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Abstract

Recent decades have been marked by unprecendented environmental changes which

threaten the integrity of freshwater systems and their ecological value. Although most of

these changes can be attributed to human activities, disentagling natural and anthropogenic

drivers remains a challenge. In this study, surface sediments from Lake Ighiel, a mid-altitude

site in the Carpathian Mts (Romania) were investigated following high-resolution sedimento-

logical, geochemical, environmental magnetic and diatom analyses supported by historical

cartographic and documentary evidence. Our results suggest that between 1920 and 1960

the study area experienced no significant anthropogenic impact. An excellent correspon-

dence is observed between lake proxy responses (e.g., growth of submerged macrophytes,

high detrital input, shifts in diatom assemblages) and parameters tracking natural hydrocli-

mate variability (e.g., temperature, NAO). This highlights a dominant natural hydroclimatic

control on the lacustrine system. From 1960 however, the depositional regime shifted

markedly from laminated to homogenous clays; since then geochemical and magnetic data

document a trend of significant (and on-going) subsurface erosion across the catchment.

This is paralleled by a shift in lake ecosystem conditions denoting a strong response to an

intensified anthropogenic impact, mainly through forestry. An increase in detrital input and

marked changes in the diatom community are observed over the last three decades, along-

side accelerated sedimentation rates following enhanced grazing and deforestation in the
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catchment. Recent shifts in diatom assemblages may also reflect forcing from atmospheric

nitrogen (N) deposition, a key recent drive of diatom community turnover in mountain lakes.

In general, enhanced human pressure alongside intermittent hydroclimate forcing drastically

altered the landscape around Lake Ighiel and thus, the sedimentation regime and the eco-

system’s health. However, paleoenvironmental signals tracking natural hydroclimate vari-

ability are also clearly discernible in the proxy data. Our work illustrates the complex link

between the drivers of catchment-scale impacts on one hand, and lake proxy responses on

the other, highlighting the importance of an integrated historical and palaeolimnological

approach to better assess lake system changes.

Introduction

Anthropogenic activities such as changes in land-use can induce major transformations in

lake systems via increased catchment erosion, and its effect on sedimentation rates and nutri-

ent loads leading to eutrophication and ecological shifts affecting lake biota [1–5]. Tracing

such environmental dynamics over short timescales and assessing the type and timing of the

main drivers of change are needed for a better understanding of the complex cause-effect rela-

tionship between environmental responses, anthropogenic activities and natural climate vari-

ability, and therefore to improve management strategies [6–8].

A large body of research suggests that recent anthropogenic activities greatly altered lake

systems health via enhanced sediment input from watershed erosion and significant biogeo-

chemical disturbances related to the widespread use of fertilisers and fossil fuel combustion

[9–12]. A prevailing view is that, although millennia old anthropogenic activities are traceable

in paleolimnological proxies, these earlier changes were rather local and of low intensity and

consequently did not necessarily cause major shifts in aquatic ecosystems [13 and references

there in]. However, a recent landscape-scale paleolimnological synthesis [11], highlighted the

relative roles played by various driving factors behind the current rate of change affecting lake

ecosystems globally. This study generally indicated that human-driven soil erosion was already

ubiquitous 4,000 years ago following deforestation that induced enhanced rates of sediment

transfer at a global scale [11].

The first detectable signs of significant anthropogenic impact over south-eastern Europe

are traceable back to the Late Neolithic circa 7500 years ago, following the early advent of

agriculture [14], shifts in land-use [15] and metal processing in this region [16]. Further-

more, as the Carpathian area sits at the junction of three major atmospheric pressure sys-

tems in Europe, the Atlantic, Mediterranean and Siberian High [17], retrieving reliable

paleolimnological data from natural archives in this region underscores the need to reliably

disentangle natural hydroclimate forcing on one hand [18–21] from longer term anthropo-

genic signals on the other [22, 23]. It has been shown that even for relatively remote high-

altitude environments in the Carpathians, recent human activities have greatly altered land-

scape stability and thereby the lacustrine depositional regimes [24, 25]. However, more data

are needed for a compelling view on the current rate of change. Therefore, most recent

short-time frame paleoenvironmental data (pollen, sediment accumulation rates, geochem-

istry) may not necessarily provide a reliable background reference for interpreting long-

term natural climate variability in the Carpathians [15, 22, 26, 27], as similarly documented

for the Alps [28] and elsewhere [13]. However, such data can provide significant informa-

tion on the current state of environment conservation and might provide hints on the future

trajectories of change.
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In this study we focus on Lake Ighiel, a mid-altitude site from the Apuseni Mountains

(Romania) and one of the few natural records from the Romanian Carpathians providing

high-resolution (paleo)environmental and (paleo)climatic data for the last 6000 years [18].

Previous work [18] showed that on a long-term perspective, the recent environmental changes

experienced by the Ighiel catchment are outstanding and unprecedented in magnitude. Using

two short cores covering the past eight decades we aim to explore, at the highest resolution

possible, these recent environmental changes, to disclose the main drivers (documented

hydroclimatic and anthropogenic impacts) and evaluate their short-term impacts on the catch-

ment and lake ecosystem. Based on this dataset we evaluate Lake Ighiel’s main environmental

stressors and advice on the best restoration targets and management guidelines for protecting

this valuable ecological hot spot [29, 30].

Regional setting

Lake Ighiel (924 m a.s.l.; 46˚10’50"N, 23˚22’00"E) has a catchment area of 381 ha, a 3.20 ha

water surface and a 8–9 m water depth [18]. The lake is highly sensitive to seasonal changes in

water supply registering a maximum in spring and a minimum in autumn-winter with lake

Fig 1. The location of study area within Europe and Romania (left side). A digital elevation model of Lake Ighiel catchment with temporary tributaries (tributaries as

shown on topographic map 1:25000, 1978), the perimeter of protected area and soil sample locations (Reprinted from ALOS digital surface model (AW3D30) under a

CC BY license, with permission from JAXA, original copyright [2020]).

https://doi.org/10.1371/journal.pone.0239209.g001
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level changes of up to 3 m (S4 Fig). Since 1969 Lake Ighiel has been listed as natural reserve

and a protected area of national interest (IV Category, IUCN) since 2000. The lake and catch-

ment should be under a protected regime restricting detrimental environmental activities in

the surrounding 365 ha buffer zone; however, these legal prerogatives are not enforced (Fig 1).

Two intermittent tributaries Striglau and Plesanului (Fig 1) discharge into the lake during

high rainfall. In the 1980 hydro-technical works were undertaken to stabilise the riverine net-

work. It appears, however, that these works, and the continuation of forestry, have resulted in

even more drastic alteration of natural conditions in the buffer zone. Recent assessments of liv-

ing biota and the ecological status of the water column [29, 30] indicate the risk of eutrophica-

tion unless measures are taken to limit anthropogenic organic pollution.

The local bedrock comprises mainly Mesozoic limestones and a band of diabaze rocks out-

crop near the lake. The soil cover comprises cambisols (eu-mesobasic brown soils) and molli-

sols (rendzina). At present the catchment is mostly covered by deciduous forest with beech

(Fagus sylvatica) and hornbeam (Carpinus betulus) as the dominant species, whereas the defor-

ested areas within the upper catchment are kept open as pastures (Fig 1).

Mean annual temperatures range between 5–7.5˚C at the Cluj-Napoca meteorological sta-

tion (70 km to the north). In the Lake Ighiel area rainfall reaches 800–1000 mm/year and is

concentrated mainly between May and August.

