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Abstract. We introduce the following generalization of set intersection via characteristic
vectors: for n, q, s, t ≥ 1 a family F ⊆ {0, 1, . . . , q}n of vectors is said to be s-sum t-intersecting
if for any distinct x,y ∈ F there exist at least t coordinates, where the entries of x and y
sum up to at least s, i.e. |{i : xi + yi ≥ s}| ≥ t. The original set intersection corresponds to
the case q = 1, s = 2.

We address analogs of several variants of classical results in this setting: the Erdős–Ko–
Rado theorem or the theorem of Bollobás on intersecting set pairs.

1. Introduction

Many problems in extremal finite set theory ask for the maximum size of a family (or some
other combinatorial object) that satisfies some intersection property. When members of the
family examined are subsets of [n] := {1, 2, . . . , n}, then there is a one-to-one correspondence
between a set F and its 0-1 characteristic vector xF of length n, that has a 1-entry in its ith
coordinate if and only if i ∈ F for i ∈ [n]. So one can say that two sets F and G intersect, if
the sum of their characteristic vectors (as vectors in Zn) contains a 2 in some coordinate. The
goal of this paper is the introduction of a notion of intersection that generalizes set intersection
(translated to sum of characteristic vectors) to a type of intersection among q-ary vectors.

To do so for q, n ≥ 1 we introduce the notation Qn := {0, 1, . . . , q}n, and we will consider
it as a subset of Zn (so addition is not modulo q+ 1). We will denote the vectors by boldface
letters and the ith coordinate of the vector x will be denoted by xi.

There exist intersection results in the literature for vectors (under the name of integer
sequences) with several types of definition for intersection, we mention two of them: the
permutation-type definition is that x,y ∈ {0, 1, . . . , q}n intersect if there exists i with xi = yi
and more generally |x ∩perm y| = |{i : xi = yi}|; for results about this type of intersection see
e.g. [9, 10]. The multiset-type definition corresponds to multisets represented by vectors and
in this case for x,y ∈ {0, 1, . . . , q}n we have |x ∩multi y| =

∑
i min{xi, yi}; for corresponding

results see e.g. [11, 12].

Patkós’s research is partially supported by NKFIH grants SNN 129364 and FK 132060 and by the Ministry
of Education and Science of the Russian Federation in the framework of MegaGrant no. 075-15-2019-1926..

Tuza’s research is partially supported by NKFIH grant SNN 129364.
Vizer’s research is partially supported by NKFIH grants SNN 129364, FK 132060, KH130371, by the János

Bolyai Research Fellowship and by the New National Excellence Program under the grant number ÚNKP-21-
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As we mentioned earlier, our next definition generalizes set intersection based on the fact
that F and G intersect if and only if there exists i ∈ [n] such that (xF )i + (xG)i ≥ 2 holds.

Definition 1.1. For integers n, q, s ≥ 1 and two vectors x,y ∈ Qn, we define the size of their
s-sum intersection as |x ∩s y| = |{i : xi + yi ≥ s}|.

For t ≥ 1 we say that x,y ∈ Qn are s-sum t-intersecting, if |x ∩s y| ≥ t. More generally,
F ⊂ Qn is s-sum t-intersecting if any two vectors x,y ∈ F are s-sum t-intersecting.

In case of t = 1 we just simply write s-sum intersecting instead of s-sum 1-intersecting.

Note that in the case of q = 1 and s = 2 we get back the same notions for sets.

We will consider analogs of the Erdős–Ko–Rado theorem and theorems about Bollobás’s
intersecting set-pair systems. To be able to state our results first we need to define uniformity
for families of vectors. One has several options: as in the case of multisets and many other
types of problems, we can work with the weight/rank

∑n
i=1 xi of x ∈ Qn and say that for

an integer r ≥ 0 a family F ⊆ Qn is r-rank uniform if r(x) :=
∑n

i=1 xi = r for all x ∈ F .
Another possible notion for the size of a vector is the size of its support, i.e. |{i : xi 6= 0}| .
We say that F ⊆ Qn is r-support uniform if the size of the support of every x ∈ F is r.

Notation. We use the following notations.

• For any set X, we denote by
(
X
r

)
the family of all r-subsets of X and 2X denotes the

power set of X.

• For a set F ⊂ [n] we denote its complement, i.e. [n]\F by F and for F a family of subsets
of [n] we introduce the notation F := {F : F ∈ F}. For any vector x ∈ Qn let us define
its ‘complement’ x as xi := q − xi for all i ∈ [n] and for F a family of vectors in Qn let us
introduce the notation F := {x : x ∈ F}.
• For x ∈ Qn we denote its support by Sx.

• For two functions f, g : N → N we say that f = O(g), if there is a constant c and an
n0 ∈ N such that f ≤ cg for all n ≥ n0.

Structure of the paper.
The structure of the paper is the following. In Subsection 1.1 we state various results

about s-sum intersecting families of vectors, while in Subsection 1.2 we list our result about
intersecting vector pairs. In Section 2 and Section 3 we prove our results about intersecting
vector and intersecting vector pairs, respectively. In Section 4—as concluding results—we
give a new intersection definition to provide analogs of some results that would not work with
s-sum intersection.

1.1. Results on intersecting families of vectors. Let us start with stating the seminal
result of Erdős, Ko and Rado [5].
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Theorem 1.2 (Erdős, Ko, Rado [5]). For n, r ≥ 1 with 2r ≤ n if F ⊆
(
[n]
r

)
is an intersecting

family, then |F| ≤
(
n−1
r−1

)
. Moreover, if 2r < n and |F| =

(
n−1
r−1

)
, then F = Fx := {F : x ∈

F ∈
(
[n]
r

)
} holds for some x ∈ [n].

