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Abstract – This research aimed to investigate the changes in forest cover, utilizing Sentinel-2A 

imagery data. Annual results of deforestation, non-forest, and forest area in the Municipality of Zubin 

Potok (Kosovo) between 2016 and 2017 were presented and analyzed by applying the image 

difference change detection method on a Normalized Difference Vegetation Index (NDVI) product 

derived for both years. The study reveals that forest coverage in this municipality has changed due to 

human activity (harvested and burnt forests). The footprint of changes was evidenced by using 

Sentinel 2A band combinations and very high resolution (VHR) images available in Google Earth 

(GE). From the overall forest-covered area of 24,873.61 hectares, the detected changes during the 

annual period are as follows: 24,423.57 ha or 98.19 % is mapped as forest, 113.75 hectares or 0.46 % 

as non-forest, and 336.77 or 1.35 % of the area forest is mapped as deforestation. These results can be 

used to identify human-made deforestation and to develop monitoring forest plans for the coming 

years. 

deforestation / reforestation / vegetation indexes / change detection / sample design / accuracy 

assessment 

 

Kivonat – Az erdőterület-változása Sentinel-2A űrfelvételek alapján Zubin Potok község 

határában, Koszovóban. A tanulmány Sentinel-2A műholdfelvételek alapján egy erdősült 

terület változását vizsgálja. Az erdőterület éves változását 2016 és 2017 között Zubin Potok 

(Koszovó) községhatárában mutatja be és elemzi a felvételek vegetációs index (NDVI) alapú 

változása alapján. A tanulmány megállapítja az emberi tevékenység (fakivágás) és az erdőtűz 

okozta területváltozásokat a községhatárban. A változásokat a Sentinel-2A űrfelvétel és a 

Google Earth (GE) felvételek egyértelművé teszik. A teljes 24 873,61 hektáros erdőterületből 

az éves időszakban észlelt változások a következők: 24 423,57 ha vagy 98,19 % erdőként, 

113,75 hektár vagy 0,46 % nem erdőként és 336,77 vagy 1,35 % -a az erdőt erdőirtásként 

ábrázolják. Ezek az eredmények felhasználhatók az ember által okozott erdőirtások 

azonosítására és a következő évekre vonatkozó erdőterv kidolgozására.  

erdőirtás / erdőfelújítás / vegetációs indexek / változás vizsgálata / mintavétel kialakítása / 

pontosság-vizsgálat 
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1 INTRODUCTION 
 

Recently, the increased amount of imagery data coming from remote sensing technology 

empowered the science community and beyond to study and research important aspects of 

land cover and use changes on the living environment. Information on land cover and land use 

change inventory are essential data for different environmental issue implementations such as; 

deforestation, estimated devastations, disaster observations, urban growth, land management, 

and land planning (Hussain et al. 2013). According to Achard et al. 2009, INPE 2014, FAO, 

JRC, SDSU, and UCL 2009 as cited in (Hojas-Gascón et al. 2015) “for more than a decade 

the monitoring of deforestation has successfully been carried out at regional levels using 

medium-spatial resolution satellite data, predominantly from the Landsat sensor, which has 30 

m spatial resolution and a revisit frequency of 16 days”. In 1997, the World Resources 

Institute (WRI) founded the Global Forest Watch (GFW) as an initiative for forest frontiers, 

reporting only on a few pilot countries at the beginning until growing as an online global 

platform that provides data and tools for anyone to enter and obtain information on how and 

where forest cover is changing (WRI 2019). 

Another valuable online inventory of the land cover product is Copernicus – the 

European Union’s Earth Observation Programme, served by imagery data from the Sentinel 

satellite family. The Copernicus Land Monitoring Service (CLMS) delivers spatial 

information on land cover use and its changes, vegetation, and other products in the field of 

environmental land applications to a wide array of clients in Europe and across the world 

(EEA 2018).  