Material and methods

Sediment coring and soil profiles

Two short cores SC-3 (96 cm long) and SC-4 (88 cm long) were collected in autumn 2014

using a modified gravity corer with permission of Romsilva and Administratia Siturilor Natura

2000 Trascău. The cores were cut in half longitudinally, described, photographed and stored at

~4ºC. In order to assess the main sediment delivery pathways, five soil profiles (40 to 100 cm

in depth) and 11 surface soil and bedrock samples were collected from the catchment area

reflecting different geological substratum, land-cover and distance from the lake (Fig 1).

Fig 2. Age-depth model based on 210Pb and 137Cs for SC-3 and SC-4 sediment cores alongside core photos. 137Cs and 210Pb concentrations are plotted. Turbidites

are marked with diagonal hatching.

https://doi.org/10.1371/journal.pone.0239209.g002
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Geochemical and mineral magnetic analyses

High-resolution geochemical screening was performed using an Itrax X-ray fluorescence core-

scanner Cox Ltd applied to freshly split cores at the GFZ Laboratory, Potsdam. The running

settings comprised a 1 mm resolution, 15 s exposure time, 40 kV tube voltage and a 40 mA

tube current [31]. The geochemical data have been normalized using the coherent/incoherent

(COH/INC) ratio to reduce impact from matrix effects [32].

Volume magnetic susceptibility (κ) readings were undertaken at 1 cm resolution on both

the sediment cores and soil profiles and analyzed using a Bartington Instruments Ltd MS2B

sensor. Organic matter (OM), inorganic carbon (IC) and minerogenic matter (MM) were

determined on contiguously 1 cm sediment samples using loss-on-ignition [33] and expressed

as percentage (%) of the sediment dry weight.

Particle size analyses were performed on ashed and carbonate-free sediment samples using

a Horiba Laser Scattering Particle Size Analyzer (Partica LA-950). To reduce uncertainties,

each sample was measured in three times following 1 minute ultrasonication. The samples

were collected at 3 cm resolution. Here we use the median particle size distribution (D 50) as

an indicator of erosional activity in the catchment [34].

Chronology

The age model was constructed based on radiogenic decay dating for both SC-3 (27 samples)

and SC-4 (53 samples) (Fig 2, S1 Table). Concentrations of 210Pb, 226Ra and 137Cs were deter-

mined employing a Be window HPGe detector (Ortec GMX). Standard materials of the same

matrix and geometry (IAEA-327, 312, 375) were used for source calibration. 226Ra was mea-

sured after a month of sample storage (to reach the equilibrium between 226Ra/222Rn and its

short half-life radionuclides 214Pb and 214Bi). For the determinations: 46.5 keV for 210Pb, 295

and 351 keV for 214Pb and for 137Cs the 661 keV gamma lines were used. The relative 2σ uncer-

tainty of measurements was below 20%; due to low activities of 210Pb in deeper sediment layers,
210Po was targeted instead, and measured by alpha spectrometry. For this purpose, an aliquot of

0.5g of sediment was digested in mineral acids (HNO3, HCl, H2O2) followed by spontaneous

deposition of the 210Po radionuclide on a stainless-steel disc (with high Ni content).

To account for non-constant sedimentation processes, for both SC-3 and SC-4 records the Con-

stant Rate of Supply (CRS) model was used for deriving a reliable age-depth model [35]. The identi-

fied turbidites (see discussion in Chapter 4) were excluded from the age model (Fig 2, S1 Table).

Diatom analyses

In total, 84 samples from core SC-4 were analyzed for siliceous algae after preparation by stan-

dard cleaning methods [36]. Taxonomy mainly follows [37] and at least 400 valves were

counted per sample using light microscopy (Leica DM LB2 equipped with 100 HCX PLAN

APO object-lens) except the samples between 25–36 cm and 38–41 cm depth where less than

400 valves were identified. The taxonomical position of the diatoms was confirmed with Algae-

base [38]. The constrained incremental sum of squares (CONISS) method was used to high-

light major changes in the diatom record and separate diatom stratigraphic zones, on square-

root transformed data. Based on habitat preference we classified the siliceous algae into four

groups: (1) aerophytic, (2) benthic, (3) periphytic, and (4) planktic taxa [39]. The turbidite

layer at 25–36 cm was excluded from further evaluation, whereas diatom data for the interval

38–41 cm depth are included. However, this part of the record must be interpreted with cau-

tion as the diatom valve number was low.
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Historical maps and documents

Three sets of historical topographic maps were used to evaluate changes in regional forest

cover at reference points in time. The oldest available is the second Franciscan military survey

of the Habsburg Empire compiled between 1853–1858 and 1869–1870 at 1:28800 resolution

[40]. Although its clarity is rather low, the details and color codes helped securely identify at

least areas with no forest vegetation at the time of the survey. As a simplification, we used 1870

as last year of survey for referencing the map. The other cartographic resources include the

1:20000 military plans from 1957 and the 1:25000 Romanian military topographic field survey

map (second edition) of 1974–1978 (for simplification referenced here to the last year of sur-

vey, 1978). The non-forest areas including pasture, pasture with scattered woody vegetation,

and surfaces without vegetation were manually digitized in ArcGIS Pro 2.3.

In addition to historical maps, we used the Landsat-based forest loss estimates from [41]

covering the interval 1986–2012 to highlight the forest loss at catchment level over four contig-

uous intervals: 1986–1988, 1989–2000, 2001–2006 and 2007–2012, respectively (Fig 3). For the

Landsat dataset we adopted the forest loss date codes (intervals) from [41]. Furthermore, we

used the most recent (2012) Corine Land Cover (CLC) dataset [42] to document changes in

land-use, which clearly registered the extensive forest loss, especially on the NE and SW parts

of the catchment. However, given the different units used, these later estimations cannot be

directly compared with those from the historical maps, but they can help form a more com-

plete picture of recent land-use changes.

Information regarding the population size of Transylvania was extracted from census data

[43] while number of inhabitants for Alba county was extracted from the national data census

[44]. This estimation offers a regional image of recent changes in local and regional inhabitant

numbers.

Hydroclimate data

The mean annual rainfall for the Cluj-Napoca meteorological station was retrieved from the

European Climate Assessment Project as the closest long-term meteorological station to the

site [45]. Temperature anomaly data were downloaded from [46]. The self-calibrating Palmer

Drought Severity Index (scPDSI), a parameter for dryness [47, 48] and North Altantic Oscilla-

tion Index (NAO) data were retrived from the CRU dataset [49] using the grid which intersects

our study area. The Atlantic Mutidecadal Oscillation/Variability (AMO/AMV) data was

retrieved from NOAA ESRL Physical Sciences Division (PSD) [50].

Data treatment

Redundancy analysis (RDA) was used to explore the relationship between changes in lake

biota as expressed by variability in the diatom assemblages and the other environmental prox-

ies. This analysis was chosen because the gradient lengths of the first axes were less than four

standard deviation (SD) units [51]. Statistical analyses were performed using R-software [52]

with Vegan [53] and Rioja [54] packages.

The response variables include 136 diatom taxa, while sediment physical and geochemical

proxies (Ti, K, Fe, Ca, OM—organic matter, magnetic susceptibility) and hydroclimate-related

parameters (ScPDSI, precipitation, AMO, NAO, temperature anomaly) were employed as

Fig 3. Changes in non-forest area at reference points in time using cartographic resources from a) 1870, b) 1957, c) 1978 and d) Landsat imagery

from 1986–2012 [41] (European Environment Agency 2012). e) Non-forest area (ha) for each point in time relative to the total non-forest over the

study period (1870–2012) and forest loss percentage (%) relative to 1870.

https://doi.org/10.1371/journal.pone.0239209.g003
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potential explanatory environmental variables. In the environmental matrix, data were aver-

aged every cm using a 0.5 mid-point and transformed using square-root transformation and

standardisation. We performed this analysis excluding the turbidites. The significant explana-

tory variables were selected by stepwise selection using the ordistep procedure of Vegan pack-

age. Variables which were not significant, or those showing high multicollinearity on variance

infliction factor test (VIF> 20) and rare diatom taxa (percentage <2%), were removed from

the analysis. Notwithstanding, the application of RDA to investigate the geochemical/physical

and hydroclimate parameters was not possible given the very high correlation between the

geochemical proxies.