Furthermore, for any 1 ≤ t < r there exists n0 = n0(r, t) such that if F ⊆
(
[n]
r

)
is t-

intersecting, then |F| ≤
(
n−t
r−t

)
holds with equality if and only if F = {F : T ⊂ F ∈

(
[n]
r

)
} for

some T ∈
(
[n]
t

)
.

The exact value of the smallest possible n0(r, t) was obtained by Frankl [7] and Wilson [22].
The largest possible size of an r-uniform t-intersecting family for all values of n, t, r ≥ 1 was
determined by Ahlswede and Khatchatrian [1].

Our first result is a generalization of the Erdős–Ko–Rado (or EKR, in short) theorem for
r-support uniform families.

Theorem 1.3. For any q, s ≥ 2 and integer r ≥ 1, there exists n(q, s, r) ∈ N such that if
F ⊆ Qn is r-support uniform s-sum intersecting with n ≥ n(q, r, s), then

|F| ≤
{

(q − s
2

+ 1)qr−1
(
n−1
r−1

)
if s is even,

1 + (q − d s
2
e+ 1)

∑r
i=1

(
n−i
r−i

)
qr−i if s is odd,

(1)

and these bounds are best possible.

The statement and proof of Theorem 1.3 can be adjusted for the r-rank uniform case, too.
We only provide the statement and the proof in the special case s = q + 1 that works for all
meaningful values of n.

Before stating our theorem, observe that if both x,y ∈ Qn have rank less than q+1
2

, then
they cannot (q + 1)-sum intersect, while if both of them have rank greater than qn

2
then they

always (q + 1)-sum intersect. We denote by Q(n, r) the set of all vectors in Qn of rank r.

Theorem 1.4. Let n, q, r ≥ 1 and F ⊆ Qn be an r-rank uniform (q + 1)-sum intersecting
family with q+1

2
≤ r ≤ qn

2
. Then

|F| ≤


∑q

j= q+1
2

|Q(n− 1, r − j)| if q + 1 is even,

1 +
∑q

j=d q+1
2
e

∑b 2(r−1)
q
c

i=1 |Q(n− i, r − j − (i−1)q
2

)| if q + 1 is odd,
(2)

and these bounds are best possible.

Now we continue with s-sum t-intersecting families with t ≥ 1. We give the constructions
that will be shown to be extremal for r-support uniform s-sum t-intersecting families.

Construction 1.5. For any n, q, r, t ≥ 1 with n ≥ r ≥ t and s even with 2 ≤ s ≤ 2q and for
any T ∈

(
[n]
t

)
let us define

Fn,q,s,r,T :=
{

x ∈ Qn : xi ≥
s

2
for all i ∈ T

}
.

For n, r, q, t ≥ 1 with n ≥ r ≥ t and s odd with 2 < s < 2q let us define the following
r-support uniform families:
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Fn,q,s,r,t :=⋃
T ′∈( [r]

t−1)

{
xT ′ : (∀i ∈ T ′)((xT ′)i >

s

2
) ∧ (∀i ∈ [r] \ T ′)((xT ′)i = bs

2
c) ∧ SxT ′ = [r]

}
∪

⋃
T∈([r]

t )

{
yT ∈ Qn : (∀i ∈ T )((yT )i > b

s

2
c) ∧ (∀i ∈ [maxT ] \ T )((yT )i = bs

2
c) ∧ SyT = [r]

}
.

The family Fn,q,s,r,t is s-sum t-intersecting as for any pair x,y ∈ Fn,q,s,r,t there exist at least
t coordinates i ∈ [r], where one of xi, yi is at least b s

2
c while the other is at least d s

2
e.

Let f(n, q, s, r, t) denote the size of Fn,q,s,r,t.

Theorem 1.6. For any q, s ≥ 2 and r ≥ t ≥ 1, there exists n(q, s, r, t) such that if F ⊆ Qn

is r-support uniform s-sum t-intersecting with n ≥ n(q, s, r, t), then

|F| ≤
{

(q − s
2

+ 1)tqr−t
(
n−t
r−t

)
if s is even,

f(n, q, s, r, t) if s is odd,
(3)

and these bounds are best possible as shown by the families of Construction 1.5.

1.2. Results on intersecting pairs of vectors. Let us continue with stating another classi-
cal result, the theorem of Bollobás on intersecting set pairs for which we prove sum-intersecting
analogs.

Theorem 1.7 (Bollobás [2]). Let {(Aj, Bj) : j = 1, 2, . . . ,m} be pairs of sets with Ai∩Bj = ∅
if and only if i = j. Then the inequality

m∑
j=1

1(|Aj |+|Bj |
|Aj |

) ≤ 1

holds. In particular, if |Aj| ≤ a and |Bj| ≤ b for all j = 1, 2, . . . ,m, then m ≤
(
a+b
a

)
.

Now we recall some notions from the literature. Suppose S = {(Ai, Bi) : i = 1, 2, . . . ,m}.
Then

• S is called a strong ISP-system (shorthand for intersecting set-pair system) if
– Ai ∩Bi = ∅ for all 1 ≤ i ≤ n, and
– Ai ∩Bj 6= ∅ for all 1 ≤ i 6= j ≤ n;

• S is called a weak ISP-system if
– Ai ∩Bi = ∅ for all 1 ≤ i ≤ n, and
– at least one of Ai ∩Bj 6= ∅ and Bi ∩ Aj 6= ∅ holds for all 1 ≤ i 6= j ≤ n.

