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Abstract

Although several studies provide a broad overview of vegetation changes in the Carpathian Basin

during the Holocene, stand-scale vegetation changes are lesser known because of the rarity of suitable

sampling sites. In this study we investigated the sediment of a small closed-canopy site (Nagy-forrás

forest hollow, 685 m a.s.l., 0.1 ha), located in the Mátra Mountains, on the north facing slope of Kékes

(1014 m a.s.l.). We carried out detailed pollen, conifer stomata and plant macrofossil analyses, as well

as radiocarbon dating to examine Late Glacial and Holocene dynamics of vegetation development.

The site dates back to ca. 15 500 cal yr BP, when open boreal forests and wet tundra-like habitats

occurred around the hollow. Closed forest cover developed around 14 600 cal yr BP, when a boreal

European larch-Swiss stone pine (Larix decidua-Pinus cembra) forest surrounded the hollow. This

vegetation type remained stable up to 7700 cal yr BP. We observed a hiatus between 7700 and 2710

cal yr BP, followed by a beech (Fagus sylvatica) dominated mixed temperate deciduous forest. Our

results confirmed that the area was covered by a primary forest, as human influence was visible only

from 175 cal  yr  BP.  The relatively  long lasting  persistence of  Pinus  cembra in  the  Holocene at

relatively low altitude was documented, which has never been found in Holocene sediments in the Pre-

Carpathians before. We hypothesize that the north facing slope acted as a cold-stage refugium in the

Early Holocene and could play the same role for the present-day beech forest that is threatened by

recent climate change.
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Introduction

The last major climatic shift, the Pleistocene/Holocene transition that took place around 11 700 years

ago is an intensively studied time period, partially because it gives us a better understanding of the

ongoing climate change and its potential consequences. The effects of warming climate on ecosystem

functioning,  and  particularly  on  vegetation  dynamics  are  important  fields  of  paleoenvironmental

studies, because they directly influence our economy and civilization to a great extent  (Elias, 2007;

Willis et al., 2007, 2010). Information about past rapid ecosystem reorganizations and their effects on

human societies provide us useful lessons as to what mitigation measures should be done regarding

ongoing climate change  (Petit  et  al.,  2008; Willis et al., 2007). They also help us designating the

potential directions of habitat-targeted nature conservation  (Birks, 1996; Jackson and Hobbs, 2009;

Lindbladh et al., 2007). 

If we turn our attention to past vegetation changes and look at paleoecological studies, most of them

describe vegetation dynamics on a regional scale due to the routinely used main proxy method pollen

analysis (Birks and Birks, 2000, 2006) and basin size (> 5 ha, see in Bradshaw, 2007; Elias, 2007) that

will  result  in  regional  vegetation  reconstructions.  Even  though  such  studies  are  unquestionably

important, the detection of local, i.e. population-level changes is also necessary to understand how

climate change affects different microhabitats.  Such knowledge about the stand-scale vegetation is

particularly instructive for conservation planning (Birks, 1996; Jackson and Hobbs, 2009; Lindbladh et

al., 2007) and forest management (Jasinski and Angelstam, 2002). Local information not only helps us

to assess what factors threaten populations and what could be the potential vegetation response in

general  (Jackson and Sax,  2010),  but  it  may also help us identifying places where a  species  can

survive the otherwise unfavourable climatic conditions (Dobrowski, 2011; Gavin et al., 2014; Suggitt

et al., 2011, 2018). These places serve as refugia (Birks and Willis, 2008); they can either be relatively

large and continuous, or smaller, hosting isolated populations (Gavin et al., 2014; Stewart et al., 2010).

Such areas are immensely important, as they provide sources for recolonization (Väliranta et al., 2011)

.  For example, the spread of deciduous trees after the Last Glacial Maximum (LGM) was suggested to

be facilitated by cryptic refugial  populations  (Birks and Willis,  2008; Provan and Bennett,  2008).

Refugia also have a key role in preserving the genetic diversity of a species (Höhn et al., 2009; Stewart

et al., 2010; Svenning et al., 2008). 

Local scale (2-10 km2) vegetation history data can be obtained, among others, by studying

macrofossils from lake and peatland sediments  (Birks, 1996, 2003), and also by studying the pollen

composition of small sites under closed canopy, so-called ‘forest hollows’  (Bradshaw, 1988, 2007;
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Overballe-Petersen and Bradshaw, 2011). Local-scale pollen studies (stand-scale palynology) require

closed-canopy sites with accumulated dry sediments (e.g. mor humus) or special natural water bodies

(‘forest hollows’) of 10-100 m diameter without in- and outflow (Bradshaw, 1988, 2007; Overballe-

Petersen and Bradshaw, 2011). Under these circumstances the plant remains (including macrofossils

and  pollen)  are  mostly  transported  into  the  sediment  under  the  canopy  from 20-150  m distance

(Calcote,  1995;  Parshall  and  Calcote,  2001).  In  the  last  few  decades,  stand-scale  studies  were

successfully used to investigate the forest development and long-term forest dynamics in Western and

Northern Europe  (Clear et al.,  2015; Overballe-Petersen et al.,  2013, 2014; Parshall,  1999) and in

Central Europe (Hájková et al., 2015; Jamrichová et al., 2013; Novák et al., 2019).

Macrofossil  analysis  has  been long used  to  complement  pollen analysis  by  tracking  local

vegetation changes  (Birks and Birks, 1975). Furthermore, plant macrofossils (e.g. fruits, seeds, bud

scales, leaves) can be identified with a better taxonomic resolution than pollen grains, and many of

them also represent species that produce low amount of pollen and would otherwise go unnoticed in

the pollen record  (Birks,  2007;  Birks and Birks,  1975,  2000).  Detailed macrofossil  analyses were

successfully used to track, among others, the paleohydrological and temperature changes during the

postglacial period and geochemical conditions of wetland ecosystems (Gałka et al., 2017; Jakab and

Sümegi, 2005; Magyari et al., 2001), forest development and dynamics (Birks, 2003; Jankovská, 1988;

Kołaczek et al., 2017) and tree- and timberline changes (Birks and Willis, 2008; Feurdean et al., 2016;

Magyari et al., 2018; Orbán et al., 2018) 

In the neighbouring area of our study site, local vegetation development was studied mostly in higher

mountainous areas, like the Precarpathian Hills and the Carpathian Mountains (Feurdean et al., 2013;

Gałka et al., 2017, 2018). At lower altitudes (< 750 m a.s.l.) of the Carpathian Basin, only few stand-

scale studies were carried out so far (Hájková et al., 2015; Jamrichová et al., 2017). The main reason

for this is the rarity of suitable sites due the arid, continental summers and recently the high density of

wild game (biodisturbance) that disfavour mor humus accumulation and the long-term persistence of

undisturbed forest hollows.

