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We employ metadynamics simulations to calculate the free-energy landscape of thin ferromagnetic films
and perform a systematic study of the temperature dependence of magnetic anisotropy and of the spin-
reorientation transitions. By using a simple spin model we recover the well-known power-law behavior of the
magnetic anisotropy energy against magnetization and present a rather detailed analysis of the spin-reorientation
transitions in ultrathin films. Based on tensorial exchange interactions and anisotropy parameters derived from
first-principles calculations, we perform simulations for Fe double layers deposited on Au(001) and W(110).
In the case of Fe2W(110) our simulations display an out-of-plane to in-plane spin-reorientation transition in
agreement with experiments.
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I. INTRODUCTION

Since Néel’s seminal paper in 1954 [1], considerable in-
terest has been focused on the magnetism of thin films and
multilayers. Magnetic anisotropy plays a key role in several
phenomena important for technological applications. In a
magnetic data storage device the information is stored by con-
trolling the magnetic orientation of a small magnetic domain
that is retained by magnetic anisotropy. In the early implemen-
tation of magnetic recording the magnetization of the bits was
parallel with the plane of the film. Application of materials
with perpendicular magnetic anisotropy (PMA) triggered an
order of magnitude increase of the storage density. The first
realization of a perpendicular magnetic recording occurred
more than a decade ago [2]; recent reviews on PMA can be
found in Refs. [3,4]. In order to further increase the storage
density, the grain size in the recording medium should be
decreased, which requires a high uniaxial magnetic anisotropy
of the thin film. Due to the large magnetic anisotropy of the
recording media the field produced by the write head might
no longer be sufficient to overcome the barrier to switch
the magnetization. To circumvent this issue a heat-assisted
magnetic recording (HAMR) was proposed [5–7]. In HAMR
the magnetic anisotropy is decreased by temporarily heating
the domain storing the information.

The temperature dependence of magnetic anisotropy of
thin films has been investigated both experimentally [8–11]
and theoretically [12–15]. The magnetic anisotropy energy
(MAE) at finite temperature is usually defined as the dif-
ference between the free energy of the in-plane magnetized
system and that of the normal-to-plane magnetized system.
Magnetic simulations provide different tools for sampling the
complex free-energy surfaces. One branch of such schemes
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is formed by the adaptive biasing potential methods such as
the Wang-Landau algorithm [16], umbrella sampling [17],
and metadynamics [18]. In metadynamics a biasing poten-
tial is constructed as a sum of Gaussians centered along
the trajectory in the space of the collective variables [18].
In well-tempered metadynamics the smooth convergence of
the biasing potential is guaranteed by changing adaptively
the height of the Gaussians [19]. This algorithm is proved
to converge to the exact free energy [20]. Implemented in
micromagnetic simulations, metadynamics has recently been
employed to study the vortex nucleation process in a magnetic
nanodot [21].

In this work we perform a systematic study of the
temperature dependence of magnetic anisotropy and spin-
reorientation transitions (SRTs) by using metadynamics. In
Sec. II we outline the main features of metadynamics simu-
lations with the aim of studying the free-energy landscape of
a thin ferromagnetic film. In Sec. III we first present a model
study of the temperature dependence of magnetic anisotropy
and a rather detailed analysis of the SRT in ultrathin films.
Based on tensorial exchange interactions and anisotropy pa-
rameters derived from first-principles calculations, we then
present simulations on Fe bilayers deposited on Au(001) and
W(110), and finally, we summarize our results.

II. DETAILS OF THE METADYNAMICS SIMULATIONS

The magnetic properties of thin films of transition metals
are often described by classical spin models [22]. In most of
this work we choose a simple Heisenberg model to describe
the magnetic properties of an ultrathin film with uniaxial
anisotropy and anisotropic exchange interactions:

H = −1

2

∑
〈i, j〉

(Jsis j − d szisz j ) −
∑

i

λis
2
zi, (1)
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where si is a unit vector representing the direction of the
atomic magnetic moment at site i, only nearest neighbors
are considered in the first sum on the right-hand side with
isotropic exchange coupling J and an anisotropic part d , and
λi are the uniaxial anisotropy constants. More complex spin
models will be presented and used only in Secs. III C and
III D in the context of Fe bilayers on Au(001) and W(110).