If also a = max1≤i≤n |Ai| and b = max1≤i≤n |Bi|, then S is a strong or weak (a, b)-system. Note
that Theorem 1.7 is about strong ISP-systems. In its flavor the following general inequality
is valid for weak ISP-systems.
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Theorem 1.8 (Tuza [18]). Let 0 < p < 1 be any real number and q = 1 − p. If {(Aj, Bj) :
j = 1, 2, . . . ,m} is a weak ISP-system, then the inequality

m∑
j=1

p|Aj | q|Bj | ≤ 1

holds. Moreover, for every a, b ∈ N there exists a weak (a, b)-system for which equality holds
for all 0 < p < 1 and q = 1− p.

For a general overview on ISP-systems and their applications in extremal combinatorics we

refer to the two-part survey [19, 20]. Theorem 1.8 implies the upper bound m ≤ (a+b)a+b

aa bb
for

weak (a, b)-systems. The best lower bounds on the maximum size of weak (a, b)-systems are
due to Király, Nagy, Pálvölgyi and Visontai [16], and Wagner [21].

Now we would like to generalize these notions to vectors in the s-sum intersecting setting.
Note that there is no assumption on the size of the ground set of ISP-systems: neither in
Theorem 1.7 nor in the results on weak ISP-systems. Let us denote by Q<N(⊂ Z<N) the set
of all x ∈ {0, 1, . . . , q}N that are 0’s everywhere except for a finite number of coordinates and
for i ∈ N we denote the ith coordinate by xi (just like in the finite dimensional case). The
support of x ∈ Q<N is the (finite) set of all coordinates, where x is not zero and we denote it
by Sx.

Now for m, s ≥ 1 we say that {(xj,yj) ∈ Q<N × Q<N : j = 1, 2, . . . ,m} is a strong s-
sum IVP-system in Q<N, if |xj ∩s yj| = 0 for all j = 1, 2, . . . ,m and |xi ∩s yj| 6= 0 for all
1 ≤ i 6= j ≤ m. And we say that {(xj,yj) ∈ Q<N × Q<N : j = 1, 2, . . . ,m} is a weak s-sum
IVP-system in Q<N, if for all 1 ≤ i 6= j ≤ m at least one pair of xi,yj or xj,yi is s-sum
intersecting. If the support of all xj have size at most a, and the support of all yj have size
at most b, then we will talk about strong and weak s-sum (a, b)-systems.

We start with the following observation.

Observation 1.9.
(i) If F is a strong/weak s-sum (a, b)-system, then for all (x,y) ∈ F and all i ≤ m we have

xi, yi < s.
(ii) If F ⊂ ({0, 1, . . . , q}<N)2 is a strong/weak (q + t)-sum (a, b)-system with t > 1, then

there exists a (q − t + 2)-sum strong/weak (a, b)-system F ′ ⊂ ({0, 1, . . . , q − t + 1}<N)2 with
|F| = |F ′|.

Proof. If xi ≥ s or yj ≥ s for some (x,y) ∈ F , then |x ∩s y| > 0. This implies (i).
To see (ii), for any (x,y) ∈ F introduce (x′,y′) with x′i = max{xi− t+ 1, 0}, y′i = max{yi−

t + 1, 0} for all indices i. Clearly, for any (x,y) ∈ F and index j, we have x′j + y′j <

q + t − 2(t − 1) = q − t + 2. Furthermore, if |xh1 ∩q+t yh2| > 0, then there exists an index j

with q + t ≤ xh1j + yh2j . So xh1,j + yh2,j ≥ q + t − 2(t − 1) = q − t + 2, and thus the system

F ′ = {(x′,y′) : (x,y) ∈ F} ⊂ ({0, 1, . . . , q − t + 1}<N)2 is a (q − t + 2)-sum strong/weak
(a, b)-system. �
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Observation 1.9 means that it is enough to deal with (q+1)-sum IVP-systems in {0, 1, . . . , q}<N.
To obtain bounds on their size let us introduce the notation m(q, k) and m′(q, k) for the max-
imum number of vector pairs in a strong / weak (q + 1)-sum (k, k)-system. In particular, for
q = 2 and s = 3 let m(k) := m(2, k) denote the maximum size of a strong 3-sum (k, k)-system
in {0, 1, 2}<N.

To estimate m(k), we let

f(k) := max
(x+ y + z)!

x! y! z!
,

where the maximum is taken over all nonnegative integers x, y, z such that x + z ≤ k and
y + z ≤ k. The following inequalities provide an almost tight bound on m(k), with only a
linear multiplicative error in k, while the function is exponential.

Theorem 1.10. For every k ≥ 1 we have

f(k) ≤ m(k) ≤ k · f(k) .

Finally, we determine the order of magnitude of the maximum size of strong and weak
(q + 1)-sum IVP systems in {0, 1, . . . , q}<N up to a polynomial factor.

Theorem 1.11. For any q ≥ 1, limk→∞
k
√
m(q, k) = limk→∞

k
√
m′(q, k) = (

√
q + 1)2.

A standard calculation shows that the maximum in the definition of f(k) is attained when
z = (1 − 1√

2
)k + O(1) and x = y = k − z. Plugging in these values, we obtain that f(k) =

(c+ o(1)) 1
k
(3 +

√
2)k for some real c < 1. The upper bound of Theorem 1.10 on strong 3-sum

(k, k)-systems is a constant factor smaller than the upper bound obtained during the proof of
Theorem 1.11 on weak 3-sum (k, k)-systems.