Regional vegetation historical studies  (Buczkó et al.,  2009; Feurdean et al.,  2014; Magyari,  2015)

suggest that the Carpathian Region served as refugium for many species in different areas. Several

deciduous tree species had small populations (cryptic refugia) during the LGM (Provan and Bennett,

2008), which became important sources of recolonization (Birks and Willis, 2008; Magri, 2008; Willis

et al., 2000). The vegetation of the Pannonian Basin reflects this historically large diversity in different

floristic elements: several glacial relict species, Atlantic, Montane, Mediterranean and Steppe elements

are present today (Fekete et al., 2014).

In this study, we present the results of a stand-scale paleoecological study that we undertook

on the deposits taken at a small forest hollow (a spring-fed fen next to Nagy-Forrás)  in the Mátra

Mountains. These mountains are part of the North Hungarian Mountains, a separate geomorphological

unit  of  the Western Carpathians. Since the site is  located in close proximity of the Kékes Forest
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Reserve, our study has a high nature conservation relevance as it sheds light on the vegetation history

of one of the last primary forests in Hungary (Czájlik, 2009) and also in Europe (Sabatini et al., 2018).

To our knowledge, our research is the first stand-scale paleoecological study in Hungary.

The aims of this study are: i) to reconstruct stand-scale vegetation changes and succession over the

Late Glacial and Holocene period; ii) to compare the local vegetation changes with regional trends,

and to identify potential  Late Glacial  refugia for cold tolerant  vegetation iii)  to specify when the

present-day beech dominated forest was formed and iv) to identify the first signs of human impact. 

Materials and Methods

The locations of the potential forest hollows in the North Hungarian Mountains were collected using

the geomorphological literature, the maps of the area and information given by the rangers of the Bükk

National Park Directorate. Altogether 61 potential forest hollows were identified, from these 41 were

visited and evaluated as a potential coring site. The vast majority of these places were disturbed by

game  and/or  did  not  accumulate  enough  sediment.  Altogether  five  sites  were  identified  with

undisturbed thick sediment layer and therefore suitable for multi-proxy paleoecological analyses. All

of them are located in the Mátra Mountains and are landslide basins (Szabó, 1992, 1993; Szabó and

Félegyházi,  1997). This study focuses  on the paleoecological  study of the site called Nagy-forrás

forest hollow.

Regional setting

The Mátra Mountains (Figure 1) is one of the highest mountain ranges in Hungary, with the highest

peak  of  the  country  (Kékes,  1014  m  a.s.l.).  The  climate  of  the  region  is  continental  temperate

(Standovár  et  al.,  2017) with  a  mean  annual  temperature  of  5.7  °C,  while  the  mean  monthly

temperature is 15.5 ºC in July and -4.4 ºC in January (Ódor, 2000). The annual precipitation is 784 mm

at the Kékes meteorological station, the number of snow covered days is 112 (Ódor, 2000). The area

of the Mátra Mountains is mostly covered by deciduous forests and partly (12 178 ha) protected since

1985 (Mátra Landscape Protection Area).
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Fig. 1. Location of Nagy-forrás forest hollow in the Carpathian Basin and in the Mátra Mountains. 

The Mátra Mountains have been populated for several millennia: the first signs of human presence

date back to the Upper Paleolithic  (  Blattshaber-Blattspitzen complex,  unknown dates  ,  see in  Bíró,

1984; Gutay, 2016). Permanent settlements were found on the lower slopes from the Late Neolithic

(Linear  Pottery  Culture  5600-4500  cal  yr  BC,  see  in  Domboróczki  et  al.,  2016),  while  hillforts

(Supplementary Figure 1)  were built on several peaks during the Bronze Age (Füzesabony Culture

1700-1300 cal yr BC in Hungary, Kyjatice Culture 1100-700 cal yr BC in Hungary, see in Dénes and

Nováki, 2010; Metzner-Nebelsick, 2012). Several towns and villages were established in the foothills

during the Middle Ages  (Fodor, 2010). The intensive use of the forests started only after AD 1708,

when glasswork and potash production manufactures were established in the villages of the northern

foothills.  Despite  the  long  history  of  human  occupation  in  the  region,  the  inner  part  of  Mátra

Mountains  remained relatively undisturbed throughout  prehistoric  times and also during historical

times due the relatively long distance from the foothills and the steep slopes (Czájlik, 2009).
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Our study site lies on the northern slope of Kékes Peak that is dominated by submontane beech forests

(Melittio-Fagetum,  Soó 1964) and montane beech forests (Aconito-Fagetum) with patches of scree

forests (Mercuriali-Tilietum) and mixed maple-ash-lime forests (Parietario-Aceretum). In the much

lower (northern) parts of the slope, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)

plantations occur (Vojtkó et al., 2010). The bedrock is andesite that is covered by shallow lessivated

brown forest soils (Dávid, 1992; Láng et al., 2013). The slope above our coring site is covered by the

last primary forests of Hungary, and therefore it is a well-studied and strictly protected area (Kékes

Forest Reserve, see in Czájlik, 2009; Standovár et al., 2017). The area below our site has been heavily

impacted by  human  activities:  the  first  evidence  of  clearings  dates  back  to  AD  1856  (see

Supplementary Figure 1), when a ca. 2 ha meadow appeared around Lake Pisztrángos (Biszak et al.,

2014; Tímár et al., 2010). More extended deforestation started only after 1945, while an asphalt road

was built in 1949 (Czájlik, 2009). Nowadays this part is covered by middle-aged (94 years old) beech

forest mixed with silver birch (Betula pendula) and planted Norway spruce trees. These forests are

managed for timber production by forestry; the last intervention was 25 years ago.

The studied site, Nagy-forrás forest hollow (Figure 1) is located between Lake Pisztrángos and the

Kékes Forest Reserve (47°52'48.8"N 20°00'44.3"E, 685 m a.s.l.). It is located in a small depression

which was most probably formed by a landslide (Szabó, 1992; Szabó and Félegyházi, 1997), and filled

up slowly with sediment. Its extent according to our measurements is 25 x 50 m (ca. 980 m 2) and

today it is covered by the forest community of Carici remotae-Fraxinetum (Vojtkó et al., 2010). The

canopy is  characterized by common ash (Fraxinus excelsior),  European aspen (Populus  tremula),

European beech (Fagus sylvatica) and black alder (Alnus glutinosa); canopy closure is around 50%.

The herb layer covers the entire surface; the dominant species are Carex remota and Athyrium filix-

femina (70-70%).  Abundant  species  are  Solanum dulcamara (20%),  Chrysosplenium alternifolium

(15%),  Circaea  lutetiana (10%)  and  Impatiens  noli-tangere (10%).  Lycopus  europaeus (5%),

Eupatorium  cannabinum (3%),  Ranunculus  repens (3%),  Lysimachia  nummularia (3%),  Galium

palustre (2%),  Oxalis  acetosella (2%),  Dryopteris  carthusiana (1%),  Stachys  sylvatica (1%)  and

Urtica dioica (1%) also have a considerable cover.