Various image transformation indexes among spectral bands of various satellite sensors 

have been created for monitoring vegetation status on a continental and global scale including 

the most broadly applied Normalized Difference Vegetation Index (NDVI) using the 

Advanced Very High Resolution Radiometer (AVHRR) sensor on board the NOAA series of 

satellites (CCRS 2019) and Moderate Resolution Imagine Spectroradimeter (MODIS) sensors 

on the Terra and Aqua satellites. These both have high temporal resolution (one day revisit 

time) and their reflectance data are convenient for time series vegetation dynamic analysis at 

regional and global scales. However, due to their very coarse spatial resolution of 1 km 

(AVHRR) and 250 m (MODIS), the investigation of phenological dynamics is problematic 

for finer or local scale vegetation status monitoring (Walker et al. 2012).  

Furthermore, Landsat series of satellites provides the longest and richest archive (over 40 

years) of systematically collected remotely sensed data (Goward et al. 2006) with valuable 

information and possibilities for enhanced knowledge of methods and extents of past forest 

changes and recovery (Banskota et al. 2014). In addition, a 30 m spatial resolution and 16-day 

repetitive temporal resolution makes Landsat data well suited for land cover monitoring of the 

Earth’s surface (Gillanders et al. 2008). Concerning the diverse possibility of remotely sensed 

data from both optical and radar sensors, monitoring an environmental phenomenon 

employing temporal and spatial resolutions of the data is reduced to five days and higher 

spatial resolution to 10 m with the launch of the Sentinel-2 mission by ESA in June 2015. In 

remote sensing (RS) technology, the common intention of the change detection approach is to 

point out the geographic position of land cover changes, change calculation, and map result 

validation (Coppin et al. 2004, Im - Jensen 2005, Macleod - Congalton 1998). 

The Normalized Difference Vegetation Index (NDVI) is a widely used vegetation index 

because it is useful in remotely sensed data calculation (Huete ‒ Liu 1994) and strongly 

revealed global vegetation cover monitoring in the past two decades (Leprieur et al. 2000). 

According to Singh (1989), change detection is “the process of identifying differences in the 

state of an object or phenomenon by observing it at different times”. Brothers and Fish as well 

as Malila and Singh, as cited (Macleod ‒ Congalton 1998), reported: “four aspects of change 
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detection are important when monitoring natural resources: (1) detecting that changes have 

occurred, (2) identifying the nature of the change, (3) measuring the areal extent of the 

change, and (4) assessing the spatial pattern of the change”. For improved understanding, the 

change detection method types are grouped into seven categories: 1. algebra, 2. 

transformation, 3. classification, 4. advanced models, 5. Geographical Information System 

GIS approaches 6. visual analysis, and 7. other approaches (Lu et al. 2004b). The change 

detection technique is one of the key implementations in remote sensing (RS), moreover using 

bi-temporal or multi-temporal data imagery (Campbell – Wynne 2011). According to Singh 

(1989, p. 990), “there are two basic approaches for change detection; (1) comparative analysis 

of independently produced classification for different dates and (2) simultaneous analysis of 

multi-temporal data”. The image difference technique requires two accurately co-registered 

image data sets in order to generate a new subtracted image, the values of which indicate the 

changes (Hussain et al. 2013). Although different change detection techniques are currently 

available, they are difficult and require choosing an appropriate algorithm to achieve change 

detection results practically (Lu et al. 2004). Therefore, defining an appropriate threshold for 

mapping class change category is one of the most critical steps (Lu et al. 2005). The 

application of image thresholding in computer vision is to segment the objects based on the 

image pixel intensities by using a grayscale image as input and threshold, and the result is a 

binary image.  

 Checking accuracy assessment is an essential part of any project that deals with remotely 

sensed data. Many reasons that emphasize the significance of the accuracy assessment exist: 

“1) the need to know how well you are doing and to learn from your mistakes; 2) the ability to 

quantitatively compare methods; and 3) the ability to use the information resulting from your 

spatial data analysis in some decision-making process” (Congalton 2001, p. 321). 