The free energy is sampled along an appropriately cho-
sen collective variable (CV) labeled by η. For our present
study we chose the z (normal-to-plane) component of the
normalized magnetization, η = Mz/M, as the collective vari-
able, where Mz = ∑

i szi and M = | ∑i si|. The key quantity
in metadynamics is the bias potential Vb(η) added to the
energy of the system. Although in most of its applications
metadynamics is implemented in molecular dynamics, there
are examples where it is successfully used in Monte Carlo
simulations [23,24] as well. If a Monte Carlo step (MCS)
is interpreted as a time step, the bias potential will be time
dependent as well. After every τ MCS a Gaussian potential
centered at the actual value of the CV, ηact, is added to the
bias potential:

Vb(η, t + τ ) = Vb(η, t ) + VG(η − ηact ), (2)

VG(η − ηact ) = we− (η−ηact )2

2σ , (3)

where σ and w are the width and the height of the Gaussian,
respectively. In well-tempered metadynamics [19] the height
of the Gaussian is chosen to change with the time τ .

In our metadynamics simulations we applied a simple
Metropolis algorithm [25] with the probability of a random
change in the spin at site i si → s′

i,

P(si → s′
i ) = min{1, e−β[E (s′ )+Vb(η(s′ ))−E (s)−Vb(η(s))]}, (4)

where β is the inverse temperature and E (s) is the energy of
the spin configuration given by Eq. (1). After a predefined
number of Monte Carlo steps the biasing potential is updated
by adding a Gaussian centered at the actual value of the CV

with a height of w = w0e− Vb (η)
kBTm , where Tm is an appropriately

chosen temperature as is explained in the procedure of well-
tempered metadynamics [19]. In equilibrium, i.e., when the
bias potential becomes stationary, the free energy F (T ) of the
system is identified with the negative of the bias potential,
F (T ) = −Vb(η(T )), where η(T ) stands for the equilibrium
value of the CV [20].

The values of the CV chosen for our model must be within
the interval [−1, 1], and the free energy has a discontinuity
at the boundaries which cannot be accurately reproduced by
a sum of finite-width Gaussians, as detailed in Refs. [24,26].
In order to eliminate this problem, the procedure proposed by
Crespo et al. [24] has been modified in the following manner.
Whenever the bias potential is updated, an extra Gaussian
with the same width and height is added out of the physically
relevant interval of the CV:

Vb(η, t + τ ) = Vb(η, t ) + VG(η − ηact )

+
{

VG(η − 2 + ηact ) if η > 0,

VG(η + 2 + ηact ) if η < 0,
(5)

where VG(η) is the Gaussian potential given by Eq. (3). This
scheme clearly makes the bias potential continuous at η =
±1. It should be noted that Vb(η) does not go smoothly to
zero in the nonphysical region, but this part of the CV is never
sampled during the simulation. In order to explore the free-
energy surface along the CV multiple-walker metadynamics
[27] was applied. The simulations were done simultaneously
on typically four replicas, each contributing equally to the
growth of a joint bias potential.

The parameters of the bias potential were optimized for
each system under consideration. The half width σ determines
the grid on the space of the CV, where the bias potential is
sampled. In general, we chose σ = 0.03, making it sufficient
to sample 150 points in the [−1 : 1] interval of the CV in
order to get a smooth curve for the free energy. The value
of the metatemperature Tm depends on the Curie temperature.
Obviously, in the high-Tm limit the normal (nontempered)
metadynamics is regained, and the bias potential will not
converge. If Tm is too small, then the convergence will be very
slow. In the present study a few times the Curie temperature
is used for Tm. The parameter w0 should be chosen to be
considerably smaller than the anisotropy energy of the whole
lattice.

Since the free energy is sampled along a simple one-
dimensional collective variable, it is worth mentioning that
umbrella sampling [28] could also efficiently be applied to
study the temperature dependence of the magnetic anisotropy
of thin films. A detailed comparison of the two methods is,
however, out of the scope of the present work.

III. RESULTS AND DISCUSSION

A. Temperature dependence of the magnetic anisotropy energy

In order to validate metadynamics for the study of finite-
temperature magnetism we first investigated the temperature
dependence of the MAE K (T ) of a monolayer. According
to the theoretical model of Callen and Callen [29] based on
on-site anisotropy, the temperature dependence of the MAE
is expressed in terms of the magnetization M(T ). In the low-
temperature limit the MAE shows a power-law dependence
on the magnetization. Although a K (T ) ∝ M(T )γ scaling
can be derived for arbitrary temperatures, at elevated tem-
peratures the magnon-magnon interactions, neglected in the
theory, become increasingly important; thus, the scaling of the
MAE at high temperature will differ from the low-temperature
behavior. When � is the order of the on-site anisotropy in the
spherical harmonics expansion, at low temperature γ = �(� +
1)/2 applies. This implies that for on-site uniaxial anisotropy,
i.e., � = 2, the MAE should exhibit a K (T ) ∝ M(T )3 scaling.
In the case of strongly itinerant magnetic systems both the
on-site and the two-site anisotropy should be present in the
spin model, and the scaling behavior of the MAE can be
remarkably different from that for only the on-site anisotropy
[12,13].