Methods

Two overlapping sediment cores were taken from the forest hollow (PM-1 and PM-2) in the fall of

2016 with a modified Russian peat corer equipped with a 40 cm long sampling chamber. The core

segments  were  wrapped in  cling  film and aluminum foil  in  the  field,  and  stored  at  4  °C in  the

laboratory. Sediment lithology was recorded following the Troels-Smith scheme (Troels-Smith, 1955).

The two cores  (PM-1,  PM-2)  were aligned according to  the  lithology,  and were used for  further

analyses. Subsequently, the cores were sliced up into 1 cm thick slices, from which 1 cm3 subsamples

were taken for pollen and 1 cm3 for loss on ignition (LOI) analyses; the remaining sediment( 5–16
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cm3,  median:  8  cm3)  was  used  for  macrofossil  analysis.  The  resolution  of  the  pollen  and  plant

macrofossil records is 4 cm, while loss-on-ignition was measured at 2 cm intervals. 

For AMS 14C dating terrestrial plant macrofossils (seeds, needles, leaf- and twig fragments, see Table

1.) were collected from 11 sediment layers. All samples were taken from the same core (PM-1). The

measurements  were  done  at  the  Laboratory  of  Climatology  and  Environmental  Physics  (ICER),

Institute of Nuclear Research of the Hungarian Academy of Sciences. Outliers were identified with

OxCal (v4.3) outlier analysis. We used the IntCal13 calibration curve (Reimer et al., 2013) in OxCal

(Ramsey,  2009) for  calibrating  the  14C dates.  Bayesian  age-depth models  were  made  without  the

outliers using the rbacon (v2.2) package in R v3.5.5  (Blaauw and Christen, 2011). The maximum

possible age was defined as 20 000 cal yr BP based on previous publications about these landslide

basins (Szabó, 1992, 1993; Szabó and Félegyházi, 1997).

For determining the organic content of the sediment, subsamples were dried, weighed and

subsequently heated in a muffle furnace to 550 °C for 4 hours  (Heiri et al., 2001). Organic carbon

percentages were calculated from the loss of weight  upon ignition,  the results  were plotted using

program R (3.5.0) with the rioja package (Juggins, 2017).

Pollen grains were extracted following the method of Willis and Bennett (Bennett and Willis,

2001). Acetolysis was followed by 1% sodium hypochlorite treatment in order to dissolve resistant

ligneous matter. Lycopodium tablets (Lund University, Batch: 1031 and 3862) were used to calculate

pollen concentrations and accumulation rates. At least 500 terrestrial pollen grains were counted in

most samples (Beug, 2004; Moore et al., 1991). However, eight samples from the bottom part of the

sediment had very poor pollen preservation;  here the terrestrial  pollen sum was between 300-400

grains.  Pollen  taxon  nomenclature  follows  Moore  et  al.  (1991).  Microcharcoals  (10-125  µm),

microspores, non-pollen palynomorphs  (Van Geel,  2006; Van Geel et al.,  1980, 1983) and conifer

stomata  (Magyari et al., 2012; Sweeney, 2004; Zhang et al., 2011) were also counted on the pollen

slides.  Pollen  percentages,  charcoal  and  stomata  concentrations  were  calculated,  and  Tilia  2.1.0

(Grimm, 2011), and CorelDraw X8 were used to plot the diagrams. Pollen assemblage zones were

defined based on terrestrial pollen data using the binary splitting function in Psimpoll v4.26 (Bennett,

2008). Principal  Component  Analysis  (PCA)  was  done  using  the  most  abundant  23  pollen  types

(attaining 5% at least in one sample) using a covariance matrix and square-root transformation in

Psimpoll v4.26. Results were plotted in Microsoft Excel.

For plant macrofossil analysis 1 cm thick sediment slices (mean volume: 7.5 cm 3) were used at 4 cm

intervals,  as  described  above.  Their  volume was measured by water  displacement.  Samples  were

disaggregated and wet sieved through a 250 µm mesh. Plant macrofossil analysis was done according

the modified “semi-quantitative quadrate and leaf-count  macrofossil analysis technique” (Jakab and

Sümegi, 2012). Plant remains were identified using identification keys  (Berggren, 1981; Bojnanský

and Fargašová, 2007; Cappers et al., 2012; Jakab and Sümegi, 2004, 2012; Katz et al.,  1965) and

reference materials stored at the Department of Environmental and Landscape Geography (ELTE) and
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at  the  Seed Collection  of  Hungarian  Natural  History  Museum.  In  the  case  of  the  conifer  needle

fragments, minimum number of needles were calculated following the equation MN=WN+NH+NF/2

(MN: minimum number of needles, WN: whole needles, NH: number of the needle tips or the needle

bases-depends on which one is highest, NF: needle fragments), as described in detail in Vincze et al.

( 2017). All plant macrofossil concentrations were calculated to the minimum volume (5 cm3). Results

were plotted using Tilia 2.1.0 (Grimm, 2011) and CorelDraw X8.

Results and interpretation

Sediment stratigraphy and chronology

The full length of the sediment was 240 cm with 5 main lithostratigraphic units visible (Figure 2). The

bedrock was andesite gravel (grain size: 5-25 mm). Results of the radiocarbon dating are presented in

Table 1. 

Table 1. Results of the AMS 14C measurements from Nagy-forrás forest hollow (core PM-1)

Laboratory 

code
Dated material

Depth

(cm)

14C age years 

BP

Calibrated 

age years BP 
Remarks

DeA-15374 Deciduous leaf fragments 16 1 ± 27 -27 ±15

DeA-15375 Deciduous leaf fragments 36 174 ± 27 148 ± 122

DeA-13965 Fagus sylvatica budscales and twigs, Rubus seed 64 2826 ± 25 2928 ± 33

DeA-16685 Fagus sylvatica twigs 72 2503 ± 20 2612 ±81

DeA-15378 Larix and Pinus cembra needles
76 6918 ± 39 7753 ± 44

DeA-13966 Woods, twigs, Quercus and Pinus budscales 84 4821 ± 30 5547 ± 48 outlier

DeA-15379 Conifer needles 100 11211 ± 52 13111 ± 107

DeA-16686 Fagus sylvatica budscales 107-109 2640 ± 21 2762 ± 7 outlier

DeA-15376 Conifer needles 116 11480 ± 46 13389 ± 121

DeA-15377 Conifer needles 174 12013 ± 48 13991 ± 202

DeA-13967
Larix needle, conifer budscales, 
moss remains, Juncus seeds

229 5445 ± 36 6254 ± 32 outlier
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Three dates (229 cm, 109 cm and 84 cm) were identified as outliers. The bottom part of the sediment

was poor in macrofossils and organic matter, and the small amount of datable organic material could

account for the young obtained age at 229 cm. The other two outliers (109 cm and 84 cm) can be

explained by the downward movements of small (2-3 mm) fragments of deciduous macrofossil either

washed down during the sedimentation process or relocated during the coring. The fact that the sample

from 107-109 cm composed only of deciduous material gave a very young age (107-109 cm, only

Fagus budscales,  2762  ±  7  cal  yr  BP),  whereas  the  sample  composed  of  mixed  coniferous  and

deciduous material gave an intermediate age (84 cm, Quercus and Pinus budscales, 5547 ± 48 cal yr

BP)  confirms  the  relocation  of  small  deciduous  macrofossils.  However,  the  ages  obtained  from

coniferous remains and the succession reflected by the changes of dominant species in the macrofossil

and pollen records let us conclude that the sediment shows a consistent stratigraphy with minor down-

core movement of deciduous macrofossils. 