 An error matrix table successfully describes a precise classification map by containing 

commission and omission mistakes. A commission error indicates the pixels or areas are 

wrongly assigned to that map category, while an omission error represents the pixels or areas 

correctly assigned to that map category (Congalton ‒ Green 2009). Use of the error matrix 

table is also possible to calculate other measures of classification change validation such as 

overall accuracy as well as produce and user accuracy (Story ‒ Congalton 1986). 

The existing literature on the status of forest monitoring using remotely sensed data is 

quite applicable. Deforestation and reforestation are common environmental topics across the 

world. The direct human cause of forest land transformation to a non-forested land was 

defined as deforestation and the transformation of non-forest land (which was previously 

covered under forests) into the human-induced forest through the planting of seedlings, or the 

planting of natural seeds is defined as reforestation (UNFCCC 2002). 

Based on the National Forest Inventory Kosovo 2012 Report (Tomter et al. 2013), forests 

cover an area of 481,000 hectares or 44.7 % of the total country land area, which is dominated 

by deciduous forest (93 %), coniferous forest (5 %), and mixed forest (2 %). Concerning the 

status of Kosovo loggings, according to this report, the annual permitted logging level 

allowed is about 1.4 million m3. This level was exceeded by an estimated 1.6 million m3 of 

annual loggings. In addition, 7% of loggings were conducted according to forest legislation 

and around 12,200 hectares, or 2.5 % of the total forest areas, were severely burned. The data 

analyzed from this report constitute the reason for increased study of the state of forests in 

Kosovo. Therefore, we have decided to investigate the forest changes in a one-year difference 

(2017-2016) in this study area and address the following research objectives: How can 

deforestation be detected and mapped? How can non-forested areas that have been previously 

deforested be detected and mapped? Is there any human intervention involved in the 

reforestation? 

 



108 Krasniqi, F – Király, G. 
 

 

Acta Silv. Lign. Hung. 17 (2), 2021 

2 MATERIALS AND METHODS 

 

2.1 Study area 

Defining the study area was one of the research challenges. The forest area examined for this 

study is located in the municipality of Zubin Potok in the northern part of the Republic of 

Kosovo, located between the latitudes 42° 48.507'N and 43° 2.120'N and longitudes 20° 

29.076'E and 20° 47.839'E. The area extends over 333 km2 and has a population of 6,616 

(KSA 2013). In its southern part, this municipality borders Istog and Skënderaj, while in its 

eastern part it borders Zveçan. Its entire western part borders Serbia (Figure 1). The area is 

characterized by mainly mountainous relief and scattered settlements. Its main economic 

branch is agriculture. The area is also home to an artificial accumulation of the lake of Ujman 

(Gazivoda). In addition to being of great importance for the municipality and the country, the 

lake is one of the largest artificial lakes in Kosovo with an extended surface of 9 km2. 

 

 
 

Figure 1. The geographical location of the study area in Kosovo (left), and Sentinel 2A color 

composite map (right). The map to the right of Figure 1 used in this study is a color 

composite image of these bands combination: NIR, RED, and GREEN. The red color on the 

map indicates forest vegetation; the green color represents deforestation, the blue color 

represents the water surface, the cyan, and other colors represent the surfaces not covered 

with forests (settlements, roads, bare land, agricultural areas, etc.). 

 

According to CLC (CORINE Land Cover), 2018 inventory (EEA, 2018), 24,850.32 

hectares (77.43 %) of the total area of the municipality – 33,385.6 ha (100 %) – is forest 

covered (deciduous, coniferous, and mixed), 3,207.28 ha (9.61 %) is semi-forested (meadows 

and shrubs), 4,133.42 hectares (12.38 %) are agricultural, 774.21 ha (2.32 %) waters (lakes 

and rivers), and 129.32 ha (0.39 %) of the surface is a built-up area. 

