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ABSTRACT

Soil respiration is a significant contributor to the global emissions of CO2 and is governed by many soil factors. 
Reliable estimates of CO2 emission on different scales (e.g., field, regional level) are hard to obtain due to the expressed 
spatial and temporal variability of the CO2 flux. This study aims to investigate the spatial variability of CO2 flux and soil 
properties in soybean cropland on Fluvisols (Croatia). The field measurements and soil samples were taken in a regular 
sampling grid (2 × 2 m) with 44 points in total and the spatial variability was assessed using the kriging and cokriging 
techniques. The soil CO2 flux showed relatively high spatial heterogeneity, ranging from 0.03 mg/m2s to 0.40 mg/m2s. 
The soil organic matter content (SOM), soil water content (SWC), and soil temperature (ST) had the lower variability 
ranging from 2.09% to 2.52%, from 27.7% to 46.8%, and from 13.7 °C to 18.2 °C, respectively. The spatial dependence 
was high for CO2 flux and ST, moderate for SOM, and low for SWC. The incorporation of the auxiliary variables increased 
the precision of the estimations for CO2 flux, SOM, and SWC. Kriging was the most accurate method for the spatial 
prediction of ST. The SWC was associated as the most important factor of the CO2 fluxes, indicated by their significant 
negative correlation, and the highest increase of the prediction precision during spatial modeling. However, more robust 
co-variates should be incorporated in future models to further increase the precision.
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ABSZTRAKT

A talajlégzés, melyet számos talajtulajdonság befolyásol, jelentősen hozzájárul a globális CO2 emisszióhoz. A 
CO2 emisszió különböző léptékű, megbízható becslése nehéz, annak nagyfokú térbeli és időbeli változékonysága 
miatt. Kutatásunk célja a CO2 kibocsátás és különböző talajtulajdonságok térbeli változékonyságának vizsgálata egy 
horvátországi szója ültetvényben, Fluvisol talajon. Az in-situ méréseket, valamint a talajminták gyűjtését egy 2x2 méteres 
rácsháló 44 pontjában végeztük el, a térbeli változékonyság kimutatásához krigelést és kokrigelést használtunk. A talaj 
CO2 kibocsátása relatív nagy térbeli változékonyságot mutatott, az értékek 0.03 és 0.40 mg m-2 s-1 között alakultak. A 
talaj szerves anyag tartalmának (SOM), nedvesség tartalmának (SWC) és hőmérsékletének (ST) változékonysága kisebb 
volt, ezek értékei 2.09 és 2,52%, 27.7 és 46.8%, valamint 13.7 és 18.2 ºC között változtak. A talaj CO2 kibocsátását 
nagymértékben meghatározta a mérési pontok térbeli helyzete, a SOM közepes, az SWC pedig alacsony térbeli függést 
mutatott. A segédváltozók modellbe való beépítése növelte a CO2 kibocsátás, valamint a SOM és a SWC becslésének 
pontosságát. A SWC volt legnagyobb hatással a CO2 kibocsátás alakulására, e két változó között negatív szignifikáns 
összefüggést találtunk, valamint ez okozta a legnagyobb növekedést a becslés pontosságában a térbeli modellezés során. 
A továbbiakban robusztusabb segédváltozó adatsorok felvétele szükséges a pontosság növelése érdekében.
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INTRODUCTION