Age-depth models were constructed without the outliers for the entire length of the core, extrapolation

was made between 174 cm and 240 cm (see Figure 2). The radiocarbon ages in association with the

abrupt change in the plant macrofossil types and the high abundance of fungal remains (sclerotia)

between 72 and 76 cm altogether pointed to a presumable time gap in the sediment, therefore a hiatus

was introduced at 74 cm.
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Pollen, stomata and plant macrofossil results and inferred vegetation changes

The  sediment  was  relatively  rich  in  plant  remains:  88  pollen,  7  spore,  8  NPP  (non-pollen

palynomorph), 4 stomata and 113 plant macrofossil types were observed along the entire length of the

core. Plant macrofossil abundance of trees and shrubs was exceptionally high in the top 175 cm of the

core. The pollen zonation resulted in 5 significant assemblage zones (PH-1 to 5). For the zones and

detailed  vegetation  changes  see  Supplementary  Table  1.  The  main  plant  macrofossil  types  are

presented in Figure 3., pollen and plant macrofossil diagrams are presented in Figures 4 & 5.
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Fig. 4.                 Pollen percentage diagrams of selected tree and shrub pollen types and concentration diagrams of the selected plant 

macrofossils. 

A. Coniferous trees and cold-tolerant deciduous trees. 

B. Temperate deciduous trees, wet woodland trees and shrubs. 

The stacked bar chart shows the relative proportion of the different vegetation types (based on pollen record). Filled line 

charts represent the pollen proportions in percentage, where 100% is the sum of all terrestrial taxa (see total terrestrial 

pollen), the exaggeration factor (black line) was 3. Grey bar charts: stomata concentrations (pieces in 1 cm3). Bar charts: 

macrofossil concentrations (pieces in 5 cm3). Line charts: the total pollen concentration (in 1 cm3) and charcoal records 
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PH-1, 240-200 cm, 15 425-14 615 cal yr BP

The bottom zone is composed of sandy sediment with mineral particles and clay and has low organic

matter  content  (LOI  <  20%).  The  equal  proportion  of  terrestrial  herb  pollen  (mainly  Poaceae ,

Artemisia and  Ranunculus  type)  and  coniferous  tree  pollen  (Pinus  diploxylon  type and  Picea)

suggested  open  boreal  forest  vegetation  (Figures  4  &  5).  The  occurrence  of  cold-tolerant  herbs

(Selaginella selaginoides,  S.  denticulata,  Oxyria dygina,  Saxifraga oppositifolia,  S.  granulata and S.

stellaria)  is  notable  (Figure  5)  and  their  presence indicates  alpine snow beds,  wet  rock  surfaces,

grasslands and nearby springs or seep-water. Overall, they are indicative of boreal and wet tundra-like

habitats  around  the  hollow.  Submerged  aquatic  species  (Batrachium sp.),  hydro-  and  helophytes

(Comarum palustre, Caltha palustris, Typha sp., Cyperaceae) and NPP types from this zone indicate

shallow, oligo-mesotrophic pond environment. According to the plant macrofossil  record the open

boreal  forest  around  the  lake  was  dominated  by  Picea  sp.,  Larix  sp.  and  Pinus  sylvestris.  The

lakeshore was covered by Betula pendula/pubescens trees and Salix sp. shrubs.

PH-2, 200-102 cm, 14 615-12 980 cal yr BP

In  zone  PH-2,  the  brown  sandy  sediment  is  turning  to  dark  brown  (almost  black)  decomposed

sediment with turfa (peat); the amount of organic matter increases through the zone (Figure 2). This

zone  is  the  most  diverse  both  in  pollen and macrofossil  types  and is  characterized by  very  well

preserved plant and moss remains (Figures 3 & 5). The relatively high proportion of conifer pollen

(Picea,  Larix  decidua,  Pinus  haploxylon type and  diploxylon type)  and  the  abundant  finds  of  L.

decidua,  Pinus  cembra and  Pinus  sylvestris needles  and stomata  suggest  the  presence  of  a  local

European  larch-swiss  stone  pine  dominated  boreal  forest.  According  to  the  macrofossils,  Betula

pendula and  B.  pubescens grew on the site,  too.  The presence of  Ephedra,  Juniperus,  Ericaceae,

Spiraea, Sambucus and Rubus may point to a relatively rich shrub layer and light-demanding shrubs

likely indicate poorly vegetated scree surfaces. The significant proportion of Picea pollen and stomata

suggests Norway spruce populations close to the hollow. The diverse moss community (11 species,

e.g.  Drepanocladus aduncus,  Calliergon cordifolium, Supplementary Figure 4) and the presence of

Comarum  palustre,  Caltha  palustris,  Urtica sp.,  Carex  appropinquata and  other  Carex species

indicate mesotrophic fen habitats in the mire.

PH-3, 102-74 cm, 12 980-7050 cal yr BP

This zone has uniform lithostratigraphy (dark brown, almost black decomposed lake sediment with

turfa) and constantly high organic matter content (50-60%). Based on changes in the macrofossil and

pollen types (Figure 4), the importance of conifers decreases, while deciduous trees (mostly Quercus,

Ulmus and  Tilia, see Supplementary Table 1) become more abundant.  Larix decidua,  Pinus cembra

and P. sylvestris macrofossils are still abundant suggesting the persistence of boreal forest elements. L.
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decidua and P.  cembra needles were dated directly to 7753 ± 44 cal yr BP (76 cm) suggesting their

local persistence in the Holocene. The proportion and the diversity of taxa associated with the herb

layer decreased mainly because of the strong increase in the elements of the shrub layer (Corylus,

Frangula and  Sambucus).  This  zone  is  likely  a  transition  between  the  previous  coniferous  and

subsequent deciduous forest, however the surprisingly young and most likely mixed age at 84 cm

(5547 ± 48 cal yr BP; Table 1) suggests that the deciduous tree remains come from a younger layer.