 

2.2 Imagery Data and their Processing 

The multi-spectral imagery data set of Sentinel satellite platforms 2A has been used as a 

primary source. Two cloud-free images were selected from 15/08/2016 and 19/09/2017 and 
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downloaded from the Copernicus Data and Information Access Services (DIAS) via the 

Mundi web services platform (https://mundiwebservices.com/). Sentinel-2A satellite has 13 

spectral bands from visible through near-infrared to shortwave infrared: four image bands at 

10 m, six bands at 20 m, and three other bands at 60 m spatial resolution (ESA 2015).  

 

Table 1. The spatial and spectral resolution of Sentinel 2-A bands 

Band 

number 

Band name Spatial resolution 

(m) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

  2 Blue 10 492.4 98 

  3 Green 559.8 45 

  4 Red 664.6 38 

  8 NIR 832.8 145 

  5 Vegetation Red Edge (VRE) 20 704.1 19 

  6 Vegetation Red Edge (VRE) 740.5 18 

  7 Vegetation Red Edge (VRE) 782.8 28 

8a Vegetation Red Edge (VRE) 864.7 33 

11 SWIR 1613.7 143 

12 SWIR 2202.4 242 

  1 SWIR 60 442.7 27 

  9 SWIR 945.1 26 

10 SWIR 1373.5 75 

Source: (https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric) 

 

The Sentinel-2 mission is a constellation of two satellites (Sentinel-2A and Sentinel-2B) 

that provide high-resolution optical imagery on global coverage of Earth’s land surface. Every 

ten days it revisits every single satellite and every five days with the combined constellation 

of the second satellite, making the data of great use for land monitoring studies (Addabbo et 

al. 2016). 

Processing Level-1C and Level-2A of MSI Sentinel 2A products are freely available to 

users. The Level-2A processing of MSI Sentinel-2A data contains a Scene Classification and 

an Atmospheric Correction applied to Top-Of-Atmosphere (TOA) Level 1C orthoimage 

products (ESA 2015). The main output is an orthoimage Bottom-of-Atmosphere (BOA) 

corrected reflectance product, resampled and generated with an equal spatial resolution for all 

bands, and it can be used at the request of users in three levels of spatial resolution: 10 m, 20 

m, and 60 m (ESA 2015). The metadata of Sentinel-2A, such as a product item, spacecraft 

name, processing level, product type delivered, and the date of acquired imageries is 

described in Table 2. 

 

Table 2. Main metadata of the selected Sentinel-2A imageries 

Product Spacecraft name Processing level Acquisition time 

S2A_MSIL2A_20160815T09304

2_S0100_R136_T34TDN_20160

815T093218 

Sentinel – 2A Level-2A 2016-08-15 

S2A_MSIL2A_20170919T09303

1_N0205_R136_T34TDN_20170

919T093732 

Sentinel – 2A Level-2A 2017-09-19 

 

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric
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2.3 Methodology 

To complete the research objective, the following methodology was applied. A 10 m spatial 

resolution of Level-2A of MSI Sentinel-2A spectral bands: 2 (Blue), 3 (Green), 4 (Red), and 8 

(NIR) covering the study area downloaded. Spatial and spectral subset and layer stacking of 

an orthoimage Sentinel-2A corrected reflectance images was realized by the raster tool in 

QGIS. The Sentinel-2A bands 4 (RED) and band 8 (NIR) that belong to the visible and near-

infrared (VNIR) electromagnetic spectrum were selected for further use. NDVI2016 and 

NDVI2017 maps creation is the main step to proceed further with change detection analysis. 

NDVI is calculated by dividing the surface reflectance difference between near-infrared (NIR; 

0.842 μm), and visible red (R; 0.665 μm) spectral bands by their sum, given in a value 

between -1 and 1 (Tucker et al. 1985):  

 

                                             NDVI = (NIR–R) / (NIR+R)  (1) 

 

 To conduct change detection analysis in the forest area, the following tasks such as image 

difference, image threshold, and refinement of the change detection results, were undertaken 

by using the Image Change Workflow tool in ENVI 5.3 software. The image difference 

method could be performed directly on a single band image or a single transformation image. 