2. Sum-intersecting families of vectors

This subsection contains the proofs of Theorem 1.3, Theorem 1.4 and Theorem 1.6.

Proposition 2.1. For n, q ≥ 1 if F ⊆ Qn is (q + 1)-sum intersecting, then |F| ≤ d (q+1)n

2
e

and this bound is best possible.

Proof. Note that we cannot have x and x both belong to F . Moreover, there exists one vector
x with x = x if and only if q is even. This proves the upper bound. For the lower bound
consider the family of all vectors with rank larger than qn

2
together with one vector from each

pair of (the not necessarily different vectors) x,x of rank qn
2

(if such pairs exist). �

Corollary 2.2. For n, q, s ≥ 1 with q ≥ s if F ⊆ Qn is s-sum intersecting, then |F| ≤
(q + 1)n − sn + d sn

2
e and this bound is best possible.

Proof. If a vector contains an entry at least s, then it s-sum intersects every other vector. The
number of such vectors is (q + 1)n − sn, and then we apply Proposition 2.1 to the set of all
other vectors. �
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Now we turn our attention to (rank- or support-) uniform families of vectors. We shall
start with the proof of Theorem 1.4, but we need several definitions and some results from
the literature.

Definition 2.3. The shadow ∆(F ) of a set F is {G ⊂ F : |G| = |F | − 1} and the shadow
∆(F) of a family F of sets is ∪F∈F∆(F ). If F is r-uniform and 0 ≤ ` < r, then ∆`(F) :=
{G : |G| = ` and ∃F ∈ F s.t. G ⊂ F}

We introduce the notation <colex for the colex ordering of all finite subsets of the positive
integers. In this ordering for two finite sets A and B we have A <colex B if and only if the
largest element of the symmetric difference (A \B) ∪ (B \ A) of A and B belongs to B.

Kruskal and Katona independently proved the following fundamental theorem.

Theorem 2.4 (Kruskal [17], Katona [15]). Let n, r,m ≥ 1 and Lr,m be the initial segment

of
(
[n]
r

)
of size m with respect to the colex ordering. For any F ⊆

(
[n]
r

)
of size m, we have

|∆(F)| ≥ |∆(Lr,m)|.

We can introduce the notion of shadow for vectors also.

Definition 2.5. The shadow ∆(x) of a vector x ∈ Qn is {y < x : r(y) = r(x) − 1}, where
< denotes the coordinate-wise ordering, i.e., for two vectors x and y we have y < x if and
only if yi ≤ xi for all 1 ≤ i ≤ n and yi < xi for at least one i. Then for F ⊆ Qn we
define the shadow ∆(F) of F as ∪x∈F∆(x) and for r-rank uniform F and ` < r we let
∆`(F) = {y : r(y) = ` and ∃x ∈ F s.t. y < x}.

Analogously to the set case we can introduce the colex ordering of Qn, i.e., for x,y ∈ Qn

we have x <colex y if and only if xi < yi where i is the largest coordinate in which x and y
differ.

Clements and Lindström provided a generalization of the Kruskal-Katona theorem for the
shadows of vectors we introduced in Definition 2.5.

Theorem 2.6 (Clements, Lindström [3]). Let q, r,m, n ≥ 1, and let Lq,r,m be the initial
segment of Q(n, r) of size m with respect to the colex ordering. For any F ⊆ Q(n, r) of size
m, we have |∆(F)| ≥ |∆(Lr,m)|.

One can easily check the following properties of the colex ordering of sets and vectors, so
we omit their proof.

Proposition 2.7. Suppose n ≥ r ≥ 1.

(i) Both in
(
[n]
r

)
and in Q(n, r), the shadow of an initial segment is an initial segment,

so one can iterate Theorems 2.4 and 2.6 to obtain that initial segments minimize the size of
(lower) shadows.

(ii) If F is the family of the largest m sets of
(
[n]
r

)
with respect to the colex ordering, then

F = Ln−r,m.
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(iii) If F is the family of the largest m vectors of Q(n, r) with respect to the colex ordering,
then F = Lq,qn−r,m.

Before the proof of Theorem 1.4, first let us briefly recall the proof of the upper bound in
Theorem 1.2 that uses the Kruskal–Katona shadow theorem (Theorem 2.4) and was obtained
by Daykin [4] as we would like to mimic it.

Suppose contrary to the statement of Theorem 1.2 that there exists an intersecting family
F ⊆

(
[n]
r

)
of size larger than

(
n−1
r−1

)
. Consider the family F = {[n] \ F : F ∈ F} and observe

that as F is intersecting, we must have F ∩∆r(F) = ∅. Clearly, |F| = |F| >
(
n−1
r−1

)
=
(
n−1
n−r

)
,

as n ≥ 2r. Applying Theorem 2.4, any (n − r)-uniform family of size larger than
(

y
n−r

)
has

r-shadow larger than
(
y
r

)
. So

(
n
r

)
= |
(
[n]
r

)
| ≥ |F| + |∆r(F)| >

(
n−1
r−1

)
+
(
n−1
r

)
=
(
n
r

)
. This

contradiction proves the upper bound in Theorem 1.2.
This proof seems to be very lucky that it includes miraculous equalities

(
n−1
r−1

)
=
(
n−1
n−r

)
and(

n−1
r−1

)
+
(
n−1
r

)
=
(
n
r

)
, so let us recite it without any calculation. Consider greedily the largest

sets of
(
[n]
r

)
with respect to the colex order as long as they form an intersecting family. Let

F0 be the family when we need to stop. If F0 ∪∆r(F0) =
(
[n]
r

)
, then F0 is a largest possible

intersecting family. Indeed, if |F| > |F0|, then as F0 is an initial segment, by Proposition 2.7
(i) and (ii), we have |F| + |∆r(F)| > |F0| + |∆r(F0)| =

(
n
r

)
, contradiction, so F cannot be

intersecting. To obtain the results of Theorem 1.2 about intersecting families, all we need is
to observe that F0 = {F ∈

(
[n]
r

)
: n ∈ F} and ∆r(F0) = {F ∈

(
[n]
r

)
: n /∈ F}.