Results and interpretation

Age-depth model

The age-depth models were calculated using the CRS (constant rate of 210Pb supply) dating

model [35, 55]. In core SC-4, 1986, Chernobyl radiation peak, was placed at 25.5 cm depth in

agreement with the 137Cs data (Fig 2). For SC-3, 1986 is recorded at 20 cm depth, which

Table 1. Soil profiles, soil and bedrock samples collected at selected locations (see Fig 1) from Lake Ighiel’s catchment area.

Fieldwork ID Type Coordinates Location Length Depth κ (10−5

SI)Latitude Longitude

IGH-CAT-1 Profile 46.174305 23.360744 Upper pastureland south 100 cm <20 cm 11

>20 cm 22

IGH-CAT-1-Forest road clay Sample 4.15

IGH-CAT-2.1 Profile 46.176186 23.358368 Upper south part close to forest 60 cm <15 cm 29

>15 cm 56

IGH-CAT-2.2 Profile 46.1761924 23.3585560 Upper south, ravine 95 cm >15 cm 30

>15 cm 86

IGH-CAT-2.3 Profile 46.176217 23.358485 Upper south, ravine 98 cm Top 20 cm

disturbed

-

>20 cm 110

IGH-CAT-2- Forest road red clay Sample 53.56

IGH-CAT-3 Profile 46.179511 23.364189 Lower, forested slope close to lake 36 cm <20 cm 27

>20 cm 51

IGH-CAT-4 Profile 46.183239 23.362459 Lower Striglau channel, forested 82 cm <20 cm 22

>20 cm 32

IGH-CAT-4-Small clay pellets Sample 6.26

IGH-CAT-4-Big clay pellets Sample 0.50

IGH-CAT-4-Limestone Sample -0.11

IGH-CAT-4-Sandstone Sample 0.58

IGH-CAT-4-Fine-grained slope-wash, well sorted

material

Sample 27.42

IGH-CAT-4-Coarse-grained slope-wash material Sample 61.67

IGH-CAT-5 Profile 46.178840 23.363648 Lower pastureland south close to

lake

100 cm <20 cm 11

>20 cm 15

IGH-CAT-5-Fine grained slope-wash, well-sorted Sample 10.64

IGH-CAT-5-Coarse grain slope-wash material Sample 13.19

IGH-CAT-5-Sandstone Sample 5.92

The fieldwork ID, type of profile (soil profiles are in bold), coordinates, location description, profile depth, sampled depth interval and volume magnetic susceptibility

are presented.

https://doi.org/10.1371/journal.pone.0239209.t001
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overlaps with the depth suggested by 137Cs activity. Turbidites were identified between 36–25

cm in SC-4 and 70–40 cm in SC-3 (S1 Table). These events exhibit different sedimentological

characteristics between the two cores and reflect different events in time; this inference is also

supported by the dating results (Fig 2) and diatom analysis (unpublished data for SC-3). As the

turbidite is thinner in SC-4, we used this core as a key record for our high-resolution analyses.

In this core, calculated sedimentation rates indicate a peak in accumulation between 1937 and

1948, followed by a smaller peak in 1964. Between 1995 and 2007 a highly variable trend is

seen, but with a consistent increase and sediment accumulation rate (SAR) values between

0.3–1 g/cm2/yr-1 (Fig 2). SAR is used here as a physical parameter, which expresses changes in

sediment input as a result of accelerated soil catchment erosion [56].

Soil profiles and catchment sediment samples

Five soil profiles and eleven individual soil/rock samples were collected from the catchment

area (S1 Text and S3 Fig) and logged for volume magnetic susceptibility (κ) to fingerprint the

potential magnetic signature of the main sediment source areas and estimate their potential

contribution to in-lake sedimentation by comparison with κ data from cores SC-3 and SC-4

(Table 1).

The main soil types include gleysols found mainly under the southern pasturelands (soil

profiles IGH-CAT-1, IGH-CAT-5), cambisols along the northern Striglau channel banks

(IGH-CAT-2.1 to 2.3, IGH-CAT-4), while umbrisols outcrop (IGH-CAT-3) in the proximity

of the lake in the forested area (Fig 1).

Overall, the κ behaviour of the soil profiles shows that lower κ values characterize erosion

of the top-soil Ah horizon, while high κ values reflect basal erosion as currently documented

in over deepened catchment channels and ravines draining towards the lake (for more details

please see S4 and S5 Figs). The relatively low κ values for the IGH-CAT-1 and IGH-CAT-5 soil

profiles likely reflect gleization, a chemical alteration of magnetic minerals in a moist clayey

environment [57]. For ease of understanding, we categorized the κ data into two groups with

high κ values indicating deeper soil, distal, channel erosion vs low κ values reflecting topsoil

and a proximal provenance (Fig 1; Table 1). These categories are fully concordant with our

field observations of the current dynamics of the stream network draining into the lake.

Sedimentology

Haug et al., (2011) [58] and Smerdon et al., (2017) [59] showed that the geochemical and phys-

ical characteristics of lake sediments are reliable proxies for inferring detrital input linked to

surface runoff intensity, which in turn is linked to rainfall and/or snowmelt as well as anthro-

pogenic intervention [60]. Here we use Ti, K, Rb and Zr, which show the highest scores in the

correlation matrix [see also 18] as indicators of allochthonous sediment input through soil/

catchment erosion. As Fe is significantly correlated with Ti and K in the recent sediments, in

contrast with trends observed over the last 6000 years at Ighiel [18], it is used here as catch-

ment erosion indicator rather than a redox proxy (Fig 4). The inverse correlations between Ca

(Ca-Ti, r2 = 0.71) and Si (Si-Ti, r2 = 0.49) with Ti points to a predominantly endogenic origin

of Ca and Si. The correlation of Ca with Si/Ti (r2 = 0.58) suggests that carbonate production

has been mediated by biological activity, via for example, algal blooms. The intervals set out

below are based on visual lithological identification and variability in geochemical data (S2

Fig).

Between 76–48 cm (spanning 1922–1965) in core SC-4, the sediment column is character-

ized by layers of clayey silts and silty sands as well as thin layers composed of subaquatic mac-

rophytes. The macrophyte-rich layers dated around ~1925, ~1927, ~1936, ~1951, ~1956 and
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~1965 are characterized by marked drops in Ti and K, but increases in OM; they are preceded

by white, carbonate-rich layers (also identifiable in the Ca curve) and may point to intervals of

Fig 4. The multi-proxy results of SC-4 core on the age-depth model and showing normalized values for titanium (Ti), iron (Fe), silica (Si),

potassium (K), volume magnetic susceptibility (κ, 10−5 SI), organic matter (OM %), grain-size (PSA, D50 in μm) and sediment accumulation rates

(SAR; g/cm2/yr-1). Arrows in the lithological description depict layers rich in macrophyte remains. The identified turbidite layers are marked by hatched

vertical bars.

https://doi.org/10.1371/journal.pone.0239209.g004
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low-lake levels driving carbonate precipitation and the accumulation of coarse organic

remains.

