointly. The presentation of this model
would exceed the scope of this article. Hence we only describe the basic idea of the
model. In this model, we start with default premiums for each class. We introduce
binary variables O`

k for each class k and layer ` to change the default premium. Hence
if O`

k = 1, then the default premium of class k is increased with a value that the `th
layer represented. We may consider several layers in the model, but it may increase the
computational time significantly.

When realistic parameters are considered in this model, there are a considerable
number of binary variables. Hence the running time can be extremely long. Separately
the optimization models for the premiums and the transition rules can be calculated
much faster than the joint optimization model. Hence we may use an iterative method
to approximate the optimal solution. First, we calculate the optimal transition rules with
a fixed premium. Then we find the optimal premiums to these transition rules, which
we now consider as parameters. Then we use the optimal premiums of this model as
parameters and re-optimize the transition rules. We continue it until we cannot improve
the objective function further. The solution of this heuristic greatly depends on the
initial model. In the initial model of transition rules optimization the premiums are
outer parameters. We may also start with the premium optimization and then proceed
with the optimization of the transition rules. In this case, the transition rules are outer
parameters in the first model. In the comparison, we considered four types of initial
premiums:

• Proportional (prop): We introduce own-classes for each risk-groups, which means
the premium of these classes equals the risk-groups’ expected claim. The
risk-groups have that many own-classes that are proportional to their percentage
of all policyholders.

• Linear (lin): We take the lowest and highest risk-groups’ expected claim for the
lowest and highest premium and set the classes’ premium linearly.

• Minimal (min): The premium equals the highest expected claim in the worst class.
In all other classes, it equals the lowest one.

• Maximal (max): In this case, only one class premium equals the minimal expected
claim and each other to the highest one.

We also considered two types of initial transition rules:

• TRK: In case of any claim, the policyholders move into the worst class. Without
a claim, the policyholders move one class upward.
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• TR1: In case of any claim, the policyholders move one class downward. Without
a claim, the policyholders move one class upward.

3 NUMERICAL RESULTS

We considered BMSs with 15 classes in the comparison of the joint optimization model
to the iterative heuristic. We randomly chose their risk-groups’ claim probability to test
the heuristic in as many setups as possible. Hence we considered 100 randomized setups.
In each setup we considered five equally sized risk-groups.

Two cases were examined: a realistic one, in which the risk parameters are generated
from a 0.01 to 0.1 interval. And a not-so-realistic higher-risk setup, in which the
risks are chosen from the [0.1 : 0.3] interval. In each model, the maximal number of
claims per period can be up most 2. For the claim probabilities we considered Poisson
distribution. We compared the iterative heuristic with six different initial solutions to
the joint optimization model. We highlight the difference between the optimal solution
and the running time. Figure 1 presents the relative deviation from the MILP model in
both cases.
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Figure 1: Objective and time change to the joint optimization model

On the left side of the figure, the objective increase to the joint model is presented.
The top row shows the low-risk case and the bottom presents the high-risk case. When
the risks are low, the results are similar to the objective of the joint model. The TR1
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resulted in the highest difference in average. However, even in this case, the average
increase was only 1.4%. When the risks are higher, the difference between the joint
model and the heuristic is higher as well. The TR1 resulted in the highest increase in
average in this case as well. The average increase was 2.9% for the TR1 and the next in
the line was the max with 1.1%

The running time of the iterative heuristic, in general, was much faster than the joint
optimization model with each initial solution. Again, the TR1 seems to be the worst.
But even in this case, the average running time is less than half of the joint model in
both setups (40% in the low and 8% in the high).
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