The formula to calculate the difference change image is:  

 

 dNDVI(2016-2017)  = NDVI2016 – NDVI2017 (2) 

 

 An image difference algorithm was applied by subtracting NDVI2016 from NDVI2017, to 

create a difference NDVI (dNDVI2016-2017) map. To detect and map the changes in the forest 

area, Otsu’s threshold algorithm by auto-default settings is applied on the dNDVI(2016-2017) 

grayscale image. Otsu (1979) introduced the discriminant criterion η as a ratio between-class 

variance and total variance (total = between-class + within-class variance). He proved that the 

optimal threshold k maximizes the ratio η or equivalently maximizes the between-class 

variance. The equation below describes the calculation of the threshold using two options: 

Within class variance: 

 

                                                       𝜎𝜔
2 (𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) (3) 

 

 Where 𝜔0 and 𝜔1are the probabilities of the two clusters separated by a threshold (𝑡), 𝜎0
2 

and 𝜎1
2 are the class variances. From the L bins of the histogram is computed the class 

probability 𝜔0,1(𝑡): 

 

𝜔0(𝑡) = ∑ 𝑝(𝑖)𝑡−1
𝑖=0                                                            (4)  

 

𝜔1(𝑡) = ∑ 𝑝(𝑖)𝐿−1
𝑖=𝑡                                                          (5) 

 

Between class variance: 

 

                        𝜎𝑏
2(𝑡) = 𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡) − 𝜇1 (𝑡)]2     (6) 

 

 Where, 𝜔 express class probabilities; 𝜇 express class means.  The class means 𝜇0(𝑡), 
𝜇1(𝑡) and 𝜇𝑇 are computed: 
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𝜇0(𝑡) =
∑ 𝑖𝑝(𝑖)𝑡−1

𝑖=1

𝜔0(𝑡)
                                                           (7) 

 

𝜇1(𝑡) =
∑ 𝑖𝑝(𝑖)𝐿−1

𝑖=1

𝜔1(𝑡)
                                                            (8) 

 

𝜇𝑇 = ∑ 𝑖𝑝(𝑖)𝐿−1
𝑖=𝑡                                                             (9) 

 

There is a possibility that all the following relations can be easily verified:  

 

𝜔0𝜇0 + 𝜔1𝜇1=𝜇𝑇                                                      (10) 

𝜔0 + 𝜔1 = 1  
 

 Repetitively the calculation of class means and class probabilities can be done. This 

brings an effective algorithm: 

 

1. Compute the histogram and intensity level probabilities 

2. Initialize 𝜔1(0) 𝑎𝑛𝑑 𝜇1(0)  

3. Iterate through all possible thresholds: 𝑡 = 1, … max. intensity 

    3.1. Update 𝜔1 and 𝜇1 

    3.2. Compute 𝜎𝑏
2(𝑡)  

4. The max. 𝜎𝑏
2(𝑡) value is the final threshold. 

 

 
 

Figure 2. Flowchart depicting the working methodology in this research 
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3 RESULTS AND ANALYSIS 

 

This paper analyzed forest cover changes in the Municipality of Zubin Potok from 2016 to 

2017 by utilizing the vegetation index difference method of change detection algebra 

technique on the Sentinel-2A imagery data. Result interpretation is described in the following 

chapters.  

 

3.1 NDVI maps 

In this study, the RED (4) and NIR (8) bands of the Sentinel- 2A at 10m spatial resolution 

were used to generate NDVI2016 and NDVI2017 maps using the NDVI equation (1). In practice, 

water bodies, bare ground, artificial features, and other non-vegetative areas correspond 

below 0.1 NDVI values; and higher values indicate a higher photosynthetic activity such as 

shrubs, grasslands, crops, temperate, and tropical forest (Meneses-Tovar 2011/12). 