Soil respiration contributes to the global emission 
of CO2 at a rate of 20-38% (Boone et al., 1998) and is 
recognized as the main natural carbon efflux to the 
atmosphere. Since soils represent the largest terrestrial 
carbon reservoir, the investigations of CO2 emissions 
from the soils have been widely studied topic in land uses 
like croplands (Allaire et al., 2012; Bogunovic et al., 2020; 
Dencső et al., 2021), permanent plantations (e.g., Chamizo 
et al., 2017; Bogunovic et al., 2019), forests (e.g., Poblador 
et al., 2017; Hawthorne et al., 2017) or grasslands (e.g., 
Zhao et al., 2017; Hörtnagl et al., 2018; Ammann et al., 
2020). Several studies indicated that agricultural land 
emits the highest amount of CO2 from the soil, significantly 
higher than CO2 released from grasslands (pastures) or 
forest lands in humid continental (Kurganova et al., 2003), 
maritime (Aslam et al., 2000), humid subtropical (Iqbal et 
al., 2008) or dry summer climates (Mariscal-Sancho et al., 
2010). This highlights the importance of comprehension 
of the mechanism of soil respiration in agricultural land 
use and the global carbon cycle. Temporal variation of 
soil respiration is exhaustively studied subject on all 
texture soil types: clay (e.g. Kurganova et al., 2003; Iqbal 
et al., 2008), sand (e.g., Poblador et al., 2017), sandy-loam 
(Hawthorne et al., 2017), silty loam (e.g., Aslam et al., 
2000; Buragienė et al., 2019), silty clay (e.g., Bogunovic 
et al., 2020) and loam (e.g., Dencső et al., 2021). These 
studies indicated that the high temporal variability of 
soil CO2 flux is closely related to the variation of the soil 
moisture and temperature. However, the spatial pattern 
of soil respiration is a significantly more complex issue 
as it is influenced by the crop type (Bilandzija et al., 
2016), microbial biomass (Chaplot et al., 2015), texture 
(Chantigny et al., 2016), compaction (Bogunovic et al., 
2017), air porosity (Buragienė et al., 2019), soil organic 
matter content (Girkin et al., 2019), or crop management 
such as fertilization (Zang et al., 2016), tillage (Tóth et 
al., 2018), and manure or biochar application (Horel et 
al., 2018). All of these influencing factors differ on small, 
medium, and large scales in agroecosystems, enhancing 
the spatial heterogeneity of soil respiration. Previous 
reports indicated moderate spatial variability of CO2 flux 

with a coefficient of variability between 35 and 80% (e.g. 
Mendonca et al., 2011; Allaire et al., 2012; Rowlings et al., 
2012; Teixeira et al., 2012). 

To ensure the estimation precision of the CO2 
emissions, it is necessary to study the spatial pattern 
of soil respiration and create accurate maps. The 
geostatistical analyses have been used for the evaluation 
and description of the spatial variability of CO2, mostly, 
the kriging method for the spatial estimations (e.g., Brito 
et al., 2010; Konda et al., 2010; Mendonca et al., 2011). 
However, other sophisticated multivariate methods 
were also used in the international research (e.g., Ren 
et al., 2011; Allaire et al., 2012; Leon et al., 2014; Fóti 
et al., 2016) depending on the individual study goals 
and different methods of the results acquisition. These 
works contributed to the comprehension of the link 
between soil CO2 emissions and the auxiliary variables 
(e.g., soil properties). The use of auxiliary variables 
has been shown as an advantage for the CO2 emission 
estimations during the modeling. Accurate maps are 
essential for reporting precise agro-ecosystem CO2 
budgets. The scarcity of reliable estimates of spatial CO2 
variability in a field scale hampers general estimates on 
the regional or country levels, especially in the Croatian 
agro-ecosystems, where such research has not been 
implemented. Moreover, croplands in Croatia have been 
under extensive environmental stress in the past several 
decades due to the extreme weather (Marković et al., 
2015; Bernat et al., 2015) and intensive land management 
(Bogunovic and Kisic, 2017; Jug et al., 2019) which 
continuously decreases organic carbon in the soils below 
threshold limit (Durdevic et al., 2019) through increased 
soil emission of CO2 (Bilandžija et al., 2016; Bogunovic 
et al., 2020). Therefore, this research aims to: (i) assess 
the correlations among soil properties and CO2 flux; (ii) 
characterize the variability and spatial distribution of CO2 
flux and soil properties; (iii) evaluate model accuracies of 
the kriging and co-kriging techniques; and (iv) present 
the estimation model for the accurate production of the 
site-specific field CO2 budgets maps. The knowledge of 
the spatial pattern of CO2 emissions could be used as an 
important tool for the determination of the conservation 
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practices in a given area.

MATERIALS AND METHODS 

Study site, climate and soil 

The research was conducted at Šašinovec (45°50' N; 
16°11' E; 120 m a.s.l.), Croatia (Figure 1). The climate 
of the study area is the temperate humid climate 
(Cfb), according to Köppen (1900). The mean annual 
temperature is 12.2 °C, ranging from 1.5 °C in January 
to 23.3 °C in July (2011-2018). The long-term average 
annual precipitation is 918.9 mm (2011-2018), while 
in 2019 it was 1147.5 mm (Brezinščak and Bogunović, 
2021). Soil is silty clay loam Fluvisol (World Reference 
Base for Soil Resources, 2015). Soil is slightly alkaline 
(pHKCl 7.49), with a low organic matter content (2.1%), rich 
in available phosphorus (249 mg/kg), available potassium 
(214 mg/kg), and total nitrogen (0.20%).