Before the proof of Theorem 1.4 let us restate it.

Theorem 1.4. Let n, q, r ≥ 1 and F ⊆ Qn be an r-rank uniform (q + 1)-sum intersecting
family with q+1

2
≤ r ≤ qn

2
. Then

|F| ≤


∑q

j= q+1
2

|Q(n− 1, r − j)| if q + 1 is even,

1 +
∑q

j=d q+1
2
e

∑b 2(r−1)
q
c

i=1 |Q(n− i, r − j − (i−1)q
2

)| if q + 1 is odd,
(4)

and these bounds are best possible.

Proof. Clearly x ∈ Qn does not (q + 1)-sum intersect a vector y ∈ Qn if and only if y is
less than or equal to x in the coordinate-wise ordering. Also, F ⊆ Q(n, r) is a (q + 1)-sum
intersecting family if and only if F ∩ ∆r(F) contains at most one vector as F may contain
one vector x that does not (q + 1)-sum intersect itself. Indeed, if x 6= y and |x ∩q+1 y| = 0,
then x,y ∈ F ∩∆r(F). On the other hand if x,y ∈ F ∩∆r(F) and F is intersecting, then by
the above, we must have x < x and y < y. But as |x ∩q+1 y| > 0, there must exist an index
i with xi + yi ≥ q + 1, so either xi or yi, say xi, is at least q+1

2
. But then xi > q − xi = xi - a

contradiction.
The reasoning of Daykin stays valid with a little modification, if for the maximal (q + 1)-

sum intersecting family F0 ⊆ Q(n, r) consisting of largest vectors with respect to the colex

ordering we have both F0 ∪ ∆r(F0) = Q(n, r) and |∆r(F0)| < |∆r(F
+

0 )|, where F+
0 is the
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initial segment of the colex ordering of Q(n, qn− r) one larger than F0. Indeed, if F was an
r-rank uniform (q + 1)-sum intersecting family larger than F0, then by the following series of
inequalities:

|F ∪∆r(F)| ≥ |F|+ |∆r(F)| − 1 ≥ |F0|+ 1 + |∆r(F0)|+ 1− 1 = |Q(n, r)|+ 1

we would get a contradiction.

And this is exactly the case: for the maximal (q + 1)-sum intersecting family F0 ⊆ Q(n, r)
consisting of largest vectors with respect to the colex ordering, we prove that we have both

F0 ∪∆r(F0) = Q(n, r) and |∆(F0)| < |∆(F+

0 )|, where F+
0 is the one larger initial segment of

the colex ordering of Q(n, qn− r) than F0.

Suppose first that q+ 1 = 2k. Then F0 = {x ∈ Q(n, r) : xn ≥ k}, F0 = {x ∈ Q(n, qn− r) :

xn < k} and clearly ∆r(F0) = {x ∈ Q(n, r) : xn < k} = Q(n, r) \ F0 and since F+

0 contains a
vector x with xn = k, its r-shadow is strictly larger than that of F0.

Suppose next q + 1 = 2k + 1. Then

F0 =

b r−1
k
c⋃

j=0

{x ∈ Q(n, r) : xn = xn−1 = · · · = xn−j+1 = k, xn−j > k} ∪ {x∗},

where x∗n = x∗n−1 = · · · = x∗
n−b r−1

k
c = k, x∗

n−b r−1
k
c−1 ≡ r (mod k) and all other entries are 0.

Observe that x∗ does not (q+1)-sum intersect itself. To see that F0∪∆r(F0) = Q(n, r) holds,
one only has to observe that any vector y ∈ Q(n, r) \ F0 with yn = yn−1 = · · · = yn−b r−1

k
c = k

belongs to ∆r(x∗). Also, any vector y ∈ Q(n, r) with x∗ <colex y has an entry larger than k

in the last b r−1
k
c coordinates, so |∆r(F

+

0 )| > |∆r(F0)|.
So we are done with the proof of Theorem 1.4. �

Let us continue with the proof of Theorem 1.3. Before that we cite two well-known stability-
type results that we use during the proof.

Theorem 2.8 (Hilton, Milner [13]). If F ⊆
(
[n]
r

)
is an intersecting family with n ≥ 2r + 1

and ∩F∈FF = ∅, then |F| ≤
(
n−1
r−1

)
−
(
n−r−1
r−1

)
+ 1.

Theorem 2.9 (Frankl [6]). Let F ⊆
(
[n]
r

)
be a t-intersecting family with | ∩F∈F F | < t. If n

is large enough, then |F| ≤ max{|F1|, |F2|}, where

F1 =

{
F ∈

(
[n]

r

)
: [t] ⊂ F, F ∩ [t+ 1, r + 1] 6= ∅

}
∪
(

[r + 1]

r

)
and

F2 =

{
F ∈

(
[n]

r

)
: |F ∩ [t+ 2]| ≥ t+ 1

}
.