Titanium, K, Fe, Rb, Zr, κ and OM show variable patterns while SAR remain stable with a

slight increase around 1940’s (Fig 4). The detrital elements (Ti, K, Fe) peak around 1930, 1945

and 1953 suggesting an increased allochthonous siliciclastic input which is corroborated by

the κ results indicating deeper ravine erosion (Fig 4). In the interval 76–48 cm, an OM content

above 15% follows the trend in detrital proxies, pointing to in-wash as the main source of OM.

An opposite trend in behavior of the detrital elements is observed for Ca, indicating endogenic

carbonate precipitation when low values are registered in Ti, K, Fe and other detrital elements.

Low κ values (<30 10−5 SI) below 64 cm (1940’s) support this interpretation and point to top-

soil erosion of proximal slopes as main source of material into the lake (except for the detrital

peaks mentioned above).

The interval 48–25 cm (1960–1980) is characterized by a sharp shift from laminated to mas-

sive, homogenous dark-brown, clayey sediments. Titanium, K, Zr, Rb and κ show a sudden

increase and suggest accelerated erosional processes and a possible change in the dominant

sediment source (Fig 4). The κ values greater than >40 10−5 SI suggest an input linked to basal

erosion. SAR peaks around 1963 to 0.5 g/cm2/yr reflecting a marked increase in sediment flux

into the lake (Fig 4). This is corroborated by a decrease in OM (values <15%) and lower Ca

suggesting lower productivity and reduced endogenic carbonate precipitation.

The third interval covers the upper 25 cm (spanning 1987–2010) and is characterized by

homogenous, reddish-brown clayey sediments (Fig 4), whereas Ti, K, Fe, Zr, Rb and κ values

show a steady trend towards slightly lower values, preceding the turbidite. The sediment κ fin-

gerprinting hints at material originating mainly from deeper soil horizons via erosion of the

Fig 5. Downcore changes in the relative frequency of selected diatom taxa and the life forms changes in gravity core SC-4 (significant diatom assemblage

zones—DAZ as defined by CONISS and validated by the broken stick model [54] are also shown).

https://doi.org/10.1371/journal.pone.0239209.g005
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over-deepened ravines. SAR depicts a highly fluctuating trend registering a maximum of 0.9 g/

cm2/yr only after 1995 and suggesting an unprecedented increase in sediment fluxes.

Given the uniform sediment characteristics of the last 6000 years [18], the presence of sig-

nificant turbidites in the upper 76 cm of the lake’s profile indicates that flash-floods and/or

underwater slope failure has affected Lake Ighiel only very recently. Dating results show that a

6 cm thick turbidite layer identified between 36 and 25 cm in core SC-4 (comprising also very

coarse plant remains) was emplaced in 1987 whereas a thinner turbidite, identified solely via

diatom assemblages, between 41 and 38 cm, formed in 1970 (S1 Fig). In core SC-3, located in

the eastern part of the lake basin near the outflow, two turbidites were also identified; the

lower one (at 70–40 cm) emplaced in 1970 is traceable in the sedimentological and dating

results, whereas the upper turbidite at 27 cm depth (~2 cm thick) emplaced in 1987, is appar-

ent mainly in the diatom assemblage. The turbidites are characterized by few large celled,

motile diatoms, e.g., Cymatopleura solea, typical taxa for coarser sediments and turbulent

water columns [61]. The appearance of turbidites that are restricted to the upper sediments

reflects recent anthropogenic landscape changes, the resulting low catchment buffering and a

more responsive system to the impact of rapid hydroclimate events, drastically altering the

depositional regime of Lake Ighiel (S4 and S5 Figs). Around the timing of the turbidite deposi-

tion, proxy data indicate major lake level declines, followed by enhanced rainfall. The sediment

fingerprinting, alongside the poor diatom assemblages typical of coarse detrital input, advocate

for deeper erosion with sediments dispatched and transported downslope during torrential

event(s), rather than redeposition following slope failure within the basin. This is also sug-

gested by the variable thickness of turbidites and their proximal deposition within the lake at

the mouth of the main inflow to the lake basin.

Diatom assemblages

In core SC-4, 136 diatom species were identified of which Achnanthidium minutissimum s.l.,

Asterionella formosa, Encyonema taxa, Eunotia arcubus and Navicula radiosa are the dominant

species (S2 Table). CONISS analysis identified six significant diatom assemblage zones labelled

here IGH-SC4-DAZ-1 to 6 (Fig 5).

IGH-SC4-DAZ-1 (77–62 cm; 1920–1941) is dominated by small periphytic taxa such as

Achnanthidium, Encyonopsis and Gomphonema species. Asterionella formosa shows large fluc-

tuations while Brachysira neoexilis, Eunotia arcubus, Navicula cryptotenella are common. Bra-
chysira neoexilis is a good indicator of oligotrophic and mesotrophic habitats [37], whereas an

alfa diversity (expressed by the number of taxa) at 24.5±3.8 suggests a relatively stable, moder-

ately productive environment (Fig 5).

IGH-SC4-DAZ-2 (62–55 cm; 1941–1951) is clearly dominated by planktic taxa such as

Asterionella formosa and centric diatoms. Amphora copulata, a species common in mesotro-

phic to polytrophic habitats, shows a peak. Other taxa identified have very low relative abun-

dances. This zone shows a higher diatom diversity, the average number of taxa is 30.9±4.2 and

the increasing abundance of planktic diatoms may indicate increasing nutrient availability in

the water column and/or an increasingly pelagic habitat and thus, greater water depths.

IGH-SC4-DAZ-3 (55–42 cm; 1951–1972) is dominated by Achnanthidium minutissimum s.

l., but Encyonopsis taxa (mainly E. cesatii, E.minuta E. subminuta) are also common. It is

worth mentioning that E. cesatii is an indicator of good/high ecological status [37, 62]. Eunotia
arcubus is highly abundant in this zone. Since this species is typical for carbonate-rich, oligo-

mesotrophic lakes and prefers low-light environments in stagnant waters [37], its abundance

suggests stable environmental conditions with inter-species competition maintaining a rich

diatom flora. Planothidium frequentissimum, Pseudostaurosira parasitica var. subconstricta,
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Fig 6. Selected proxies from gravity core SC-4 from Lake Ighiel showing the main lithological intervals, the organic-rich layers

with subaquatic macrophytes, normalized Ti and K, sediment accumulation rate, magnetic susceptibility used for tracing

sediment sources and diatom—erosion related species (Gyrosigma acuminatum), number of taxa, DCA 1 (Note: see text for
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Amphora copulata, Navicula cryptotenella and N. radiosa, diatom taxa with broad tolerance

and wide ecological amplitude, are also common. The number of taxa is the highest in this

zone at 32.4 ± 6.6. Taken together, this diverse diatom assemblage and the lack of planktic

taxa, indicate a shallower lake with dense macrophyte vegetation.

In zone IGH-SC4-DAZ-4 (42–20 cm, 1972–1993) the diatom assemblage is dominated by

Fragilaria capucina and Stauroneis cf. anceps. The species with the highest indicator value is

Gyrosigma acuminatum. As it is tolerant of river-borne sediment influx, this species is com-

monly used to identify intervals of river flooding [63]. In our record, the occurrence of Gyro-
sigma acuminatum (>5%) is consistent with trends in the geochemical elements denoting

detrital input. Also, the aerophytic diatoms that appear in this zone support this interference,

clearly documenting slope or river in-wash consistent with evidence from the erosion proxies

(Fig 5). The average number of taxa significantly decreases, reaching only 23.6±4.2.