Table 3. Normalized difference vegetation indexes (NDVI2016 and NDVI2017) basic statistics 

Statistics NDVI 2016 NDVI 2017 

Minimum -0.98 -0.88 

Mean  0.86   0.84 

StdDev  0.08   0.11 

Maximum  0.99   1.00 
 

Table 3 presents the basic statistics of NDVI2016 and NDVI2017 maps, such as minimum, 

mean, standard deviation, and maximum. 

Figure 3 presents the NDVI2016 and NDVI2017 maps, and their values indicate the spatial 

distribution differences of forest cover between years. The color ramp from yellowish to 

reddish of the NDVI2017 map in the southeastern part of the study indicates the area with 

negative values or no vegetation due to fires or forest cutting by human activity. However, 

more detailed interpretations of the NDVI maps will be explained by applying the vegetation 

index difference method. 
  

 
Figure 3. The Normalized difference vegetation indexes - NDVI2016 (left) and NDVI2017 

maps (right) of the study area 



 Mapping forest cover changes in Zubin Potok, Republic of Kosovo 113 
 

 

Acta Silv. Lign. Hung. 17 (2), 2021 

 

3.2 Difference NDVI maps 

By applying the image difference method on NDVI pairs, the result is the image difference 

NDVI output. The color ramp of the difference image dNDVI2016-2017 map presented in Figure 

5 reveals the different intensity of pixels which indicate the differences in vegetation 

condition between annual years, either forest loss or forest growth. The histogram of the 

newly created difference image has both negative and positive pixel values. Pixels with 

negative and positive values indicate the changing area by scattering on the edges of the 

distribution curve (Singh 1989) when pixels with zero or close to zero values indicate 

unchanged by scattering around the zero (Lu et al. 2005). Figure 4 shows the distribution 

curve of difference image dNDVI(2016-2017), while table 4 shows the basic statistics of 

difference dNDVI(2016-2017). 

 

Table 4. Difference of NDVI2016 and NDVI2017 basic statistics 

Minimum Mean StdDev  Maximum 

-0.84 -0.01 0.05 1.02 

 

 

 

Figure 4. Histogram of dNDVI(2016-2017) map 

 

3.3 Change classification map 

The left map in Figure 5 shows the spatial distribution of the dNDVI (2016-2017), and the map 

on the right of the figure determines the classification change forest in this study by selecting 

Otsu’s automatic threshold. Of the three categories classes mapped inside the forest area, the 

forest class indicates the non-changed forest areas, the non-forest shows the previously 

deforested areas, and the deforestation class indicates cut-out forest areas between the years.  
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Figure 5. Difference NDVI(2016-2017) map (left) and classification change map (right) 

 

Table 5 shows the distribution of these three classes. Forest class covers the most class 

area with 98.19%, the non-forest class has the least with 0.46%, and deforestation class covers 

1.35% of the total area and represents clear-cutting forest activity. Also, the description of the 

sampling size for each category class is in included in this table.  

 

Table 5. Map category and sample size statistics 

 

Class name 

Classification statistics Sample size 

Area (ha)             Percent (%) Number per class Total 

(%) 

Forest 24423.57 98.19 50 33.33 

Non-Forest 113.27 0.46 50 33.33 

Deforestation 336.77 1.35 50 33.33 

Total 24873.61 100.00 150 100 

 

3.4 Sampling sites and verification 

Without the possibility of verifying field classification samples, time series of very high 

resolution (VHR) images on the Google Earth platform were utilized. All the category class 

samples (150) were covered with images in Google Earth and verified in the periods before 

and after the detection of forest cover changes (August 2016 - September 2017). In Figure 6, 

the yellow polygons represent the areas covered with forests in 2016, while the polygons in 

Figure 7 visually show the temporary removal of forest cover due to clear-cut. In Figure 8, 

the yellow polygons in the vast majority show the areas not covered with forests in 2016 that 

were deforested previously. On the other hand, in Figure 9, the yellow polygons clearly 

indicate that no artificial reforestation activities have occurred. 
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  Figure 6. Yellow polygons indicate the             Figure 7. The clear-cut forested areas in  

  forested area in 2016, visualized in GE            2017, interpreted and verified in GE         