Experimental design, measurements, sampling and 
laboratory work Statistical analyses and data transformation

Measurements of CO2 flux and soil sampling were 
performed on a 2 m × 2 m grid (44 points in total). 
Measurements were carried out in September 2019 after 
the soybean (Glycine max L. Merr) harvest. The location of 
the investigated field and the sampling design is shown 
in Figure 1. Precise georeferencing of the measurement 
locations was ensured by using GeoExplorer GeoXH 
6000 (Trimble, USA) with 10 cm accuracy in real time. At 
each sampling point, the soil respiration (CO2 flux) was 
determined using in situ infrared gas analyzer EGM-5 
(PPSYSTEMS, USA). Disturbed soil samples (0 – 10 cm 
depth), and measurements of soil water content (SWC), 
and soil temperature (ST) were collected and measured 
in close vicinity of each CO2 flux measurement point. The 
volumetric SWC (0 - 10 cm depth) was determined using 
the HYDROSENSE II probe (CAMPBELL SCIENTIFIC, 
USA) with an accuracy of 3% and a resolution of < 0.05%. 
Soil TS (0 – 10 cm depth) was determined using the STP-
2 soil temperature probe (PPSYSTEMS, USA) with an 
accuracy of ±0.3 °C at 25 °C. Soil samples were dried, 
milled, sieved, and homogenized to determine the SOM 
content using Walkley and Black (1934) method.

Statistical analyses and data transformation 

Descriptive statistical properties like mean, median, 
minimum, maximum, standard deviation, coefficient 
of variation, skewness, and kurtosis were analyzed. 
Histograms and probability plots were created to analyze 
the data distribution and potential outliers using Statistica 
12.0 for windows (StatSoft, Tulsa, USA). Outliers in 
dataset distribution can have a negative consequences 
on the accuracy and semivariogram interpretation, thus 
some raw data were tested and transformed when 
necessary using logarithmic (log) and Box-Cox (BC) 
transformations to satisfy normality assumptions using 
the Kolmogorov–Smirnov (K–S) test. The normality of the 
datasets is desirable since possible dataset asymmetry 
can have important implications on interpolation methods 
performance (Bogunovic et al., 2014). The Pearson 
correlation coefficient was calculated to examine the 
correlation between the studied properties. Significant 
correlations were considered at a P<0.05. Statistical 
analyses of correlations were performed with Statistica 
12.0 for windows (StatSoft, Tulsa, USA).

After data error detection, the spatial continuity 
structure of investigated properties was analysed 
employing experimental variograms using the data 
developed to identify the spatial continuity of CO2 flux, 
SOM, SWC, and ST. Directional variograms and variogram 
maps for the detection of anisotropies are included in 
analyses. Since the sampling/measurement points were 
spaced 2 m, a unit lag of 2 m was used for the calculation 
of the omnidirectional and directional variograms, while 
the directional variograms were calculated along different 
directions with an azimuth step of 5 °. The best-fit 
variogram model was selected mainly visually, but taking 
into account the lowest nugget to sill ratio and the highest 
range of spatial dependence. In the case of ambiguities 
between more variogram model shapes, the one with the 
lowest mean root square error in the next step of cross-
validation was selected (Pereira et al., 2015). Ordinary 
kriging and partially heterotopic (more information can be 
found in Ceddia et al., 2015) co-kriging as geostatistical 
techniques were tested to map the spatial variability of 
CO2 flux, SOM, SWC, and ST.
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The quality of the final spatial prediction maps was 
evaluated by the root mean square error (RMSE) as 
outpost after means of leave-one-out cross-validation 
diagnostics. Spatial analysis was carried out and maps 
generated by using ArcGIS 10.1 (ESRI, Redlands, 
California).