Now let us restate Theorem 1.3.
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Theorem 1.3. For any q, s ≥ 2 and integer r ≥ 1, there exists n(q, s, r) ∈ N such that if
F ⊆ Qn is r-support uniform s-sum intersecting with n ≥ n(q, r, s), then

|F| ≤
{

(q − s
2

+ 1)qr−1
(
n−1
r−1

)
if s is even,

1 + (q − d s
2
e+ 1)

∑r
i=1

(
n−i
r−i

)
qr−i if s is odd,

(5)

and these bounds are best possible.

Proof of Theorem 1.3. Suppose first that s is even. The constructions showing that the bound
is best possible are Fn,q,s,r,i = {x ∈ Qn : s

2
≤ xi}. To see the upper bound, let F be an r-

support uniform s-sum intersecting family and let SF denote the family of supports in F .
For a fixed support S, the number of vectors having S as support is bounded by a constant
(depending on |S|, r and q), therefore, by Theorem 2.8, unless all supports in SF share a
common element i, we have |F| = O(nr−2) <

(
n−1
r−1

)
if n is large enough. So we can suppose

that there exists an index i that belongs to all supports. Assume next that there exists
x ∈ F with xi <

s
2
. Then consider the subfamily F ′ = {y ∈ F : yi ≤ s

2
}. As vectors in

F ′ must all s-sum intersect x, but they do not s-sum intersect it at coordinate i, therefore
their supports must intersect the support of x in some coordinate other than i. Therefore, we
obtain |F ′| = O(nr−2). But then

|F| ≤ |F ′|+ (q − s

2
)qr−1

(
n− 1

r − 1

)
< (q − s

2
+ 1)qr−1

(
n− 1

r − 1

)
if n is large enough. We obtained that either F is smaller than the claimed bound or F ⊆
Fn,q,s,r,i for some index i.

Suppose next that s is odd. The extremal families are defined via ordered r-tuples (s1, s2, . . . , sr)
the following way:

Fn,q,s,(s1,s2,...,sr) = {x} ∪
r⋃
i=1

{y ∈ Qn : y1 = y2 · · · = yi−1 = bs
2
c, yi ≥

s

2
},

where x is the vector with xsi = b s
2
c for all 1 ≤ i ≤ r and xj = 0 otherwise. To prove the upper

bound, we proceed by induction on r. If r = 1, then all supports of an r-support uniform
s-sum intersecting family F must be the same singleton {i}. If m is the minimum entry over
all vectors in F at coordinate i, then all other entries must be at least s−m, so the number of
vectors is at most min{q−m+ 1, q− (s−m)}. This is maximized if m = b s

2
c and the claimed

bound follows. Let r > 1, and F ⊆ Qn be an r-support uniform, s-sum intersecting family.
Then just as in the even s case, using Theorem 2.8, we obtain that |F| = O(nr−2) unless all
sets in SF share a common element s1. If there exists a vector z ∈ F with zs1 < b s2c, then
also just as in the even s case, we obtain that F ′ = {y ∈ F : ys1 ≤ d s2e} is of size O(nr−2)
and thus F is smaller than the claimed bound if n is large enough. So we can assume that
for all vectors z ∈ F , we have zs1 ≥ b s2c. The number of those vectors z with zs1 ≥ d s2e is

(q − d s
2
e + 1)qr−1

(
n−1
r−1

)
, while the family F∗ = {z′ : zs1 = b s

2
c} is (r − 1)-support uniform,

s-sum intersecting, where z′ is the vector obtained from z by removing its s1st entry. By
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induction, we obtain

|F∗| ≤ 1 + (q − ds
2
e+ 1)

r−1∑
i=1

qr−1−i
(
n− 1− i
r − 1− i

)
and so

|F| ≤ |F∗|+ (q − ds
2
e+ 1)qr−1

(
n− 1

r − 1

)
≤ 1 + (q − ds

2
e+ 1)

r−1∑
i=1

qr−1−i
(
n− 1− i
r − 1− i

)
+ (q − ds

2
e+ 1)qr−1

(
n− 1

r − 1

)

= 1 + (q − ds
2
e+ 1)

r∑
i=1

qr−i
(
n− i
r − i

)
,

as claimed. �

Before the proof of Theorem 1.6 we prove the following for the size of the Construction 1.5.

Proposition 2.10. Suppose that n, q, s, r, t are integers with the assumptions on them as in
Construction 1.5.

(i) If r ≥ 2t, then

f(n, q, s, r, t) =(
n− t
r − t

)
qr−t(q − bs

2
c)t + (q − bs

2
c)|S|

∑
S([t]

f(n− t, q, s, r − t, t− |S|).

(ii) If t < r < 2t, then

f(n, q, s, r, t) =(
n− t
r − t

)
qr−t(q − bs

2
c)t +

(
t

2t− r − 1

)
+ (q − bs

2
c)|S|

∑
S([t],|S|≥2t−r

f(n− t, q, s, r − t, t− |S|).

Proof. In both cases, the first term of the right-hand side stands for those vectors for which
xi >

s
2

for all 1 ≤ i ≤ t. In (i), the big sum partitions the other vectors according to which
of the first t entries have value more than s/2. They all should contain at least t− |S| other
entries larger than s/2, out of the remaining r − t support entries.

In (ii), the big summation can neglect small subsets of [t] because if |S| < 2t − r then
|S| + r − t < t. The middle term stands for those xT ′s where T ′ contains exactly 2t − r − 1
elements from [t] (the others must contain more). �

Now we continue with the proof of Theorem 1.6 that we restate.
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Theorem 1.6. For any q, s ≥ 2 and r ≥ t ≥ 1, there exists n(q, s, r, t) such that if F ⊆ Qn

is r-support uniform s-sum t-intersecting with n ≥ n(q, s, r, t), then

|F| ≤
{

(q − s
2

+ 1)tqr−t
(
n−t
r−t

)
if s is even,

f(n, q, s, r, t) if s is odd,
(6)

and these bounds are best possible as shown by the families of Construction 1.5.