The isotropic exchange couplings in ferromagnetic systems
are closely related to the Curie temperatures. For ultrathin
films of transition metals the Curie temperature is a few
hundred kelvins, and the corresponding effective exchange
coupling J is few tens of meV. The uniaxial anisotropy
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FIG. 1. Temperature dependence of the magnetic anisotropy en-
ergy K (T ) of a monolayer with uniaxial on-site anisotropy λ =
0.01J and vanishing exchange anisotropy d = 0. In the inset the
free energy is shown at T/TC = 0.2 as a function of the CV η. The
simulations have been done on a 32 × 32 lattice with the parameters
Tm = 10J , w0 = 0.02J , and σ = 0.03 (see Sec. II).

constant for hcp Co is 70 μeV [30], and for a broad scale
of thin films on different substrates it is in the range of 10–
200 μeV [31]. According to the above experimental values,
compared to the effective isotropic coupling, the uniaxial
anisotropy constant (λ/J) and the anisotropy of the exchange
coupling (d/J) have been chosen to be between 0.001 and
0.01 for the subsequent simulations.

The first simulation was performed for a monolayer con-
taining ferromagnetic nearest-neighbor exchange coupling
and uniaxial on-site anisotropy with the easy axis perpendic-
ular to the plane [d = 0, λ > 0; see Eq. (1)]. The ground
state of the system is ferromagnetic with a normal-to-plane
orientation. The free energy has a quadratic dependence on
the CV, as shown in the inset of Fig. 1. Note that throughout
this work the free energy is presented as being normalized
to one spin. The parabolic behavior of the free energy is re-
tained in the whole temperature range below the paramagnetic
phase transition. The free energy has a maximum at η = 0,
referring to the in-plane configuration, and it has minima at
η = ±1, representing out-of-plane magnetic orientations. The
difference between these two extrema is defined as the MAE.
Numerically more efficiently, K (T ) can be obtained as the
second-order coefficient of a symmetric parabola fitted to the
free energy. This is plotted in Fig. 1. As the temperature
increases, the curvature of the free energy as a function
of CV gradually decreases, and it tends to zero above the
Curie temperature. The Curie temperature is identified as the
temperature corresponding to the maximum of the specific
heat. Although the Curie temperature scales with the system
size, it should be chosen to be compatible with the size of the
system for which the MAE is calculated.

The magnetic anisotropy in Fig. 1 almost linearly decreases
with the temperature, similar to the results obtained by us-
ing constrained Monte Carlo simulations [15] for uniaxial
anisotropy. The nonzero value of the magnetic anisotropy
above the Curie temperature is the consequence of the finite
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FIG. 2. Log-log plot of the magnetic anisotropy energy of a 32 ×
32 square lattice with uniaxial anisotropy λ = 0.01J and vanishing
exchange anisotropy d = 0 as a function of the magnetization. Note
that both the MAE and the magnetization are normalized to zero
temperature.

size of the system. In Fig. 2 the MAE is plotted against the
magnetization on a log-log mesh. As can be seen, at low
temperatures the results show excellent agreement with the
scaling behavior predicted by Callen and Callen [29].

If the uniaxial anisotropy λ is removed from the model,
Eq. (1), and anisotropic exchange d < 0 is introduced, the
scaling behavior of the anisotropy energy will be different,
as shown in Fig. 3. At very low temperatures the system
behaves as in the case of uniaxial on-site anisotropy, but
below M(T )/M(0) � 0.8 the exponent γ in the relationship
K (T ) ∝ M(T )γ changes from 3 to 2. The occurrence of
the exponent γ = 2 in the low-temperature scaling of the
MAE was explored in earlier experimental [8] and theoretical
studies [12,13,32] for FePt alloys.
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FIG. 3. Log-log plot of the magnetic anisotropy energy of a
32 × 32 square lattice with anisotropic exchange coupling d = 0.01J
and zero on-site anisotropy λ = 0 as a function of the magnetization.
Note that both the MAE and the magnetization are normalized to
zero temperature.
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FIG. 4. Magnetic anisotropy energy as normalized to zero tem-
perature of a model monolayer system as a function of the temper-
ature. The metadynamics simulations have been done on a 64 × 64
rectangular lattice with competing on-site and nearest-neighbor two-
site anisotropy, λ = 0.05375J and d = 0.025J , respectively. In the
inset the free energy is shown for different temperatures as a function
of the collective variable, η = Mz/M.