The brown-mosses, Caltha palustris, Comarum palustre, Carex appropinquata disappeared from the

wetland vegetation, while the presence of Epilobium, Filipendula ulmaria and Scirpus sylvaticus seeds

(Figure 5) point to a tall-herb marsh in the vicinity of the core location. These data suggest that Larix

decidua, Pinus cembra and Pinus sylvestris survived until ca. 7050 cal yr BP on the northern slope of

Kékes Mount. The presence of macroscopic remains of several temperate deciduous trees like Ulmus

sp.,  Quercus sp. and  Fagus sylyatica bud scales, accompanied by 5-15 % Tilia sp.  and  Corylus sp.

pollen  suggest  that  deciduous  trees  might  have  been  present  locally  and  were  certainly  present

regionally  in  the  late  glacial  and  early  Holocene.  However,  the  absence  of  directly  dated  early

Holocene or late glacial deciduous plant macrofossils in addition to the different behaviour of the

pollen  curves  warrant  that  at  least  some  of  the  macrofossils  are  contaminations  by  later  animal

disturbances. Ulmus     sp.     was however likely present locally since at least the Late Glacial period, as its

macrofossils were more abundant in the late glacial sediment layers than in the Holocene, particularly

from 13 600 cal yr BP. The pollen and plant macrofossil data on the whole suggest that the transition

from boreal to temperate deciduous forest lagged behind.

Hiatus, 74 cm, 7050 – 2710 cal yr BP

The vegetation showed a rapid transition between 76 and 72 cm, where the conifers were replaced by

deciduous trees. One additional sample (74 cm) was analysed to define the length of transition. It

indicated an abrupt change that occurred between the 74 cm and 72 cm. The relatively big difference

in ages (7050 cal yr BP at 74 cm and 2680 cal yr BP at 72 cm), the sharp transition in the macrofossil

composition and the high amount of fungal  remains  (Cenococcum geophylum    sclerotia  )  at  74 cm

altogether  suggest  a  hiatus  at  this  point  (the  possible  reasons  for  the  hiatus  are  discussed  in  the

supplementary material). 

PH-4, 72-22 cm, 2710-110 cal yr BP

This  zone  has  similar  uniform  lithostratigraphy  to  the  previous  one  (PH-3).  The  organic  matter

content, after a short decrease between 72 and 55 cm, increased to 80%. At 74 cm (7050 cal yr BP)

coniferous tree remains still dominated, while above 72 cm (2710 cal yr BP) Fagus sylvatica remains

dominated pointing to the presence of a mixed deciduous forest with F. sylvatica, Quercus, Fraxinus,

Carpinus  betulus and  light-demanding  shrubs  (Corylus,  Sambucus) around  the  hollow.  The  high

abundance of temperate deciduous tree pollen at this time indicates that these forests developed long
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before 2700 cal  yr  BP. The increased relative frequencies  of  Campanula and  Galium pollen also

support the presence of deciduous forest. According to the macrofossils and pollen,  Alnus and Salix

trees replaced Betula trees in the hollow. The presence of Triticum/Avena pollen from 28 cm (175 cal

yr BP) and the increase in Plantago major type and Chenopodiaceae pollen indicate human presence

in this time period.  According to the historical maps (Biszak et al., 2014) this time period coincides

with the time when the people of the foothill villages began to cut the forest in the higher and more

distant parts of the mountain too. While on the map of Second Military Survey (1819-1869), only

deforestations near to the settlements are marked, the Cadastral Map (from 1887) shows many new

clearings and meadows within the 2 km radius of the Nagy-Forrás forest hollow (see Supplementary

Figure 2). 

PH-5, 22-0 cm, 110 cal yr BP to present

The uppermost zone has a uniform lithostratigraphy and high organic matter content similar to the

previous one (PH-4, see Figure 2). The pollen and plant macrofossil composition and thus the inferred

vegetation are also similar to the previous zone, but it shows more signs of human disturbance. The

increase in the relative proportion of herbs, and the presence of  Triticum/Avena, Secale, Ambrosia

artemisiifolia, Juglans  regia, Abies  alba, Pinus  diploxylon  type pollen  and  Betula  pubescens

macrofossils indicate  additional  deforestation  and  artificial  plantations.  Populus,  Salix and  Alnus

macrofossils together with Carex paniculata, Hypericum maculatum, Solanum dulcamara and a large

amount of Filicales spores show a community very similar to the present-day vegetation on the site. 

Statistical analysis and vegetation trajectory

Altogether 23 pollen types passed the abundance criteria and were used for the principal component

(PC) analysis (see Supplementary Table 2). Only the first two axes were statistically significant. The

first axis represented 64% of the total variance and showed the difference between the coniferous and

deciduous tree dominated vegetation phases (high species scores are attained by coniferous taxa and

low scores by deciduous taxa). The second axis represented 11% of the total variance and reflected the

openness  of  the  vegetation  (high positive  taxon scores  are  attained  by  Poaceae,  Chenopodiaceae,

Senecio and Salix). The samples were separated well along the first two axes, grouped according to the

pollen zones and followed the succession from open boreal forest to  Larix-Pinus forest,  and from

coniferous to deciduous forest (Figure 6). All other axes were below 5%. Overall, the PC biplot shows

that the vegetation trajectory in the investigated sediment profile is unidirectional, i.e., it represents a

secular  successional  series It  is  notable,  too  that  zones  PH-4-5  have  distinct  different  pollen

compositions, from that of the transitional PH-3 zone, which is more similar to the Late Glacial and

Early Holocene pollen assemblages. Overall, the PC biplot shows that the vegetation trajectory in the

investigated sediment profile is unidirectional, i.e., it represents a secular successional series.
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Fig. 6. Principal component analysis (PCA) biplot of main terrestrial taxa. Only the taxa with loadings higher than 0.1 for both

axes were plotted. PH 1-5 represents the local pollen zones.

Discussion

On the basis of paleobotanical results, the vegetation history of the area is clearly different from other

parts of the North Hungarian Mountains, and also from the Carpathian Basin in general (Feurdean et

al.,  2014; Magyari,  2015; Magyari et  al.,  2014; Sümegi et al.,  2012). In the Carpathian Basin the

transition from boreo-nemoral taiga to temperate deciduous forest started roughly around 11 700-10

100 cal yr BP with the persistence of mixed Scots pine-deciduous (Ulmus, Quercus, Corylus) forests

in Transdanubia  until  ca.  8000 cal  yr  BP  (Magyari,  2015).  The long-term existence of  a  conifer

population at relatively low altitude (685 m a.s.l.) is unprecedented in the region during the Holocene

(Feurdean et al., 2014; Gardner, 2002; Jakab and Sümegi, 2010; Magyari et al., 1999, 2001, 2008;

Sümegi and Náfrádi, 2015; Willis et al., 1995, 1997; Willis and van Andel, 2004), and suggests that

the northern slope of Kékes could have served as a refugium for coniferous species.