RESULTS AND DISCUSSION 

Normality tests, descriptive statistics and correlations 
among properties 

To analyze data error detection in original data, 
datasets normal probability plots and histograms were 
created (Appendix A). With exception of the CO2 flux, 
all investigated properties showed normal distribution, 
obtained by low skewness, kurtosis, and the K-S test (Table 

Figure 1. Study site and experimental design

1). Several extremely high values were observed in the 
CO2 flux (Figure A1) at a sampling points located close to 
the border of the field. Apart from these extremes in the 
CO2 flux dataset, a small number of other measurements 
deviated at both ends. However, skewness of CO2 
flux could be an indicator of spatial non-stationarity. 
Therefore, the CO2 flux dataset was subjected to log 
and Box-Cox transformations to minimize skewness and 
kurtosis as seen in Table 1. Performed transformations 
normalize distributions (Figure A1), decrease skewness, 
and coefficient of variation (CV) and pass the K-S test. For 
modeling purposes, Box-Cox transformed CO2 flux data 
was used. Soil water content, ST, and SOM show almost 
symmetrical distribution by a small skewness. According 
to the K-S test, all three properties followed a normal 
distribution. 
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Table 1. Univariate statistics (n=44) for CO2 flux (mg/m2s), soil water content (SWC, %), soil temperature (ST, °C) and soil organic 
matter content (SOM, %)

Variable Mean Median Min Max SD CV Skew Kurt K-S P

CO2 flux 0.12 0.10 0.03 0.40 0.09 70.7 1.698 2.339 <0.05

Log CO2 flux -0.99 -1.02 -1.49 -0.40 0.26 -26.4 0.541 -0.212 >0.20

Box-Cox CO2 flux -3.74 -3.75 -6.95 -1.10 1.37 -36.7 0.042 -0.373 >0.20

SOM 2.29 2.27 2.09 2.52 0.10 4.3 0.523 0.630 >0.20

SWC 41.0 40.8 27.7 46.8 4.26 10.4 -0.762 0.470 >0.20

ST 15.3 15.2 13.7 18.2 1.17 7.6 0.608 -0.342 >0.20

Abbreviations: Min = minimum; Max = maximum, SD = standard deviation; CV = coefficient of variation; Skew = skewness; Kurt = kurtosis, K-S = 
Kolmogorov - Smirnov

Soil CO2 flux ranged from 0.03 to 0.40 mg/m2s. The 
mean CO2 flux of all measurements in the investigated 
field was 0.12 ± 0.09 mg/m2s1 (Table 1). The value of 
CV for soil CO2 flux in the investigated area revealed its 
moderate variability (according to Zhang et al., 2007). The 
values of CV in the studied cropland were consistent with 
those observed for similar croplands (e.g., La Scala Jr et 
al., 2000; Brito et al., 2010; Allaire et al., 2012; Teixeira et 
al., 2012). The SWC varied in a wide range from 27.7% to 
46.8%. The mean value was high with 41.0% indicating 
wet conditions (according to Csorba et al., 2011) in the soil 
during field investigation. The studied soils had a low to 
moderate variability of SWC since the CV was on the edge 
of two classes with a value of 10.4. The ST ranged from 
13.7 °C to 18.2 °C with an average value of 15.3 °C. The 
average content of SOM was 2.29% (Table 1) indicating 
the potential limitations of these soils for intensive 
agricultural production. According to Loveland and Weeb 
(2003) in the temperate areas, 3.4% of SOM content in the 
soil is the threshold below which soil of the studied area 
is considered degraded. Therefore, future management 
should apply agro-technical practices such as no-tillage, 
organic fertilization, proper residue management, wide 
crop rotations, which could disable further decline of 
SOM in soils (Pereira et al., 2018; Dekemati et al., 2019). 
The CV value of SOM content revealed low variability with 
CV 4.3%. With the exception of soil CO2 flux, the data 
was relatively homogenous. Low variability in SWC, ST, 
and SOM datasets could be explained by the small-scale 

study on land with similar geomorphological conditions. 
Moreover, these soil properties were also characterized 
by their smaller heterogeneity in addition to the other soil 
properties (e.g. soil nutrients). Other studies also reported 
moderate variability of SOM (e.g., Bogunovic et al., 2014), 
and low variability of SWC (e.g., Zhang et al., 2013) and 
ST (e.g., Bicalho et al., 2014) in croplands. Although the 
present study does not contain the data for soil physical 
properties, it is very likely that CO2 flux heterogeneity 
is derived by diversity in soil porous system. Moreover, 
the small area covered by present methodological device 
used in this work enhances the uncertainty in CO2 flux 
measurement and their spatial heterogeneity. The soil 
system may vary significantly in intensively managed 
croplands (Mzuku et al., 2005; Duffera et al., 2007; Wang 
and Shao, 2013; Barik et al., 2014) like in the present one 
used for this study. 