Proof of Theorem 1.6. Suppose first s is even. To see the upper bound, let F be an r-support
uniform s-sum t-intersecting family and let SF denote the family of supports in F . For a fixed
support S, the number of vectors having S as support is bounded by a constant (depending
on |S|, r and q), therefore, by Theorem 2.9, unless all supports in SF share all elements of a
t-subset T of [n], we have |F| = O(nr−t−1) <

(
n−t
r−t

)
if n is large enough. So we can suppose

that there exists a t-subset T that is contained in all supports. Assume next that there exists
x ∈ F with xi <

s
2

for some i ∈ T . Then consider the subfamily F ′ = {y ∈ F : yi ≤ s
2
}. As

vectors in F ′ must all s-sum t-intersect x, but they do not s-sum intersect it at coordinate
i, therefore their supports must intersect the support of x in some coordinate outside T .
Therefore, we obtain |F ′| = O(nr−t−1). But then

|F| ≤ |F ′|+ (q − s

2
)(q − s

2
)t−1qr−t

(
n− t
r − t

)
< (q − s

2
+ 1)tqr−t

(
n− t
r − t

)
if n is large enough. We obtained that either F is smaller than the claimed bound or F ⊆
Fn,q,s,r,T for some t-subset T .

Suppose next s is odd. We proceed by induction on r + t and observe that in all cases,
the family of supports must be t-intersecting. The case t = 1 is covered by Theorem 1.3.
Let F ⊆ Qn be an s-sum t-intersecting r-support uniform family. We consider three cases
according to the relationship of r and t.

Case I: r = t.

The assumption r = t implies that all supports in F are identical, say the support is S.
Therefore, for any x,y ∈ F and i ∈ S we must have xi + yi ≥ s. In particular, for any i ∈ S
there is at most one x ∈ F with xi < s/2. So

|F| ≤
(

t

t− 1

)
(q − bs/2c)t−1 + (q − bs/2c)t,

as claimed.

Case II: t < r < 2t.

The family SF of supports is t-intersecting, so unless all supports of F share t elements,
|F| = O(nr−t−1) holds by Theorem 2.9. Let T be the set of these t elements, and for any
S ⊂ T let FS denote the family of those vectors in F for which xi ≥ s/2 for all i ∈ S, and
1 < xi ≤ s/2 for all i ∈ T \ S. As all supports contain T , we have F = ∪S⊂TFS. Clearly,
|FT | ≤ qr−t

(
n−t
r−t

)
(q − bs/2c)t.
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Consider next all subsets S with 2t− r ≤ |S| < t. For any such S ( T , let F ′S = {x′ : x ∈
FS}, where x′ is the vector obtained from x by deleting the coordinates belonging to T . So
F ′S is (r − t)-support uniform s-sum (t− |S|)-intersecting, and thus by induction, we have

|FS| ≤ (q − bs/2c)|S||F ′S| ≤ (q − bs/2c)|S|f(n− t, q, s, r − t, t− |S|).
Finally, consider all subsets S ⊂ T with |S| < 2t − r. As |S| + r − t < 2t − r + r − t = t,

we must have |FS| ≤ 1 for all such S. Observe that for any (r + 1 − t)-subset Z ⊂ T there
exists at most one subset S ⊂ T with Z ∩ S = ∅ and FS 6= ∅. Indeed, if x ∈ FS, y ∈ FS′ ,
then x and y can only s-sum intersect in at most r − t coordinates outside T and in at most
t− (r+ 1− t) = 2t− r−1 coordinates within T , so |x∩s y| ≤ t−1, a contradiction. Therefore∑

S⊂T,|S|<2t−r

|FS| ≤
(

t

r + 1− t

)
=

(
t

2t− r − 1

)
.

Adding up these bounds for all |FS| we obtain the desired bound on |F| by Proposition 2.10 (ii).

Case III: 2t ≤ r.

The family SF of supports is t-intersecting, so unless all supports of F share t elements,
we have |F| = O(nr−t−1) by Theorem 2.9. Let T be the set of these t elements, and for any
S ⊂ T let FS denote the family of those vectors x ∈ F for which xi ≥ s/2 for all i ∈ S, and
1 < xi ≤ s/2 for all i ∈ T \ S. As all supports contain T , we have F = ∪S⊂TFS. Clearly,
|FT | ≤ qr−t

(
n−t
r−t

)
(q − bs/2c)t. For any S ( T , let F ′S = {x′ : x ∈ FS}, where x′ is the vector

obtained from x by deleting the coordinates belonging to T . So F ′S is (r− t)-support uniform
s-sum (t− |S|)-intersecting, and thus by induction, we have

|FS| ≤ (q − bs/2c)|S||F ′S| ≤ (q − bs/2c)|S|f(n− t, q, s, r − t, t− |S|).
Adding up these bounds for all |FS| we obtain the desired bound on |F| by Proposition 2.10 (i).

�

3. Intersecting vector pairs

In this section we provide proofs for Theorem 1.10 and Theorem 1.11.

Let us start with a general construction.

Construction 3.1. Let c ≤ a ≤ b and 3 ≤ s < 2q be integers and fix a set X of size a+ b− c.
For any 3-partition A∪B ∪C = X with |A| = a− c, |B| = b− c, |C| = c, we define the pairs
xA,B,C and yA,B,C with

xA,B,Ci = yA,B,Ci = ds/2e − 1 if i ∈ C,
xA,B,Ci = bs/2c+ 1, yA,B,Ci = 0 if i ∈ A

and
xA,B,Ci = 0, yA,B,Ci = bs/2c+ 1 if i ∈ B.