B. Spin-reorientation transitions

The interplay of different types of anisotropies often
leads to a reorientation of the magnetization direction. The
temperature-driven spin-reorientation transition in thin films
is usually explained by the competition of the uniaxial on-
site anisotropy and the shape anisotropy [33–36]. For planar
systems the shape anisotropy due to the magnetic dipolar
interaction always prefers in-plane magnetization, while the
on-site anisotropy of a magnetic overlayer frequently prefers a
normal-to-plane orientation. The shape anisotropy due to the
anisotropic exchange interaction, which is a consequence of
the spin-orbit coupling, may also prefer both directions.

In the model given in Eq. (1) the two competing
anisotropies are the on-site uniaxial anisotropies λi and the
anisotropy of the exchange coupling d . Considering a single
square lattice, in the case of λ > 2d the ground state is a
normal-to-plane ferromagnetic. If λ − 2d is not too large,
a temperature-induced normal-to-plane to in-plane SRT can
occur. In the inset of Fig. 4 the free energies for a monolayer
with λ = 0.05375 J and d = 0.025 J are shown for different
temperatures, as obtained from metadynamics simulations. At
low temperatures the minima of the free energy correspond
to η = Mz = ±1, i.e., to a normal-to-plane configuration. As
the temperature increases, the curvature of the free energy
changes sign, and the minimum of the free energy moves
to η = Mz = 0, i.e., to in-plane magnetic orientation. The
magnetic anisotropy energy K (T ) in Fig. 4 is zero at the
transition temperature Tr. It is worthwhile to mention that
if the magnetization turns into the plane, the system will
have a gapless magnetic excitation spectrum, and long-range
magnetic order will no longer exist according to the Mermin-
Wagner theorem. However, the magnetic anisotropy energy
can still be defined as the free-energy difference between the
normal-to-plane and in-plane magnetic orientations. The free

energy shown in the inset of Fig. 4 demonstrates a first-order
phase transition. Moschel and Usadel [37], using MC simu-
lations, and Fridman et al. [38], applying a Hubbard-operator
technique, also confirmed that a monolayer exhibits first-order
SRT.

In the case of a bilayer our simple model results in a
more feature-rich phase diagram where both first-order and
second-order SRTs can occur. A mean-field analysis of a
very similar model was performed almost two decades ago
[39], and here we recall some of the results of that study.
As a model system we consider a bilayer on an fcc(001)
surface with nearest-neighbor interactions J and d and on-
site anisotropy parameters λ1 and λ2. At zero temperature,
supposing uniform magnetization within each monolayer but
different orientations in the two monolayers, the energy of the
system can be written as

E = −4J + (2d − λ1) cos2(ϑ1) + (2d − λ2) cos2(ϑ2)

− 4J cos(ϑ1 − ϑ2) + 4d cos(ϑ1) cos(ϑ2), (6)

where ϑi is the polar angle with respect to the axis perpendic-
ular to the layers (z). In the case of uniform in-plane (ϑ1 =
ϑ2 = π/2) and normal-to-plane (ϑ1 = ϑ2 = 0) orientations
the energy has an extremum. The energies of these two
particular configurations coincide if 4d = λ1 + λ2, defining a
line in the {λ1, λ2} parameter space. In the vicinity of this line
a canted magnetic configuration exists. The boundaries of the
region of the canted states can be obtained from the stability
condition: ∣∣∣∣ ∂2E

∂ϑiϑ j

∣∣∣∣
ϑi=0,π/2

= 0, (7)

yielding the lower boundary line(
J + d − λl

1

2

)(
J + d − λl

2

2

)
= (d − J )2 (8)

and the upper boundary line(
J − 2d + λu

1

2

)(
J − 2d + λu

2

2

)
= J2. (9)

Below the line given by Eq. (8), λ1 + λ2 < λl
1 + λl

2, the
ground state is in plane ferromagnetic, and above the line
given by Eq. (9), λ1 + λ2 > λu