IGH-SC4-DAZ-5 (20–12 cm; 1993–2001) is dominated by planktic diatom Asterionella for-
mosa, reaching more than 60% in the upper part of the zone, while the abundance of Ach-
nanthidium minutissimum s.l. gradually decreases. The number of taxa fluctuates, but the

average is rather low (29 ± 6.3). Denticula tenuis, a diatom specific for alkaline lakes and fre-

quently found in the littoral area of lakes and in running waters, registers peak abundance in

this zone. Overall, these changes point to higher phytoplankton productivity, alongside a sig-

nificant alteration of the whole diatom community. This ecological shift cannot be explained

solely by lake level changes and/or modification of the available nutrient budget. It most likely

reflects a complex interaction of environmental drivers that resulted in significant changes in

the algal community.

Zone IGH-SC4-DAZ-6 (12–0 cm, 2001–2010) exhibits the most substantial shift in the dia-

tom assemblage with the decrease in the abundance of Asterionella formosa and an increase of

small celled centric taxa (mainly Pantocsekiella costei with P. delicatula). Besides planktic cen-

tric, and also planktic Asterionella formosa, the benthic Diploneis oculate, known from carbon-

ate rich freshwater habitats with moderate electrolyte content [37], and the widespread

Staurosirella pinnata also register more than 5% relative abundance. The alfa diversity of this

zone is low with an average of 21.5 ± 2.9. These data point to accelerated shifts in diatom

assemblages for the last decade alongside an increase in euplanktic productivity.

Ordination of diatom assemblages. The sample scores of DCA-axis 1 are plotted on the

age-depth model results in Fig 6. The high sample score values on DCA-axis 1 explain 34.6%

of the variance and are associated with Asterionella formosa, centric taxa (e.g., Pantocsekiella
costei, P. delicatula), as well as the benthic Staurosirella pinnata and Diploneis oculata. Based

on the associated diatom life forms and habitat preferring taxa, DCA-axis 1 can be interpreted

as reflecting lake-level changes. However, the higher planktic ratio in the upper part of the pro-

file may possibly reflect changes in trophic and/or thermal conditions and not necessarily only

lake-level variations. DCA-axis 2 explains 13.6% of the variance and high scores were associ-

ated with Asterionella formosa, Navicula radiosa, Eunotia arcubus, Denticula tenuis, while low

sample scores were associated with centric diatoms and benthic Diploneis oculata, Stauroneis
cf. anceps, Nitzschia recta and N. archibaldii. The interpretation of DCA-axis 2 is not

curve interpretation over the last two decades) and changes in diatom species Asterionella formosa. The climate data includes

mean annual precipitation and annual temperature anomaly from the Cluj-Napoca meteorological station [45, 46], dryness (annual

mean scPDSI index) [47, 48] and NAO and AMO indices [49, 50]. The upper two panels mark the main natural hydroclimate events

(floods) alongside identified anthropogenic activities (e.g., land-use, number of inhabitants, N-fertilizers use) that affected the lake

catchment and its surroundings over last decades. Regionally documented wet and dry years are marked with triangles [69, 70]. The

turbidites are marked with grey vertical bars.

https://doi.org/10.1371/journal.pone.0239209.g006
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straightforward; further investigations on the auto-ecology of dominant diatoms (mainly the

centric diatoms that represent at least ten different taxa; Ács (unpublished data)) are required.

The relationship between diatom assemblages and environmental proxies

RDA analysis was used to investigate the relationship between the diatom assemblages

(response variable), sediment proxies and hydroclimate forcing variables. RDA was run on

the entire SC-4 profile (excluding the turbidite). The results show that shifts in the diatom

assemblages could be largely explained by concurrent changes in sedimentological proxies

such as OM and κ and/or hydroclimate variables (NAO, AMO, Temperature Anomaly).

RDA Axis 1 explains 25.28% of the total variance and is positively correlated with small

Fig 7. Redundancy analysis (RDA) biplot showing the significant correlations between diatom assemblages and explanatory environmental variables such as

sediment properties (K magnetic susceptibility, OM-LOI 550 organic matter) and climate parameters (Average Temperature AnomalyExp, AMO, NAO).

Abbreviated names for the main diatom taxa are displayed in grey (for full species name consult S2 Table). The lines show the temporal trajectories.

https://doi.org/10.1371/journal.pone.0239209.g007
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periphytic diatom taxa, i.e. Achnanthidium and Encyonopsis, Fragilaria capucina and Navi-
cula cryptotenella, OM and NAO. This correspondence appears significant for the interval

with the laminated sediments spanning between 76 and 48 cm sediment depth (1920–1950).

The negative direction of RDA Axis 1 shows high correlation with the planktic taxa, i.e.,

Asterionella formosa and centric Pantocsekiella costei and Pantocsekiella ocellata as well as

benthic species, Staurosirella pinnata and Diploneis oculata. For the upper part of the sedi-

ment profile spanning 12 to 0 cm (2001–2010), the most significant environmental explana-

tory variables are AMO, Temperature Anomaly and κ (Fig 7).

RDA Axis 2 explains 10.83% of the variance and it is positively correlated with benthic taxa,

such as Stauroneis anceps, but also Fragilaria capucina and Gyrosigma acuminatum (erosion

indicator) and κ with a stronger correlation for the interval 1970 to 1980. The negative direction

of Axis 2 is correlated with the planktic taxa Asterionella formosa and small-celled periphytic

diatoms such as Achnanthidium minutissimum and Brachysira neoexilis, and the environmental

variables AMO and OM that are representative for the bottom part of the record (1920–1965)

where the sediments are laminated and macrophyte layers are present (Fig 7).

Land-use changes

Land-use changes were calculated as forest loss percentages (%) for each time step relative to

the initial extent of the forest (i.e., year 1870). Therefore, when compared with the initial forest,

forest loss increased to 4% in 1957 with forest loss predominantly in the eastern and central

part of the catchment (Fig 3). In 1982 forest loss reached 7% (compared to 1870) with losses

mainly in the south-western part of the catchment (Fig 3). In 2012 forest loss showed an

increase of 6% (compared to 1870), slightly lower when compared with the preceding period,

and mainly affecting the eastern and central-western part of the catchment (Fig 3).

Discussion

Proxy responses to environmental changes between 1922 and 1964

During this interval the biotic and abiotic indicators reflect important changes in both the

catchment and lake ecosystem. The main proxies for detrital input, including terrigenous ele-

ments (Ti, K, Zr) and magnetic parameters, i.e., κ, are characterized by variable patterns and

peak around ~1930, ~1945 and ~1953 pointing to topsoil erosion as the main contributor of

allochthonous material to the lake (except the detrital peaks that in turn likely reflect sudden

short-term inputs from deep channel erosion) (Fig 6). This inference is supported by land-use

map-based analysis (Fig 3) documenting no significant changes in forest cover in the catch-

ment of Lake Ighiel and thus limited slope destabilization and deeper soil erosion. It is more

likely that the sediment source during this interval was mainly topsoil from nearby slopes.

However, between the 1940’s and 1960’s the detrital proxies register a significant increase and,

alongside the sediment fingerprinting data (Fig 6), might document a source shift linked to

stronger inputs from deeper soil erosion via the ravines.

In terms of the lake ecosystem, the diatom assemblages within IGH-SC4-DAZ-1 to 3 (1920–

1972) point to an oligo-mesotrophic water column with no major disturbances of the lake’s ecosys-

tem. The diatom-based lake level reconstruction (DCA-1) [64] and other changes in the diatom

assemblages indicate shifts from high lake levels and increased trophic state around ~1933, ~1940–

1950 to low lake levels and low trophic state around ~1928–1930, ~1939 and ~1951–1965 (Fig 6).