 

     
  Figure 8. Example of the non-forested              Figure 9. The yellow polygons of non-forested  

  areas detected in 2016         areas in 2017 shows no human reforestation 

 

3.5 Validation of classification change 

Quantitative accuracy assessment was utilized using the error (confusion) matrix in ENVI 5.3 

software. Table 6 presents the error matrix of the reference data and classification change in 

percentage and number of pixels of the study area. From 50 samples of deforestation area, 

reference data shows that 40 belong to the deforestation class, eight to non-forest, and one of 

them remain in the forest class. From 50 samples of non-forest areas, eight were placed 

incorrectly in the deforestation class and none in the forest class. Only one sample site of the 

forest class belongs to the deforestation class. 

 

Table 6. Error matrix table of reference data and classification change 

Reference data pixel and (percent) 

C
la

ss
if

ic
at

io
n
 p

ix
el

 a
n
d

  
 

(p
er

ce
n
t)

  
  
  
  
  

 

Class name Forest Non-Forest Deforestation Total 

Forest 
49 

(94.23) 
 

0 

(0.00) 
 

1 

(2.04) 
 

50 

(33.33) 
 

Non-Forest 
0 

(0.00) 
 

42 

(85.71) 
 

8 

(16.33) 
 

50 

(33.33) 
 

Deforestation 
3 

(5.77) 
 

7 

(14.29) 
 

40 

(81.63) 
 

50 

(33.33) 
 

Total 
52 

(100.00) 
 

49 

(100.00) 
 

49 

(100.00) 
 

150 

(100.00) 
 

 

The overall accuracy of classification change is calculated by dividing the total sum of 

diagonal correctly classified pixels (131) by the total number of reference points (150). The 

compounded overall accuracy was 87.33%. Producer accuracy is calculated by dividing each 

4/21/2016 9/16/2017 

4/21/2016 9/16/2017 
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diagonal pixel value class by the total of each column. Table 7 shows that the highest 

producer’s accuracy possesses forest area (94.23 %), then the non-forest areas ranges to 

(85.71 %), and the least have deforestation area around 81.63 %. User accuracy is calculated 

by dividing each of the diagonal pixel value classes by the total of each row. From the results 

of Table 6, the forest area has the highest user accuracy (98.00), followed by non-forest 

(84.00 %), and deforestation (80.00 %). 

 

Table 7.  Validation measurements of classification change 

Class name 

Commission 

error (%) 

User accuracy 

(%) 

Omission 

error (%) 

Producer accuracy 

(%) 

Forest   2.00 98.00   5.77 94.23 

Non-Forest 16.00 84.00 14.29 85.71 

Deforestation 20.00 80.00 18.37 81.63 

 

 

4 DISCUSSION AND CONCLUSIONS 

 

Acquiring spatial information on vegetation status using geospatial technologies has become 

necessary for sustainable forest management. In this research, we used medium-spatial 

resolution satellite imagery of the Sentinel 2-A platform to detect and map the deforestation 

process between 2016 and 2017 within the forest area. The image difference method is easy to 

apply to conduct a grayscale image by subtracted vegetation indices (VIs) of two dates NDVI, 

but it is difficult to manually setup the appropriate thresholds. The application of the Otsu’s 

threshold on the image differenced NDVI monochrome image (NDVI (2016-2017)) enabled us to 

detect and map the deforested and non-forested areas that were previously under forest. The 

results of accuracy assessment show that this approach is acceptable (overall accuracy was 