1 + λu
2, it is normal to the plane

ferromagnetic.
At finite temperature the mean-field free energy of the

double layer can be expressed as

F = 4J

2
M2 − 4d

2
(Mz )2 − kBT ln(Z1) − kBT ln(Z2), (10)

where

Zi =
∫

I0[4JβMx sin(ϑ )] exp[4(J − d )βMz cos(ϑ )]

× exp[λiβ cos2(ϑ )] sin(ϑ )dϑ, (11)

I0(x) is the modified Bessel function of the first kind, and Mx

and Mz are the x and z components of the magnetization of the
bilayer, respectively. As was shown in Ref. [39], the magneti-
zation can go to zero either via an in-plane or normal-to-plane
direction at temperatures Tx and Tz, respectively, the higher
of which can obviously be associated with the mean-field
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FIG. 5. Phase diagram of an fcc(001) ferromagnetic bilayer de-
scribed by the model Hamiltonian Eq. (1) with nearest-neighbor
exchange interactions, J and d , and uniaxial anisotropies, λ1 and
λ2. For the case of d = 0.005J , the lower solid red line shows the
boundary where the normal-to-plane and in-plane configuration have
the same energy, while the region of canted ground states given
by Eqs. (8) and (9) is comparable with the linewidth. The upper
solid red line bounds the area where a normal-to-plane to in-plane
spin reorientation occurs according to mean-field theory. This area
becomes considerably narrower from metadynamics simulations, as
shown by the colored area. The color bar to the right refers to
Tr/TC. The dashed and dotted lines are the boundaries of the region
with a canted ground state for d = 0.05J . For this case, points A
(λ1/d = 8.66, λ2/d = 0) and B (λ1/d = λ2/d = 4.33) are chosen
for further investigations (see the text).

estimation of the Curie temperature TC. Minimizing the free
energy with respect to the magnetization of the system with
the constraint Mz = 0 or Mx = 0 and using a high-temperature
expansion yield the following expressions for Tx and Tz to first
order in λ1 and λ2:

kBTz = 8

3
(J − d ) + 4

30
(λ1 + λ2), (12)

kBTx = 8

3
J − 2

30
(λ1 + λ2). (13)

An out-of-plane to in-plane SRT can occur only when the
ground-state magnetization is out of plane and Tz < Tx = TC.
In the case of a reversed SRT the ground-state magnetization
has to be in plane (or canted), and Tx < Tz = TC. In the
parameter space {λ1, λ2} the region where SRT can occur is
bounded by the line defined by Eq. (8) and by the line where
Tx = Tz: λ1 + λ2 = 40

3 d .
We performed metadynamics Monte Carlo simulations to

explore the phase diagram of a model bilayer. Although the
anisotropy parameters λi and d can take both positive and
negative values, in order to keep the MC simulations tractable,
our investigations were restricted to the positive quarter of
the parameter space {λ1/d, λ2/d}. The phase diagram for
d = 0.005J is shown in Fig. 5. In this case, the region
where canted ground states exist, determined by Eqs. (8)
and (9), is extremely narrow. The area where a normal-to-
plane to in-plane SRT occurs provided by the metadynamics
simulations (colored region) is considerably narrower than
the corresponding area predicted by the mean-field theory
(bounded by the two solid red lines). The coloring clearly
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FIG. 6. Free-energy profiles from metadynamics simulations of
a 2 × 64 × 64 bilayer with nearest-neighbor exchange interactions,
d = 0.05J , and anisotropy constants λ1 = 8.66d , λ2 = 0 (point A
in Fig. 5). The temperature is measured in units of TC. The low-
temperature magnetic configuration is canted (0 < η < 1), while by
increasing the temperature the system continuously turns into the
phase with in-plane magnetization, showing the nature of a second-
order phase transition.

demonstrates that the reorientation temperature Tr gradually
approaches the Curie temperature as the uniaxial anisotropy
constants increase, while parallel to the lines λ1 + λ2 = const
it is almost constant. If the uniaxial anisotropy is further
increased, the system keeps its normal-to-plane ferromagnetic
order until the ferromagnetic-paramagnetic phase transition.