In addition, thin layers composed of sub-aquatic macrophytes were deposited around ~1925,

~1927, ~1936, ~1951, ~1956 and ~1965 (Fig 6). The different sampling resolution for the abiotic

(1 mm) and biotic proxies (1 cm) must be taken into consideration; however, at around the same

timing the diatoms show a high ratio (<70%) of periphytic algae, with a marked abundance of
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Achnanthidiumminutissimum, and lack of planktic diatoms (Fig 5). Achnanthidiumminutissi-
mum typically grows attached to aquatic plants and has a higher capacity to adapt to environmen-

tal changes. Therefore, its presence points to extensive aquatic vegetation and low lake levels [65,

66]. Specifically, the macrophytes and the periphytic algae that live attached to them grow rapidly

when water levels decrease and other limiting conditions are met, especially during the growing

season (e.g., calm wind conditions, temperature increase and nutrient availability) [67]. Several

studies have shown that temporary declines in water-level may enhance macrophyte abundance

[67]. Taken together, the presence of layers with macrophyte and the presence of periphytic algae

probably indicate seasonal (negative) shifts in the local hydrological balance, i.e., low lake level

during dry intervals [67, 68]. This hypothesis linking macrophyte layer deposition with dry peri-

ods is also supported by changes in precipitation trends showing decreased precipitation amount

and scPDSI (Fig 6), portraying increased dryness during the deposition of macrophyte layers and

thus, might reflect the impact of regionally documented excessively dry periods on our record,

i.e. at ~1925, ~1927, ~1936, ~1951, ~1956 and ~1965 [69–75] (Fig 6).

Notwithstanding the enhanced detrital input as shown by the geochemical and magnetic

parameters, the diatom-inferred high lake level stands identified at ~1930, ~1945 and ~1953

correlate well with regionally wetter conditions as indicated by the higher values in mean

monthly precipitation (Fig 6) showing higher erosion under precipitation events.

Moreover, the ordination analysis (Fig 7) shows that, for this first interval, changes in dia-

tom assemblages are linked to changes in organic matter, probably reflecting nutrient avail-

ability/delivery and overall productivity, and also with the NAO that acts as large-scale

precipitation modulator over the area, influencing decadal variability in rainfall distribution

[76]. Nonetheless, AMO/AMV, a temperature decadal mechanism linked to the occurence of

extreme summer-autumn warm events [50, 73, 77], may also be connected to proxy changes in

Lake Ighiel. For example, higher temperatures likely promoted macrophyte growth and

changes in hydrological balance (i.e., during dry periods) (Fig 7). Taken together, the docu-

mented lake ecosystem changes align well with the reconstructed catchment changes suggest-

ing a common mechanism, i.e., most likely natural climate variability expressed as changes in

temperature and precipitation, driving the response of both abiotic and biotic proxies.

Furthermore, the map-based land-use analysis does not show significant landscape changes,

which is also supported by the area’s low population suggesting an overall modest anthropo-

genic impact. Such minor changes in land-cover are also observed in other mid- and high-alti-

tude mountain lakes across the Carpathians [25, 78]. Such records suggest that between the

1920’s and 1960’s the responses of the paleolimnological proxies at Lake Ighiel closely track

natural hydroclimate variability in parallel with other examples from the region [25, 78].

Proxy variability between 1964 and 1987

From the 1960’s the depositional regime experienced a marked shift from the laminated

silty clays that characterized the preceding 6000 years [18] to massive, homogenous sedi-

ments. In line with this lithological change (at 48 cm) Ti, K, Fe, Rb, Zr and κ show a sudden

shift to consistently higher values, likely reflecting sediment input from enhanced basal soil

erosion (Fig 6). A change in the diatom assemblage (IGH-SC4-DAZ-4) starting gradually

around 1965 with a decrease in periphytic forms and an increase in planktic diatoms is doc-

umented (Fig 6). There is a marked boundary around 1971, but it remains unclear whether

this boundary reflects a tipping point in the lake’s ecosystem. Tipping points, that mark the

shift between contrasting system states occur when external conditions reach thresholds

that trigger an accelerating transition to a contrasting new state [79]. Nevertheless, the pres-

ence of Gyrosigma acuminatum, detected exclusively in this interval, an erosion-related
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diatom alongside other aerophytic diatoms appears consistent with the shift in geochemical

and magnetic proxies documenting exceptional allochthonous inputs at certain intervals

into the lake and thus, enhanced erosional activity (Fig 6). The diatom-based lake-level

reconstruction (DCA-1) does not depict major changes in lake stands, only a minor

increase (Fig 6).

The two-fold increase in detrital proxy levels, followed by a smoother trend, corroborated

by trends in organic matter, SAR and changes in diatom assemblages provide evidence for a

major disequilibrium in the catchment and lake ecosystem at certain time intervals, i.e., 1970

(Fig 6). The map-based forest cover estimation (reference 1982) clearly shows extensive forest

loss over the southern and south-western part of the catchment and suggests slope destabiliza-

tion under forestry-driven activities (Fig 3). This increase of human pressure is further sup-

ported by evidence of population growth both locally and regionally (Fig 6). During the same

time interval, official documents [80] indicate a significant anthropogenic impact through

road construction, hydro-technical works and mechanized timber exploitation undertaken in

the proximity of the lake.

It is worth noting, however, that this interval also coincides with an increase in precipitation

trend and scPDSI that led to regional floods (as reported in Ighiu town hall documents [80])

marking the inception of a wetter period [69, 70]. As such, it is very likely that landscape desta-

bilization through forestry and other human activities in the area rendered the steep catchment

slopes even more susceptible to enhanced erosion under predominantly wetter than average

conditions.

The RDA results support the assumption that over this interval changes in the composition

of diatom assemblages were connected to a greater input of siliciclastic material and thus

major catchment disturbance through deforestation (Figs 3 and 6). A ca. 5-year time lag is

observed between major change in the aquatic ecosystem (IGH-SC4-DAZ-4) and sedimentol-

ogy (Interval II), which suggests a slightly delayed response of the diatom community to catch-

ment disturbance. However, this is not surprising given that diatoms like other biological

communities can show resilience time/hysteresis in response to a new stressor [81]. Further-

more, from 1966 the stocking of the lake with fish (Salmo trutta fario, Oncorhynchus mykiss,
Hucho hucho, Phoxinus phoxinus, Leuciscus cephalus, Cottus gobio) [29] may have contributed

to some of the changes in the lake ecosystem. Fish stocking is a serious anthropogenic pertur-

bation to natural aquatic ecosystems as it can fundamentally alter nutrient cycles and stimulate

primary production by accessing benthic phosphorus sources that are not normally available

to pelagic communities in oligotrophic mountain lakes [82, 83]. Such changes were observed

in, for example, Lake Opeongo, Canada [82].

Proxy responses between 1987 and 2012

From 1987 the responses in lake proxies are remarkable; the geochemical data indicate sus-

tained erosional activity, with SAR reaching unprecedented values denoting enhanced sedi-

ment mobilization, especially over the past two decades (Fig 6). The abrupt variability

observed in the diatom assemblages appears in concert with the sedimentological data and

exhibit the most substantial shift with open water planktic species almost completely replacing

the benthic taxa (Figs 5 and 6). This prominent change in the diatom community marks the

inception of meso-eutrophic conditions and was likely driven by higher nutrient availability

[84–86]. The change towards a planktic-dominated diatom community might hint at habitat

disturbance for the benthic taxa, heralding a marked transformation in the lake ecosystem dur-

ing last decades. Our interpretation of significant recent eutrophication is also supported by

the results of [29].
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In this interval further hydro-technical works to stabilize the catchment’s river network

(southern channel) took place and there was a dramatic expansion in local sheep farming [80].