Regional to local distribution patterns of coniferous species – a Holocene conifer refugium

On the northern slope of Kékes, at least four coniferous species were present during the Late Glacial

period: Pinus sylvestris, Pinus cembra, Picea abies and Larix decidua. Two of them (Picea abies and

Pinus sylvestris) still have some sporadic native populations in Western Hungary, while P. cembra and

L. decidua are not part of the native flora of present-day Hungary (Fekete et al., 2014). P. abies is one

of the main tree species in Europe and covers large areas between 800-1800 m a.s.l. in the Carpathians
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and in the Alps (Caudullo and de Rigo, 2016; Leuschner and Ellenberg, 2017). Larix decidua and P.

cembra are less common, their closest mixed stands are located in the upper alpine and subalpine belts

in the Alps (between 1100 and 2500 m), and occur as population fragments in the Southern and

Eastern  Carpathians  (1300-1900  m)  and  in  the  High  Tatra  Mountains  (Casalegno  et  al.,  2010;

Caudullo and de Rigo, 2016; Leuschner and Ellenberg, 2017). It is well known that all of these conifer

species survived the LGM in the Great Hungarian Plain  (Magyari et al., 2014; Rudner and Sümegi,

2001;  Willis  et  al.,  2000;  Willis  and van Andel,  2004) and also occurred constantly in the North

Hungarian Mountains during the late Pleistocene (see Supplementary Table 3). Although all of these

taxa  disappeared  from  the  North  Hungarian  Mountains  during  the  Holocene,  their  withdrawal

dynamics were slightly different. 

The recession of   Picea   abies started between 12 000 and 11 000 cal yr BP and was completed by

around 10 000-9 000 cal yr BP in the North Hungarian Mountains (Jakab and Sümegi, 2005; Latałowa

and van der Knaap, 2006; Willis et al., 1997). Some isolated P. abies stands possibly remained until 8

000 cal yr BP in the North Hungarian Mountains (Jakab and Sümegi, 2005) and there are signs of P.

abies presence in the study region after 3750 cal yr BP too (Szabó and Félegyházi, 1997). In parallel,

it expanded its range to north- and westwards and to higher altitudes in the Alps and the Carpathians

(Birks  and Willis,  2008;  Latałowa and van der  Knaap,  2006).  Nowadays  some extrazonal  spruce

stands still occur at the lower altitudes, usually in the cool microclimate of deep  valley bottoms or at

the margins of bogs (Leuschner and Ellenberg, 2017)

In contrast, Pinus sylvestris was an important element of the vegetation in the Carpathian Basin even

after the beginning of the Holocene, as it formed extended mixed stands with deciduous trees (Juhász,

2007; Magyari, 2015; Moskal-del Hoyo et al., 2018).  Later in the Mid-Holocene its population size

dramatically decreased due to competition by deciduous tree species (Jakab and Sümegi, 2005, 2010;

Willis et al.,  1997) and only small populations survived mostly at edaphically specialized habitats

throughout the whole Carpathian Basin (Tóth et al., 2019).

Larix decidua was also restricted to mid- and high-altitude places in the Early Holocene (10 500-9500

cal yr BP), but some stands survived until 5000 cal yr BP at low altitudes (Wagner et al., 2015) and

until around 4000 cal yr BP in the Southern-Carpathians (Magyari et al., 2018). According to pollen

and macrofossil evidences, some small population of Larix survived even until historical times in the

Polish Carpathians at mid (640-680 m a.s.l) altitudes  (Krąpiec et al., 2016), in the Czech Republic

(Kuneš and Abraham, 2017) and were later eliminated by human deforestation. Overall, this species

has small refugial populations in the Carpathian Mountains today (Mihai and Teodosiu, 2009; Fărcaş

et al., 2013).

While P. abies and P. sylvestris have broad distributions, the present-day area of P. cembra and Larix

decidua are smaller compared to the period before the Holocene. Based on charcoals preserved in cave

sediments and loess deposits, we can say that P. cembra was already present in the North Hungarian

Mountains 140 000 years ago  (Greguss, 1940;  Sárkány,  1937) and its  stands also occurred in the
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Hungarian Plain at lower altitudes (Hermann, et al., 1956; Jánossy, 1961; Magyari, 2015; Magyari et

al., 1999; Stieber, 1967, 1969). With the warming after the LGM, it also appeared at higher altitudes:

it colonized the mid-altitudes (450-750 m a.s.l.) in the West Beskids and Poprad basin at ~15 500 cal

yr BP (Krapiec and Margielewski, 2003; Kuneš et al., 2008; Margielewski et al., 2003, 2010), and the

subalpine region earliest  at  16 000 cal  yr  BP in the Alps  (Hofstetter  et  al.,  2006). It  reached the

subalpine  regions  of  the  Southern  Carpathians  around  14  500-12  850  cal  yr  BP  in  the  Retezat

(Magyari et al., 2012; Orbán et al., 2018; Vincze et al., 2017) and was documented in the Rodna Mts.

between  ca. 11 250 and 9800 cal. yr BP  (Feurdean et al., 2016). In parallel with these events, the

conifer-to-deciduous forest change occurred at lower altitudes. Most of the  P. cembra populations

disappeared  from  the  lowlands  and  from  the  mid-mountain  regions around  11  500  cal  yr  BP

(Jankovská, 1988; Kołaczek et al., 2017; Kuneš et al., 2008; Willis et al., 1995), or shortly after the

beginning of the Holocene at the latest (Jankovská, 1984; Krapiec and Margielewski, 2003; Kuneš and

Abraham, 2017; Margielewski et al., 2010; Pokorný et al., 2017). Based on these data, the Holocene P.

cembra stand on the Kékes slope was a small and isolated population, and the area can be designated

as a Holocene refugium.

The role of local settings in the formation of the cold refugium

Based on our findings, the question may arise: what made the area capable of preserving the

coniferous species (most importantly the Swiss stone pine) until the mid-Holocene? The decline of

coniferous trees in the Carpathian Basin was triggered by climate change: in the Early Holocene the

climate  became  warmer  and  the  growing  season  longer,  which  allowed  the  deciduous  trees  to

outcompete the previously dominant boreal taiga elements  (Tóth et al., 2015). Coniferous trees, in

general,  were  driven  back  to  colder  areas  and/or  areas  that  had  a  more  continental  climate  with

frequent late frosts, often with otherwise unfavourable soil conditions, e.g., poor in nutrients, mildly

acidic, shallow, or with bad water supply (Huntley, 1990; Leuschner and Ellenberg, 2017). The long

local existence of a coniferous forest around the Nagy-forrás forest hollow could be supported by the

shallow soil layer of the steep slope or by the waterlogged soil in the hollow.