Increasing the two-site anisotropy d , the area of canted
ground states on the phase diagram becomes wider. In the
case of d = 0.05J , the lower and upper boundaries of the
canted region are indicated by the dotted and dashed lines
in Fig. 5, respectively. For further investigations we choose
two points in the phase diagram: A (λ1/d = 8.66, λ2/d = 0),
representing a canted ground state lying in the vicinity of the
upper boundary line of this region (dashed line in Fig. 5),
and B (λ1/d = λ2/d = 4.33), corresponding to a normal-
to-plane ferromagnetic ground state. For the first choice of
(λ1, λ2) the magnetization of the system continuously turns
into the plane as the temperature is increased, and considering
the normal-to-plane component of the magnetization as the
order parameter, the system undergoes a second-order SRT.
This is demonstrated in Fig. 6, where the free energies of a
2 × 64 × 64 lattice are shown as a function of the CV at dif-
ferent temperatures close to the SRT. Below the reorientation
temperature, Tr/TC ∼ 0.45, the magnitude of the minimum
position of the free energy ηmin decreases continuously with
increasing temperature, while at the in-plane magnetization
η = 0 there is a maximum in the free energy. Above the
reorientation transition temperature the in-plane configuration
belongs to the minimum of the free energy, which means the
order parameter is identical to zero.

If the uniaxial anisotropy parameters are the same for
both layers, λ1 = λ2, no canted ground state exists for the
bilayer; therefore, the mean-field description of temperature-
dependent magnetism is analogous to that of the monolayer.
The results of metadynamics simulations show, however,
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FIG. 7. Free-energy profiles from metadynamics simulations of
a 2 × 64 × 64 bilayer with nearest-neighbor exchange interactions,
d = 0.05J , and anisotropy constants λ1 = λ2 = 4.33d (point B in
Fig. 5). The temperature is measured in units of TC. At low temper-
ature the magnetization points normal to the plane (η = ±1), while
at the reorientation temperature, Tr ∼ 0.366TC, it suddenly jumps to
in plane, as η = 0 becomes the minimum position of the free energy,
thus displaying a first-order phase transition.

some different features for the bilayer and the monolayer. Ac-
cording to Fig. 4, the SRT for the monolayer is discontinuous,
and the normal-to-plane and in-plane phases cannot coexist.
The free energies for the bilayer with anisotropy parameters
λ1 = λ2 = 4.33d are shown in Fig. 7. Below the reorientation
temperature the free energy has minima at η = ±1 which
correspond to a normal-to-plane average magnetization. As
the temperature increases, a local minimum of the free energy
evolves at η = 0, referring to in-plane magnetization. Further
increasing the temperature the local maximum at η = 0 be-
comes the global maximum. The spin-reorientation transition
is, therefore, of first order as in the case of the monolayer, but
the phases with in-plane and normal-to-plane magnetization
can coexist.

C. Fe2Au(001)

Over the past three decades, thin iron films deposited
on the surface of gold have been the subject of extensive
investigations, especially in the context of low-dimensional
magnetism (see, e.g., Ref. [40] and references therein). An
Fe monolayer grown on Au(001) has often been referred
to as a prototypical two-dimensional ferromagnet. The film
FenAu(001) exhibits a normal-to-plane magnetic ground state
for n � 2, and the magnetisation of the Fe layers undergo
a thickness-driven spin reorientation when the thickness of
the Fe film reaches three monolayers [40]. While the driving
force of this spin reorientation is the magnetostatic shape
anisotropy, it is worth studying the temperature dependence
of the spin-orbit-induced MAE by using the metadynamics
simulations introduced in this work. In this section we present
such a study for Fe2Au(001).

For the simulations we used the following spin Hamilto-
nian:

H = −1

2

2∑
p,q=1

∑
i, j

sT
piJpi,q jsq j −

2∑
p=1

∑
i

λp(spiẑ)2, (14)

TABLE I. Calculated layer-dependent magnetic anisotropy pa-
rameters (in units of meV) for the Fe2Au(001) layers. The Fe layer
at the interface with Au is denoted by I, and the one at the surface
is denoted by S. Negative (positive) values of the anisotropies prefer
the in-plane (normal-to-plane) orientation of the magnetization.