The correlation coefficient results are shown in Table 
2. Soil CO2 flux was negatively correlated with SWC. The 
correlations between CO2 flux and SWC were expected 
to be significant since several studies showed strong 
evidence of CO2 flux dependency on the soil water status 
(Allaire et al., 2012; Bilandžija et al., 2016; Dencső et al., 
2021). However, in our study, the interrelation between 
CO2 and SWC was negative, likely due to the extremely 
wet soil conditions. A similar interrelation is already 
reported in excessively wet vineyard soils in the same 
climatic conditions (Bogunovic et al., 2019).
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A linear correlation between soil respiration and SWC 
was confirmed at low water contents, and when moisture 
increased, the dependency became non-linear, which was 
similar to the findings of Faimon and Lang (2018). Other 
variables identified only weak insignificant interrelations. 
Such results confirm previous findings, which stated 
that the SWC has a more pronounced effect on the 
spatial pattern of CO2 flux, while the impact of the ST 
is lower (Fóti et al., 2016). The absence of a significant 
correlation between CO2 and SOM could be attributed 
to the extremely low variations of SOM in the studied 
field. Other study confirmed a similar pattern (Bicalho et 
al., 2014).

Table 2. Correlations among the studied variables. n.s., not sig-
nificant at a P>0.05. Significant at a *P<0.05. Note: CO2 flux 
were Box-Cox transformed

CO2 flux SOM ST SWC

CO2 flux -

SOM 0.294204 n.s. -

ST 0.012544 n.s. 0.128679 n.s. -

SWC -0.605550* -0.036903 n.s. 0.123745 n.s. -

Abbreviations: SWC - soil water content, ST - soil temperature and 
SOM - soil organic matter content

Spatial distribution of investigated properties

The parameters for variogram models are presented in 
Table 3 and the best-fitted variogram for CO2 flux, SOM, 
SWC, and ST are shown in Figure 2. The analysis of the 
variogram maps and the directional variograms did not 
reveal the presence of evident anisotropies only in the 
case of SWC. Other tested properties (CO2, SOM, and ST) 
recorded directional differences which indicate differently 

increased variogram values at different directions. The 
longest range of spatial dependence for CO2, SOM, and 
ST was found in directions 39, 139, and 13, respectively 
(Table 3). The exponential model provided a better 
reproduction of the shape of the experimental variograms 
calculated with the CO2, SOM, and SWC data (Figure 2a, 
b, c). On the other hand, the spherical model closely fitted 
the experimental variogram calculated for ST (Figure 2d). 
The case of the ST variogram model indicated an almost 
linear decrease in correlation with the distance up to the 
range, where it stabilized to the sill. The exponential and 
spherical models were often chosen as the best-fitted 
models for the studied variables in other studies (La Scala 
Jr. et al., 2000; Konda et al., 2010; Allaire et al., 2012). 

Variograms (Table 3) indicate that the importance of 
the nugget effect varied from 0.006 at SOM to 16.33 at 
SWC, suggesting that important variability in these two 
properties was either not spatial or the actual sampling 
scheme is inappropriate disabling the observation 
of small-scale variability indicated by nugget. On the 
contrary, the nugget effect was not recorded for soil 
CO2 flux and ST indicating the absence of sampling 
errors in the current sampling scheme. Following the 
classification of Cambardella et al. (1994), the CO2 flux 
and ST with nugget/sill ratio of 0.00 showed strong spatial 
dependence. This result is in contrast with previous 
studies, indicating that CO2 had no spatial dependence 
or weak spatial dependence (e.g. Ishizuka et al., 2005; 
Konda et al., 2010). This discrepancy is probably caused 
by the relatively small-scale area of the present study on 
geomorphologically and pedologically uniform terrain. 
Moreover, long-term application of the agricultural 
practices (e.g. tillage, fertilization) in the investigated soils 

Table 3. Best-fitted variogram models of CO2 flux, soil organic matter (SOM), soil water content (SWC) and soil temperature (ST) 
and corresponding parameters. Note: CO2 flux were Box-Cox transformed

Property Model Nugget Range (m) Direction Sill Nugget/Sill

CO2 Exponential 0.00 17.04 39 0.008 0

SOM Exponential 0.006 8.16 139 0.010 65.74

SWC Exponential 16.33 24.00 - 18.026 90.62

ST Spherical 0.00 5.77 13 0.831 0
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Figure 2. Semivariogram analysis, a) CO2 flux, b) soil organic matter, c) soil water content and d) soil temperature

significantly homogenized their properties in contrast 
to the forest soils often characterized by different 
geomorphological conditions and different scales of CO2 
measurement research. The SOM and SWC with a 65.74 
and 90.62 nugget/sill ratio showed a moderate and a weak 
spatial dependence, respectively. The shortest range 
of spatial autocorrelation was found for the ST content 
(5.77 m). The SOM and CO2 were spatially correlated at 
ranges of 8.16 m and 17.04 m, respectively, while soil 
SWC had the highest range of 24.00 m. The ranges of 
all investigated parameters were much wider than the 
sampling interval of 2 m indicating sufficient sampling 
design in the present spatial statistical study (Kerry and 
Oliver, 2004).