In addition to the edaphic reasons, the presence of  P. cembra suggests that the area had a

colder and more humid mesoclimate. Compared to the deciduous trees and to other coniferous species,

P. cembra requires a colder (9-16 °C summer average temperature), and more humid (min. 700 mm

yearly precipitation) climate  (Leuschner and Ellenberg, 2017). Although it can also appear in areas

with slightly warmer conditions that are still not suitable for deciduous trees, but it generally cannot

compete in these areas with  Picea abies  or even with  Larix decidua, which otherwise forms mixed

forests with Swiss stone pine  (Casalegno et al., 2010; Caudullo and de Rigo, 2016). Moreover,  P.

cembra tolerates frost  exceptionally well  (until  -10 °C in summer, and -70 °C in winter),  but  the

summer warm period can be lethal for its populations, if it reaches 30 °C (Leuschner and Ellenberg,

2017). Based on these facts, the local persistence of Swiss stone pine suggests that the Nagy-forrás

FULL ACCEPTED TEXT – original article and suppl. material: 
The Holocene (2020), vol 30 issue 12, pp 1833-1848

18

410

412

414

416

418

420

422

424

426

428

430

432

434

436

438

440

442

444

18



forest hollow and its neighbourhood have been decoupled from the regional climate and represented a

cooler and more humid environment.

There is no direct evidence for the present-day cooler micro/mesoclimate in absence of microclimate

measurements in this area. However, the cold microclimate and the possibility of a cold refugium is

supported by the presence of the cold-tolerant montane and subalpine plant species, that would be

otherwise absent at this altitude in Hungary (e.g.  Polygonatum verticillatum, Woodsia alpine, Rosa

pendulina, Valeriana tripteris, Vojtkó et al., 2010). In addition, the topography of the area (e.g. north

facing slope and local  depression) theoretically makes a slightly colder microclimate possible:  the

north facing slopes are generally characterized by shorter growing seasons, less solar radiation and

lower maximum temperature (Dobrowski, 2011; Geiger and Bouyoucos, 1951; Körner, 2003). On the

one hand,  the  steep slopes can also be dry,  as the soil  layer  is  shallow and water  runoff  is  high

(Dobrowski, 2011), on the other hand, the convergent environments (basins, local depressions, sinks)

pool cool air and accumulate soil and water (Dobrowski, 2011). Thus the combination of north facing

slope and local depression together could facilitate a cool and humid micro/mesoclimate in case of

Nagy-forrás forest hollow too.

This possible decoupling from the macroclimate of the northern slope of Kékes might be especially

important  in  the  light  of  recent  climate  change.  The  discovery  of  areas  with  cool  and  humid

microclimate is a hot topic in conservation biology (Suggitt et al., 2018), not only because they can

preserve glacial relict species, but also because they are able to buffer the effects of the warming

climate (Maclean et al., 2015; Suggitt et al., 2011), and thus they can potentially function as refugia

for species threatened by present-day climate change (Dobrowski, 2011; Suggitt et al., 2011, 2018). In

absence  of  other  disturbances,  the  stands  of  these  areas  are  also  more  resistant  to  the  invasions

triggered by climate change (Suggitt et al., 2011, 2018). The identification of past microrefugia could

be a helpful tool in conservation biology, but in most cases their exact landscape positions are difficult

to localize (Dobrowski, 2011). This fact underlines the importance of the conifer refugium around the

Nagy-forrás forest hollow. The significance of these findings is further strengthened by the fact that

the northern slope of Kékes is covered by a relatively undisturbed beech forest today (Czájlik, 2009),

and beech is threatened by climate change in Hungary (Czúcz et al., 2013; Mátyás et al., 2010).

When did beech colonize the local forest? What are the chances for its survival under global

warming?

Fagus sylvatica survived the LGM both in Southern European and in small Central European northern

(cryptic) refugia, and started to spread at the beginning of Holocene  (Huntley, 1990; Magri, 2008;

Magri et al., 2006). On the basis of our current knowledge, the Carpathians were colonized both from

southern refugia and from cryptic refugia. The first signs of the beech presence in the Holocene are

from Moravia (8900-10 200 cal yr BP, Magri, 2008), from the Vihorlat (11 500 cal yr BP, Wiezik et
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al.,  2019), from the Little Carpathians (11 000 - 10 000 cal yr BP, Wiezik et al.,  2019) and  from

Western Hungary (8200-11 400 cal yr BP, Magyari, 2002). 

In the northern part of the Carpathians (Tatra) its first detection times (>2%) date back to 9700 - 8900

cal yr BP (Magyari, 2002; Wiezik et al., 2019), while apparent local presence in Apuseni Mountains

dates to ca. 9400-9000 cal yr BP (Bodnariuc et al., 2002; Grindean et al., 2015). There are signs of the

presence of beech stands from 7000 cal yr BP in Rodna (Grindean et al., 2019; Tanţău, Geantă, et al.,

2014), from 6500-6700 cal yr BP in the South Carpathians (Magyari et al., 2018) and from ca. 5100-

4800 cal yr BP in Maramureş and Gutin Mts., (Björkman et al., 2003; Fărcaş et al., 2013). 

Based on sites from similar altitude as the Nagy-Forrás (600-1200m), beech became present at ca. 5-

6000 cal yr BP (Apuseni Mts., Retezat hivatkozások). (Bodnariuc et al., 2002) (Magyari et al., 2018).

Beech started to expand at the mid altitudes of Eastern and Southern Carpathians between 5200 – 4500

cal  yr  BP  (Feurdean,  2005,  2010;  Grindean et  al.,  2014,  2019;  Tanţău,  Geantă,  et  al.,  2014) and

became dominant ca. 4000 cal yr BP ago (Feurdean et al., 2011). At the lower altitudes of mountains

(300-600 m a.s.l.), in the plains and more continental parts of the Carpathians, F. sylvatica expanded

around 4800-4000 cal yr BP (Czerwiński et al., 2019; Grindean et al., 2014) or between 3700-3000 cal

yr BP (Magri, 2008; Magyari, 2002; Tanţău, Feurdean, et al., 2014) at latest. 

In the North Hungarian Mountains F. sylvatica became remarkable between 7900-4500 cal yr BP, then

it attained its present day distribution by 3100 cal yr BP when it  replaced temperate deciduous tree

(mostly  Ulmus  sp  .  , Corylus  avellana and  Quercus  sp  .  )  species  (Gardner,  2002;  Magyari,  2002;

Magyari et al., 2010; Willis et al., 1998). F  .   sylvatica might have been present from 9000-8000 cal yr

BP according to the pollen record (exceeded 10%) at the Nagy-forrás forest hollow; however, the

formation of the beech-dominated mixed forest cannot be pinpointed on the timeline because of the

hiatus. The first direct evidence of the beech-dominated forest is after the hiatus (from 2710 cal yr

BP), but most likely beech overtook dominance on the northern slope of Kékes earlier, at latest 3100

year ago.

Fagus sylvatica has reached its maximum distribution in Europe by present  (Bradshaw et al., 2010;

Giesecke et  al.,  2006;  Magri,  2008;  Saltré et al.,  2013), and dominates almost  all  physiologically

suitable  habitats  by  outcompeting  other  deciduous  tree  species  (Leuschner  and  Ellenberg,  2017).