Layer λ Jzz
p − Jxx

p

I −0.097 0.181
S 0.360 −0.314

where p and q denote layers, i and j stand for Fe atoms within
each layer, ẑ is a unit vector parallel to the z axis, Ji j is a
3 × 3 matrix of exchange interactions, and the sum in the
first term is not restricted to only the nearest neighbors. The
trace of the tensor Ji j can be identified as three times the
isotropic exchange coupling Ji j , while the symmetric and an-
tisymmetric parts of the tensor correspond to the pseudodipo-
lar and Dzyaloshinskii-Moriya interactions, respectively [41].
In order to determine the exchange tensors we applied the
relativistic extension of the torque method [41] implemented
in the framework of the screened Korringa-Kohn-Rostoker
(SKKR) method [42]. Since the (001) surface of fcc Au
fits almost perfectly on the (001) surface of the bcc Fe (the
lattice mismatch is less than 0.6%), we used two-dimensional
translational symmetry for the whole system using the lattice
constant of Au (2.87 Å). The Fe-Fe interlayer distance has
been chosen to be the same as the bulk value (1.44 Å), and the
Fe-Au interlayer distance was 1.6 Å.

The calculated spin model parameters were then used
in Monte Carlo and metadynamics simulations. In order to
reduce finite-size effects, the Curie temperature of the system
has been determined from the intersection of the Binder
cumulants, yielding TC � 380 K, in good agreement with the
experiments [43]. In order to characterize the anisotropy of the
exchange tensors the lattice sum of the exchange couplings
has been introduced:

Jp = 1

2

∑
q=1,2

∑
j

Jp0,q j, (15)

where Jp0,q j is the coupling tensor between an arbitrary site 0
in layer p and site j in the layer q. Due to the C4v symmetry
of the lattice Jp is a diagonal matrix with identical Jxx

p and Jyy
p

elements.
The layer-dependent uniaxial anisotropy constants λp and

the anisotropy of exchange couplings Jzz
p − Jxx

p are summa-
rized in Table I. Interestingly, the on-site anisotropies and
the exchange anisotropies have different signs in both the
interface (I) and surface (S) layers, and they also change
sign between the two layers. Nevertheless, in both layers
the positive contributions dominate, resulting in an overall
normal-to-plane magnetic ground state for the bilayer. The
temperature-dependent MAE obtained from metadynamics
simulations is plotted in Fig. 8 at low temperatures as a
function of the magnetization. It is remarkable that the MAE
exhibits a K ∝ M3 dependence similar to the Callen and
Callen theory for � = 2 [29], although the anisotropy has both
on-site and two-site contributions (see Table I). We have to
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FIG. 8. Temperature dependence of the magnetic anisotropy en-
ergy of Fe2Au(001). The simulations were performed on a 2 ×
64 × 64 lattice with the parameters Tm = 10TC, w0 = 0.16TC, and
σ = 0.04.

emphasize that in such cases the temperature dependence of
the MAE has no predictable power-law form; for systems with
uniaxial anisotropy one can expect an exponent between 2
and 3.

D. Fe2W(110)

Ultrathin Fe films epitaxially grown on W(110) have been
studied intensively [44,45] due to their peculiar magnetic
properties, such as in- and out-of-plane anisotropy [46],
spin reorientation [36,47], and domain wall formation [48].
In this section we consider the double-layer (DL) system
Fe2W(110). The magnetic ground state of this system strongly
depends on the size and shape of the double-layer areas in
the experiments [36,49]. Fe DL stripes exhibit a periodic
magnetic structure with alternating out-of-plane domains sep-
arated by 180◦ walls [50]. For larger DL islands there is
a normal-to-plane ferromagnetic order at low temperature
[47], which turns into the (110) in-plane direction at higher
temperature [51].

As for Fe2Au(001), the electronic structure of Fe2W(110)
was determined self-consistently via the SKKR method,
and the relativistic torque method was employed to find
the exchange tensors and anisotropy parameters. Since a
DL of Fe grows pseudomorphically on W(110) [52], two-
dimensional translational symmetry is applied throughout
the whole system with the lattice constant of bcc bulk W
(aW = 3.16 Å). According to experimental [53] and theo-
retical [54] studies, there is a considerable inward relax-
ation of the Fe layers due to the large lattice mismatch
between Fe and W. Following Ref. [55], the Fe-W and
Fe-Fe layer distances were chosen as 2.01 Å and 1.71 Å,
respectively. In good agreement with previous calculations
[48,54], we obtained 2.18μB and 2.73μB for the spin-
magnetic moments of Fe in the surface and interface layers,
respectively.

We employed a spin model similar to the one we used for
the Fe2Au(001) layer, but because of the C2v symmetry of the

TABLE II. Calculated layer-dependent magnetic anisotropy pa-
rameters (in units of meV) for the Fe2W(110) layers. The Fe layer
at the interface with W is denoted by I, and the one at the surface is
denoted by S. The notations x, y, and z stand for the (110), (001), and
(110) directions, respectively.