The leave-one-out cross-validation was performed to 
evaluate the quality of the maps and to derive accuracy 
diagnostics connected to prediction errors during 
geostatistical interpolation modeling (Table 4). Among 
the tested geostatistical techniques, the most accurate 
technique for soil CO2 flux was the co-kriging technique 
with the use of the SWC as an auxiliary variable. 
Moreover, using CO2 flux as an auxiliary variable resulted 

Table 4. Summary statistics of the accuracy of the tested geo-
statistical techniques. The most accurate method is shown in 
bold

Property Technique RMSE

CO2 flux Ordinary kriging 0.0775

Co-kriging SOM 0.0793

Co-kriging SWC 0.0745

Co-kriging ST 0.0905

SOM Ordinary kriging 0.0966

Co-kriging CO2 0.0953

Co-kriging SWC 0.0983

Co-kriging ST 0.0995

SWC Ordinary kriging 4.2820

Co-kriging CO2 3.0751

Co-kriging SOM 4.2824

Co-kriging ST 4.2824

ST Ordinary kriging 0.5725

Co-kriging CO2 0.7261

Co-kriging SOM 0.6519

Co-kriging SWC 0.7881

Abbreviations: RMSE – root mean square error; SOM – soil organic mat-
ter; SWC – soil water content; ST – soil temperature
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Figure 3. Spatial distribution maps according to the most accurate techniques: soil CO2 flux (mg/m2s), CoKriging CO2 × SWC; SOM 
(%), CoKriging SOM × CO2; SWC (%), CoKriging SWC × CO2; and ST (ordinary kriging). Note: CO2 flux dataset with Box-Cox trans-
formed data

in the most accurate predictions for SOM and SWC. On 
the contrary, the most accurate method to estimate the 
ST was ordinary kriging. The use of auxiliary variables 
did not improve the predictions in this case. The maps 
produced from the most accurate techniques are shown 
in Figure 3. The geostatistical interpolation comparison 
is an important step to minimize the prediction error by 
choosing the most accurate interpolator. Many other 
researchers highlighted this step as a crucial step for the 
final decision making (e.g., Pereira et al., 2015; Durdevic 
et al., 2019). However, in the present study, the tested 
geostatistical methods revealed different results, as was 
expected. During modeling, several auxiliary variables 
resulted in decreased accuracy of the predictions in 
addition to the kriging technique, while few of them 

showed the increase of the prediction (Table 4). Such 
contradictions during the modeling could be attributed to 
the nature of interrelations between modeled variables. 
Often, auxiliary variables are not highly correlated with 
the variable of interest, as they do not show improvement 
or a decrease during the co-kriging modeling (Ceddia et 
al. 2015; Guan et al., 2017). Nevertheless, the proper 
choice of the auxiliary variables could improve estimation, 
reduce sampling costs, and provide accurate information 
for decision-makers of environmental monitoring.

CONCLUSIONS

At the investigated field, the spatial variability was 
high for the CO2 flux and low for soil water content, soil 
temperature, and soil organic matter. Despite that, the 
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use of spatial statistics enabled us to characterize the 
spatial variability at the field scale of all the measured soil 
properties. The spatial variability models indicate smaller 
ranges of spatial autocorrelation for soil temperature 
and soil organic matter. Soil temperature and soil 
organic matter did not appear to be related to the spatial 
variability of CO2 emission. On the other hand, the soil 
water content was clearly associated with this variability. 
The spatial accuracy of the CO2 flux prediction on the 
field scale was the highest with the soil water content as a 
co-variable. The results indicate the importance of testing 
the correlations between CO2 flux and other potential 
drivers before geostatistical modeling. Future works 

should be adopted on a larger scale, using a temporal 
pattern as a factor and more robust co-variates during 
modeling. 
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APPENDIX A

Figure A1. Histograms and probability plots of CO2 flux original (left) and transformed (right) datasets
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