However, beech is sensitive to late frosts and summer drought (Fang and Lechowicz, 2006; Leuschner

and Ellenberg, 2017; Packham et al., 2012), so most of the beech population is found in areas with

Atlantic  climate,  mild  winters  (minimum  -2.3  °C  coldest-month  mean  temperature)  and  humid

summers with minimum 520-1000 mm annual precipitation (Leuschner and Ellenberg, 2017; Magyari

et  al.,  2010;  Packham  et  al.,  2012;  Sykes  et  al.,  1996).  Nevertheless,  beech  populations  in  the

Carpathian  Basin  grow close  to  their  xeric  limits,  and  therefore  they  are  threatened by  warming

climate (Garamszegi and Kern, 2014; Salamon-Albert et al., 2016). Climate models for the Carpathian
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Basin predict the disappearance of the so-called ‘beech climate’ from Hungary until AD 2100 (Czúcz

et al., 2013; Mátyás et al., 2010).  The frequency of late frost can also have a significant role in the

long-term survival of beech  (Fang and Lechowicz, 2006; Leuschner and Ellenberg, 2017), and both

model  results  (Rigby  and  Porporato,  2008) and  field  observations  (Augspurger,  2013) show the

increasing risk of late spring frosts in the future in the Carpathian Basin. However, these models use

only the regional climate parameters and do not take into consideration the adaptive potential of beech

and the effect of cold and humid microclimatic patches (Lenoir et al., 2017; Suggitt et al., 2018) and

the human-induced changes of distribution in the past several centuries.

If the northern slope of Kékes Mount was decoupled from the regional climate in the Early Holocene,

it could preserve a cooler and more humid micro- and mesoclimate during the ongoing climate change

too. As the distribution of beech is limited by drought  (Fang and Lechowicz, 2006; Leuschner and

Ellenberg,  2017;  Packham  et  al.,  2012),  it  is  plausible  to  suggest  that  an  area  with  a  humid

mesoclimate  could  support  the  survival  of  local  beech  populations.  In  addition,  it  was  shown

previously  that  undisturbed  communities  are  more  resistant  against  the  effects  of  climate  change

(Suggitt et al., 2018), and the area is covered by a relatively undisturbed primary beech forest today

(Czájlik, 2009). 

Based on the vegetation history of the studied area, the combination of a more humid microclimate

and the lack of strong human disturbances can make the northern slope of Kékes an important target

for the long-term conservation of beech forests in Hungary.

Conclusions

The macrofossil, pollen and stomata analyses of the sediment of Nagy-forrás forest hollow are the first

stand-scale paleoecological studies in Hungary. Since small and undisturbed forest hollows are rare at

mid-altitudes  under  continental  climate,  Nagy-forrás  forest  hollow  (685  m  a.s.l)  provided  a  rare

opportunity  to  analyze  the  local  vegetation  patterns.  The  studied  sediment  profile  showed  an

unidirectional vegetation trajectory from an open boreal forest and wet tundra-like habitat (15 500-14

600 cal yr BP) to a European larch-Swiss stone pine (Larix decidua-Pinus cembra) forest (14 600-

7050 cal yr BP) and later, after a hiatus between c. 7050 and 2710 cal yr BP, to a beech (F. sylvatica)

dominated  mixed  temperate  deciduous  forest,  similar  to  the  current  forest  cover.  Anthopogenic

influence  was  indicated  by  the  presence  of  cereal  pollen  from  175  cal  yr  BP,  while  modern

deforestation and artificial plantations started from 110 cal yr BP.

The most important finding of our study is that coniferous trees (Pinus sylvestris,  P. cembra,  Larix

decidua and  Picea abies) survived until  the mid-Holocene on the northern slope of Kékes Mount.

Swiss stone pine macrofossils have never been found in Holocene sediments in Hungary before. The

long-lasting presence of the coniferous tree species suggests that the study area was decoupled from
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the regional climate and did not follow the patterns of regional vegetation changes. Given that  our

study area was a cold conifer refugium during the Holocene, we assume it can play the same role for

present day beech forests which are threatened by recent climate change in Hungary.
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Figure legend:

Fig.1. Location of Nagy-forrás forest hollow in the Carpathian Basin and in the

Mátra Mountains. 

Fig.2. The results of age-depth modelling, lithostratigraphical description and

loss on ignition measurements of the Nagy-forrás forest hollow, core PM-

1. The symbols of the lithography follow the Troels-Smith nomenclature: Th-

Turfa  herbacea,  Ld-Limus  humosus,  Ag-Argilla  granosa,  As-Argilla

steatodes,  Ga-Grana  arenosa,  Gs-Grana  saburralia,  Gg-Grana  glaerosa

(min)
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Fig. 3. Plant macrofossil  remains from Nagy-forrás forest hollow.  A. Larix sp.

dwarf shoot  B. Larix sp. needle tip  C. Larix decidua cone  D. Larix decidua

seed E. Pinus sylvestris needle F. Pinus cembra needle G. Betula pubescens

fruit  H. Fagus  sylvatica twigs  I. Populus  sp.  budscales  J. deciduous  leaf

fragments  K. Batrachium  sp.  seed  L. Carex  sp.  perigynium M. Caltha

palustris seed  N. Scirpus sylvaticus fruit  O. Solanum sp. seed. The pictures

were taken with a Zeiss SteREO Discovery.V12 microscope in the Institute of

Archaeology of the Research Centre for the Humanities (Hungarian Academy

of Sciences)

Fig. 4. Pollen percentage diagrams of selected tree and shrub pollen types and

concentration diagrams of the selected plant macrofossils. 

A. Coniferous trees and cold-tolerant deciduous trees. 

B. Temperate deciduous trees, wet woodland trees and shrubs. 

The stacked bar chart shows the relative proportion of the different vegetation

types  (based  on  pollen  record).  Filled  line  charts  represent  the  pollen

proportions in percentage, where 100% is the sum of all terrestrial taxa (see

total terrestrial pollen), the exaggeration factor (black line) was 3. Grey bar

charts:  stomata  concentrations  (pieces  in  1  cm3).  Bar  charts:  macrofossil

concentrations (pieces in 5 cm3). Line charts: the total pollen concentration (in

1 cm3) and charcoal records 

Fig. 5. Pollen  percentage  diagram  of  selected  herb  pollen  types  and

concentration diagrams of  selected plant  macrofossils. Filled line charts

represent the pollen proportions in percentage, where 100% is the sum of all

terrestrial taxa (see total terrestrial pollen), the exaggeration factor (black line)

was 3. Bar charts: macrofossil remains concentrations (pieces in 5 cm3)

Fig. 6. Principal component analysis (PCA) biplot of main terrestrial taxa. Only

the taxa with loadings higher than 0.1 for both axes were plotted.  PH 1-5

represents the local pollen zones.

Table legend:

Table 1. Results  of  AMS  14C  measurements  from  Nagy-forrás  forest  hollow  

(core PM-1) – in text
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