Layer λx λy Jzz
p − Jxx

p Jzz
p − Jyy

p

I 0.611 0.261 −0.603 0.138
S −0.055 −0.137 0.377 0.106

system biaxial anisotropy applies,

H = −1

2

2∑
p,q=1

∑
i 
= j

sT
piJpi,q jsq j

+
2∑

p=1

∑
i

λpx(spix̂)2 +
2∑

p=1

∑
i

λpy(spiŷ)2, (16)

where x̂ and ŷ are unit vectors parallel to the (110) and
(001) in-plane directions, respectively. The layerwise on-site
and exchange anisotropy parameters, as explained in the case
of Fe2Au(001), are summarized in Table II. The anisotropy
of the exchange couplings in the interface layer prefers the
in-plane (110) direction which is partially compensated by
the contribution from the surface layer. On the contrary, the
on-site anisotropy of the interface layer clearly prefers the
(110) direction for the magnetization. The MAE calculated as
the difference between the energies of the system magnetized
in the (110) in-plane direction and parallel to the normal-to-
plane (110) direction, E110 − E110 = 0.330 meV, as well as
the MAE related to the (001) and (110) directions, E001 −
E110 = 0.368 meV, imply indeed a normal-to-plane magnetic
orientation in the ground state, as also found in Refs. [48,54].

According to susceptibility measurements [51], the Curie
temperature strongly depends on the Fe coverage, and in the
case of 1.8 monolayers of Fe TC = 455 K was measured.
Our simulations on a perfect DL of Fe resulted in a Curie
temperature of 520 K, in relatively good agreement with
the experiment. In our metadynamics MC simulations the
normal-to-plane component of the normalized magnetiza-
tion was chosen again as the collective variable. In Fig. 9
the magnetic anisotropy energy, defined as the difference
of the free energies between the (110) in-plane orientation
and the (110) normal-to-plane orientation, is depicted for a
wide range below TC. As can be inferred from Fig. 9, the
MAE changes sign at Tr = 0.64TC, indicating a SRT from
the normal-to-plane to in-plane direction. The driving force
of the spin reorientation is most likely a competition between
the exchange anisotropy and the on-site anisotropy since
these contributions to the MAE exhibit different temperature
dependences.

IV. SUMMARY

We introduced metadynamics combined with Monte Carlo
simulations to study the thermal equilibrium of magnetic
systems and demonstrated that the method can be applied to
the temperature dependence of magnetic anisotropy of thin
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FIG. 9. Calculated magnetic anisotropy energy, K (T ) =
F110(T ) − F110(T ), of an Fe DL on top of W(110) as obtained by
well-tempered metadynamics MC simulations on a 2 × 64 × 64×
lattice with the parameters Tm = 2TC, w0 = 0.02TC, and σ = 0.04.

films. In particular, we reproduced the power-law scaling of
the magnetic anisotropy vs magnetization proposed by Callen
and Callen [29] as for systems with on-site uniaxial anisotropy
the simulations provided an exponent of 3, whereas in the
case of dominating exchange anisotropy an exponent of 2 was
obtained in the high-temperature regime.

We applied the method to explore spin-reorientation tran-
sitions in thin films. By using a simple spin model, first, we
performed a detailed analysis of the SRT for a monolayer

and a double layer. For double layers we showed that, by
setting appropriate model parameters, both first- and second-
order SRTs can occur, as predicted within the mean-field
theory. Then we considered two kinds of iron double-layer
systems with perpendicular magnetic anisotropy where we set
up a more complex spin model containing tensorial exchange
interactions calculated from first-principles methods. In the
case of Fe2Au(001) the MAE followed the usual M3 power
law, and no SRT was observed. In the case of Fe2W(110) the
MAE showed a more complex temperature dependence, and
our simulations reproduced the normal-to-plane to in-plane
SRT seen in experiments [36,47].

One of the future challenges for the simulations based on
ab initio spin models is posed by exploring the effect of the
Dzyaloshinskii-Moriya interactions on the temperature de-
pendence of the magnetic anisotropy in thin films proposed re-
cently [56]. Moreover, the calculated temperature-dependent
magnetic anisotropy energies can be used to estimate the
transverse susceptibility needed as input for large-scale mi-
cromagnetic simulations based on the Landau-Lifshitz-Bloch
equation [57].
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