Although sheep and cattle grazing in the Carpathians is a traditional activity [22], in the sur-

roundings of Lake Ighiel, a 43% increase in sheep numbers was reported between 1993–1996

and between 2003–2010 [43, 80]. As recent grazing activities in the wider Apuseni Mts have

been shown to have significantly impacted the landscape [87] through changes induced in the

plant community and soil stability, this exceptional increase in live-stock might be an impor-

tant factor (although not the sole one) in explaining the responses observed in our paleolimno-

logical proxies.

The forest loss estimation [41] shows localized forest loss mainly in the east of the catch-

ment, along the Striglau valley (Fig 3). However, when compared with previous estimates (ref-

erence dates 1957 and 1982), recent forest loss is less extensive (Fig 3). Furthermore, as the

digital elevation model shows (Fig 1), the eastern catchment where most recent forest loss

occurred exhibits greater slope angles. It might be expected that landscape changes in this part

of the catchment will have a marked impact on Lake Ighiel’s sedimentation regime by enhanc-

ing the sediment input. It is well documented that forest disturbances (loss of forest cover), by

removing vegetation cover and exposing the soil to direct rain impact, activate geomorpholog-

ical processes and promote sedimentation especially on steep slopes [78, 88, 89]. Thus, defores-

tation on such steep slopes, in addition to grazing intensification, might have contributed to

the high but variable SAR, indicative of enhanced intra-catchment variability in sediment

availability. Furthermore, the meso-eutrophic lake status as reconstructed from diatoms might

be interpreted as an anthropogenic signal driven by increasing nutrient supply directly linked

to enhanced grazing activities in the area. Overall, it appears that recent anthropogenic activi-

ties are linked to increases in the sediment accumulation rate that, in turn, impacted on the

lake’s ecological status.

However, results from multivariate analysis (RDA axis 1 in negative direction) also show

that changes in planktic centric taxa over the last decades may also reflect to some extent

hydroclimate changes, such as temperature variability and AMO (Fig 7). Such a connection

between changes in diatom communities and hydroclimatic parameters is not surprising given

that a temperature increase alongside other factors like water-column turbidity, nutrient avail-

ability, ice-cover dynamics may induce a cascade effect on the biological community, e.g., the

biological productivity is accelerated when temperatures increase [86, 90–93]. Thus, it is rea-

sonable to assume that during the last two decades hydroclimate variability might exacerbate

the impact of the well-documented anthropogenic activities on the Lake Ighiel ecosystem, fur-

ther threatening the stability of this fragile mid-altitude ecosystem (Fig 6).

Nitrogen (N) as a potential driver of recent ecosystem change in Lake

Ighiel?

In the Northern Hemisphere mountain lakes, and to some extent all over the world, it is well

recognized that higher rates of atmospheric N deposition and/or N catchment export coincide

with substantial changes in algal communities triggering ecosystem turnover [94–97]. Asterio-
nella formosa is often regarded as indicator of moderate N-enrichment in oligotrophic alpine

lakes [98] and the proliferation of A. formosa correlates with nutrient enrichment, especially

when atmospheric N deposition intensifies. This species is known as a common and often

dominant planktic diatom in mesotrophic and eutrophic lakes worldwide, but more recently

its abundance has also increased in oligotrophic lakes [99].

The relationship between the abundance of Asterionella formosa and N deposition is a hot

topic in ecology and paleolimnology; given that practically no information is available from
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the Carpathian lakes, we analyzed this question with special attention. In our model interrogat-

ing the key drivers of diatom community change in Lake Ighiel (Fig 6), forcing from N deposi-

tion could not be explored due to the shorter period of the dataset, and lack of direct data on N

emission/deposition. Therefore, we used the N fertilizers consumption in Romania as a rough

estimation of anthropogenic N deposition [100] to explore if/how the Lake Ighiel ecosystem

might have responded by analyzing changes in Asterionella formosa and making a comparison

with responses in other diatom records.

It is well known that the increased availability of reactive N over the past century as a prod-

uct of industrialization and agricultural intensification has increased primary production in

mountain lakes [101]. In Romania, N fertilizer consumption also increased in the second half

the 20th century showing a clear peak between 1975 and 1990 (Fig 6). After the political

changes in 1989 that led to the collapse of the state-planned economy, fertilizer use fell drasti-

cally while soil N input halved within one year [101] (Fig 6).

Surprisingly, the rise of Asterionella formosa in the diatom assemblages of Lake Ighiel began

at the time of decreasing use of N fertilizers in Romania in the 1990’s (Fig 6). To explore the

response of the ecosystem to N deposition, we calculated Pearson correlation between the rela-

tive abundance of Asterionella formosa and data on the annual N fertilizer use in Romania

available for the interval 1961 and 2014 [101]. The correlation coefficient indicates a slightly

negative, marginally significant correlation (r = -0.35, p = 0.052). Given the complexity of N

deposition in the environment with limiting factors such as the N:P ratio and the complex eco-

logical responses of lakes to post-industrial environmental changes [95], in light of available

data the recent responses of Lake Ighiel ecosystem cannot solely be attributed to N deposition;

rather they reflect a combination of drivers among which erosion following land-use changes

stands-out.

The complexity of responses in diatom records has been demonstrated by the opposing

trend observed in several lakes in western USA that document a decline of centric diatoms

coinciding with a successive increase in planktic araphids (mainly Asterionella formosa with

Fragilaria tenera group and F. crotonensis). Lines of evidence [e.g., 94–96, 99] highlight that

turnover in ecosystems is caused by the combined effect of increased nutrient availability and

deposition following post-industrial pollution as well as global warming temperatures. At Lake

Ighiel local drivers, such as proximal land-use changes and fish stocking can also be added.

Local anthropogenic signals vs regional climate change in the Ighiel record

Natural climate variability and anthropogenic activities have shaped Ighiel’s ecosystem and

limnological responses for millennia. The key aim of our work is to disentangle local, anthro-

pogenic drivers, documented via land-use map-based analysis, from regional climate changes,

inferred through precipitation, temperature, drought indicators (scPDSI) and their main driv-

ing mechanisms (NAO, AMO), via Lake Ighiel’s sedimentary record over the last nine decades.

Previous work on this record showed that on a long-term timeframe (i.e., the last 6000 years)

sedimentological data closely track rainfall variability induced by large-scale atmospheric tele-

connections, e.g. NAO [18]. From a long-term perspective, in the Ighiel record and in other

sites across the globe [1, 12], the main drivers of recent changes in paleolimnological proxies

are mainly related to anthropogenic activities, e.g., forestry, urbanization, resource exploita-

tion. Nonetheless, high-resolution investigations can still identify forcing through natural

hydroclimate variability.

The first noticeable changes spanning the interval between 1920–1960 were decreased ero-

sional activity, deposition of macrophyte layers and low lake levels. These were coincident

with regional dry periods. The RDA analysis showed a clear response in the lake proxies to
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changes in hydroclimate (dry vs wet periods) driven by large-scale teleconnections, AMO/

NAO. This interference of climate-driven lake changes was also supported by the occurrence

of only minor changes in land-use as shown by the map-based analysis; modest human impact

over this period was also observed regionally, in other mountain records [25, 78].

Starting from 1960, the sedimentation regime began to change; the accumulated sediments

turned homogenous and the geochemical parameters marked a shift towards high intensity

catchment erosion, while the diatom assemblages pointed to a shift in the lake’s ecology. These

changes seem to have been driven by anthropogenic activities including catchment forest

clearance and landscape destabilization, registering a higher loss (7% relative to 1870) when

large parts of the southwestern catchment were turned into pastureland. Local fishery seems to

have affected the diatom community. These changes coincided with an increase in regional

population numbers and also appear to have put greater pressure on natural resources, with

timber felling as an important economic activity over large areas in CE Europe [26]. Region-

ally, similar environmental responses were found in other lowland and mid-elevation sites

[25] and also reservoirs showed increased silting [102]. Remote alpine and arctic sites also

showed indications of intense human impact [103] and together mark a rather global, stronger

anthropogenic imprint on sediment responses.