87.33%). Researchers have used different forest classification approaches, change detection 

methods, and algorithms to evaluate the forest cover change process. They have also utilised 

multi-spectral images and VIs. The VIs of the NDVI, enhanced vegetation index (EVI), and 

leaf area index (LAI) had derived from multi-spectral images used by Elhag et al. (2021) for 

mapping spatial-temporal land cover distribution, mapping bare soil index (BSI), and in 

identifying the significant land cover changes over 20 years (1995-2015) in the Sougia 

catchment of Crete Island, Greece. The VIs of NDVI was derived from Landsat data, EVI was 

derived from MODIS time-series and used as an optimized index, and LAI as NDVI 

derivatives to define up to ten land cover classes. The supervised image classification method 

using Support Vector Machine (SCM) train algorithm was applied to create land cover maps 

for three periods: 1995, 2005, and 2015 and to assess the classification accuracy. Their results 

compared with CLC categories map as ground truth data. The overall accuracy of the SVM 

classification algorithm was over 87.00 % in three periods. As a change detection method, 

Elhag et al. (2021) used a post-classification comparison between the spanning times and 

revealed a significant depletion of -14% in the coniferous forest from 1995 to 2015. Nath and 

Acharjee (2013) used the NDVI index to generate maps by slicing five ranges of NDVI 

applying the Jenks Natural Breaks classification method in their study area. The final step in 

their research was the creation of the vegetation cover change map, where NDVI categories 

map (decreased, some decreased, some increase, and increased) of 1989 and 2010 had crossed 

and revealed significant changes. From the total area (2893.59) hectares, reduced class shows 

44.40%, followed by some decrease 37.93% and remaining falls under some increase and 

increasing trend. Candra (2020) has developed a method to detect deforestation in his work in 

Kalimantan and Sumatera (Indonesia) using multitemporal satellite imagery from 2018-2019. 
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He called this method Multitemporal Deforestation Detection (MDD). The main idea was to 

determine the difference between the reflection values in the targeted image (image that has 

deforested pixels) and in the original one (image without change of forest pixels). To develop 

this algorithm, Candra took two main steps: a) Band selection – several pixels representing 

the deforestation from the target and original image are taken, and the change in their 

reflection values is calculated. The bands that have the most significant changes in values 

from the results are selected and the threshold is also selected by performing some 

observations. b) With the created algorithm, the combination is made using NDVI and 

difference normalized burn ratio (dNBR) - to increase the accuracy of the results. The 

commission error results of deforestation detection were a total of 0.63%, while, on the other 

hand, the omission error is 0.33%. Given that the errors are small, this then provides the user 

accuracy and producer accuracy higher accuracy. Concerning our study, the selection of 

Equalized Stratified Random sampling strategy samples for classification verification has 

reduced the overestimation of the classification result, especially for the forest and non-forest 

class, which were the target of the classification. As the verification process of the samples 

relayed only VHR Google Earth images, field verification seems necessary in future research, 

especially to check the regeneration process at the early stage, which is not visible from 

satellite images. The difficulty during this study was that the work was based solely on using 

Remote Sensing and GIS desktop software, making it impossible to directly access platforms 

that offer real-time data for spatial analysis and change detection.  

 Therefore, in the future, such research would be easier and more resource intensive using 

modern web-based platforms such as Google Earth Engine (GEE), which provides high-speed 

data analysis for large spatial extents using processing function and provide algorithms to 

gather data from multiple years, satellite sensors and models (Zurqani et al. 2018). The results 

of the image difference method applied in this study revealed that forest cover in this 

municipality has changed both from human (forest cutting) and natural factors (forest fire). 

Based on the Kosovo Green Report 2018 (Report, 2018), during 2017, around 2.040 m3 of 

timber was confiscated from illegal loggers by communal authorities and 2.054 ha forests 

experienced fires in Kosovo. Illegal forest cutting is much related to the poor social and 

economic situation, especially in poor rural areas where forest resources are utilized for 

survival. From the overall forest-covered of 24,873.61 hectares, 24,423.57 ha or 98.19 % 

mapped as forest cover, 113.75 hectares or 0.46 % as non-forest, and 336.77 or 1.35 % of the 

area forest mapped as deforestation. The percentage of deforestation area is worthy of 

attention, and in the future, we intend to investigate spatial-temporal forest cover changes till 

to present time. 
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