Over the last four decades, forest loss remained at high levels and areas closer to the lake

were deforested, grazing intensified causing a sharp change in erosional activity and the lake’s

ecosystem. Overall, anthropogenic activities overprinted the natural hydroclimate variability.

Alpine lakes from the Carpathians [25], North America and also arctic sites show similar

changes and highlight the anthropogenic dominance of recent environmental changes [103] as

reflected in our lake sediment record.

Implications for restoration targets

Paleolimnological assessments provide useful toolkits in developing effective management and

conservation strategies for lake ecosystems under threat [93, 104–106], but such endeavors in

central-eastern Europe remain limited. Although it is rather unrealistic to target the return of

Lake Ighiel’s ecosystem to the baseline conditions [18] prior to the major human disturbances

of the last decades [90], our results provide crucial information about the current trajectories

of change. Our data indicates that over the past century both natural hydroclimate variability

and human activities have acted synergistically as the main drivers of change at Lake Ighiel,

clearly highlighting that its ecological integrity is at risk (Fig 6). This risk might be exacerbated

under the projected (and expected) changing hydroclimate regime in the wider area (extreme

events, aridification) and increasing human pressure [18, 25]. Action measures must be under-

taken to prevent a complete overturning in its ecological status, especially as Lake Ighiel is a

protected area of national interest (IV Category, IUCN), although these legal prerequisites are

generally ignored with proximal lake-catchment degradation evident (S5 Fig). To limit the

risks associated with such degradation, a restoration scheme must be employed and oriented

towards limiting the eutrophication process. Restoration targets must include better land-use

management designed to restrict deforestation and grazing activities, limit deep-soil erosion,

especially on steeper slopes and along stream channels controlling sediment and nutrient

input to the lake via runoff. These are the major factors influencing lake sedimentation and the

onset of eutrophication documented in our study.

Conclusions

Our reconstruction offers an integrated paleolimnological perspective on the type of

changes that lake-catchment system at Ighiel has faced over the past nine decades. Our
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integrated, multi-proxy approach based on sedimentological and diatom analyses, com-

bined with data from local archives and cartographic resources, has allowed the recon-

struction of recent environmental and land-use changes in Lake Ighiel’s catchment

highlighting the main factors driving them. The analyses of catchment soil samples rein-

forced our interpretation of sediment sources and pathways allowing for an appraisal of

process/activity-based changes in the catchment and the subsequent responses in the

paleolimnological proxies. We show that for the most recent decades in the development

of Lake Ighiel, the interplay between hydroclimate variability and increased anthropogenic

pressure through landscape changes induced significant shifts in sediment availability and

lake ecology as follows:

i. on a short decadal scale, spanning the 1920 to 1960, the paleolimnological proxies sensitively

record changes in hydroclimatic conditions; this is shown by the deposition of organic lay-

ers with macrophytes coupled with rapid changes in diatom assemblages with dominant

periphytic taxa closely tracing significant lake level drops in dry years;

ii. by the 1960, intensified human activities, mostly by mechanized timber felling and fishery

development, suddenly altered the sedimentation regime, sediments became homogenous

and geochemical parameters show high and steady erosion patterns, while diatom assem-

blages show a marked shift in lake ecological status;

iii. over the last four decades, changes in sediment deposition together with the marked ero-

sional pattern documented by our proxies (three fold higher than previously registered),

show that geomorphological thresholds were crossed, including the formation of deep-

ravines draining towards the lake (that prompted hydrotechnical works to be undertaken

to stabilize the exposed slopes). Forest loss continued and grazing intensified significantly;

the abrupt, sharp and unprecedented changes observed in diatom assemblages directly

hint at a highly human-impacted landscape driving ecological changes;

iv. we include a first identification of the possible effect of nitrogen fertilizer in Romania (as N

deposition evidence) on a lacustrine diatom community. At Lake Ighiel, however, the

impact of an N increase on the aquatic ecosystem was relatively weak and masked by the

other drivers of environmental change at this site.

Our study shows that over the most recent decades, Lake Ighiel provides an exceptional

record for disentangling the interplay between hydroclimate variability and increased anthro-

pogenic activity in the mid-altitude Carpathian area. We demonstrate that the observed eco-

logical responses can be satisfactorily explained when considering a combination of natural

and anthropogenic, local and regional drivers of change. The connection between the factors

driving changes in the Ighiel catchment, and the subsequent responses in lake proxies, are

multi-faceted. They highlight the vulnerability of mid-altitude environments, particularly in

central-eastern Europe, to recent anthropogenic pressure and climate change. High-resolution

palaeoenvironmental studies from this interesting and understudied region appear essential

for further disentangling the drivers of the recent environmental change in the Carpathians

and informing conservation and restoration planning.
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S2 Table. The most abundant diatoms in IGH-SC4 core. The taxonomical position of the

diatoms was confirmed with the Algaebase [1]. The abbreviated name of the main taxa used in

Fig 7 (main text) after [2].

(DOCX)

Acknowledgments

Prof. Achim Brauer kindly supported part of the analytical investigation and coring. Frantiuc

Alexandru is thanked for valuable discussions on spatial data processing. The editor and two

anonymous reviewers are acknowledged for improving an earlier version of this manuscript.

Author Contributions

Conceptualization: Aritina Haliuc, Krisztina Buczkó, Enikő K. Magyari, Daniel Veres.
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22. Schumacher M, Schier W, Schütt B. Mid-Holocene vegetation development and herding-related inter-

ferences in the Carpathian region. Quaternary International. 2016; 415:253–67. https://doi.org/10.

1016/j.quaint.2015.09.074

23. Finsinger W, Fevre J, Orbán I, Pál I, Vincze I, Hubay K, et al. Holocene fire-regime changes near the

treeline in the Retezat Mts. (Southern Carpathians, Romania). Quaternary International. 2018;

477:94–105. https://doi.org/10.1016/j.quaint.2016.04.029

24. Rose NL. Atmospheric contamination and ecological changes inferred from the sediment record of

Lacul Negru in the Retezat National Park. Advances Limnology. 2009; 62:319–350. https://doi.org/10.

1127/advlim/62/2009/319

25. Hutchinson SM, Akinyemi FO, Mı̂ndrescu M, Begy R, Feurdean A, Mindrescu M, et al. Recent sedi-

ment accumulation rates in contrasting lakes in the Carpathians (Romania): impacts of shifts in socio-

economic regime. Regional Environmental Change. 2016; 16:501–13. https://doi.org/10.1007/

s10113-015-0764-7

26. Kaplan JO, Krumhardt KM, Zimmermann N. The prehistoric and preindustrial deforestation of Europe.

Quaternary Science Reviews. 2009; 28:3016–34. https://doi.org/10.1016/j.quascirev.2009.09.028

27. Ruddiman WF. The Anthropocene. Annual Review of Earth and Planetary Sciences. 2013; 41:45–68.

https://doi.org/10.1146/annurev-earth-050212-123944

28. Giguet-Covex C, Pansu J, Arnaud F, Rey P-J, Griggo C, Gielly L. Long livestock farming history and

human landscape shaping revealed by lake sediment DNA. Nature Communications. 2014; 5:3211.

https://doi.org/10.1038/ncomms4211 PMID: 24487920
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