Note that {(xA,B,C ,yA,B,C) : A ∪ B ∪ C = X, |A| = a − c, |B| = b − c, |C| = c} is a strong
s-sum IVP-system of cardinality

(
a+b−c
b−c

)(
a
c

)
.



14 BALÁZS PATKÓS, ZSOLT TUZA, AND MÁTÉ VIZER

More generally, let α0, α1, . . . , αq be positive integers with
∑q−1

i=0 αi ≤ a and
∑q

i=1 αi ≤ b.
Set N =

∑q
i=0 αi ≤ a, and define

{(xA0,A1,...,Aq ,yA0,A1,...,Aq) : [N ] =

q⊔
i=0

Ai, |Ai| = αi} ,

where x
A0,A1,...,Aq

j = q − yA0,A1,...,Aq

j = i if and only if j ∈ Ai.
Observe that the above is a strong (a, b)-system. Indeed, by definition we have that

x
A0,A1,...,Aq

j + y
A0,A1,...,Aq

j = q for any j ∈ N and partition A0, A1, . . . , Aq with |Ai| = αi and

so |xA0,A1,...,Aq ∩q+1 yA0,A1,...,Aq | = 0. Furthermore, if (A0, A1, . . . , Aq) 6= (B0, B1, . . . , Bq), then
there exists j such that Aj 6= Bj. We consider such j that minimizes min{j, q− j}. By the as-

sumption on j, we have Nj := tq−ji=jAj = tq−ji=jBj and there exist i ∈ Aj\Bj and i′ ∈ Bj\Aj. As

i, i′ ∈ Nj we obtain x
A0,A1,...,Aq

i +y
B0,B1,...,Bq

i > j+q−j and x
B0,B1,...,Bq

i′ +y
A0,A1,...,Aq

i′ > q−j+j.
This proves that we indeed defined a strong (a, b)-system.

3.1. Upper bound for strong 3-sum IVP-systems in {0, 1, 2}<N. In this subsection we
will prove Theorem 1.10. Let {(xj,yj) | 1 ≤ j ≤ m} be a strong 3-sum (k, k)-system in
{0, 1, 2}<N. Let us also introduce the following further notation for j = 1, . . . ,m:

• aj = |Sxj \ Syj |,
• bj = |Syj \ Sxj |,
• cj = |Sxj ∩ Syj |.

First we prove the following LYM-type theorem for 3-sum (a, b)-systems.

Theorem 3.2. Suppose that for a, b,m ≥ 1 {(xj,yj) | 1 ≤ j ≤ m} is a strong 3-sum (a, b)-
system in {0, 1, 2}<N. Then

(7)
m∑
j=1

aj! bj! cj!

(aj + bj + cj)!
=

m∑
j=1

1(
aj+bj+cj
aj+bj

)(
aj+bj
aj

) ≤ min(a, b).

Proof. Essentially we apply induction on n.

• Note first that ai = 0 and bj = 0 cannot hold simultaneously for any 1 ≤ i 6= j ≤ m.
Indeed, if Sxi ⊂ Syi and Syj ⊂ Sxj then all nonzero entries in xi are equal to 1, and
the same holds for all nonzero entries in yj as well, hence xi∩3 yj = ∅, a contradiction.
As a consequence, either aj > 0 for all j or bj > 0 for all j (or both), or there is exactly
one j with aj = bj = 0.
• As long as Syj 6⊆ Sxj holds for all j:

For every t ∈ [n], consider the systems

{(xj, (yj)′) | 1 ≤ i ≤ m, t /∈ Sxj},
where ((yj)′)i = (yj)i for all i ∈ [n] \ {t} and ((yj)′)t = 0.
These systems keep the required intersections. Denoting b′j = |S(yj)′ \ Sxj | we have

b′j = bj − 1 exactly bj > 0 times, and b′j = bj exactly n− (aj + bj + cj) times. Taking
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the sum of (7) over all t, for the term belonging to j we have

bj ·
aj! (bj − 1)! cj!

(aj + (bj − 1) + cj)!
+ (n− aj − bj − cj) ·

aj! bj! cj!

(aj + bj + cj)!
= n · aj! bj! cj!

(aj + bj + cj)!
,

hence the overall sum for all j is n times the left-hand side of (7). Certainly the
right-hand side is also multiplied by n, and the inequality follows by induction.

This step is applicable unless bj = 0 holds for some j. Hence from now on assume
Syj ⊆ Sxj .
• As long as Sxj 6⊆ Syj holds for all j, also including j = i:

For every t consider the systems

{((xj)′,yj) | 1 ≤ j ≤ m, t /∈ Syj},
where ((xj)′)i = (xj)i for all i ∈ [n] \ {t} and ((xj)′)t = 0.
The argument analogous to the previous case yields the required inequality unless

aj = 0 holds for some j. However, then we have aj = bi = 0 which implies j = i.
Hence for the rest of the proof assume Sx1 = Sy1 , as we can choose i = 1, without loss
of generality. Recall that in this situation (x1)i = (y1)i for all i ∈ Sx1 = Sy1 .
• If we omit (x1,y1) from the system, the left-hand side of (7) decreases by exactly 1,

as currently c1 = |Sx1| and a1 = b1 = 0. For every j 6= 1 in the remaining subsystem
we have aj, bj > 0 because each xj needs an entry of 2 to intersect y1, and each yj

needs an entry of 2 to intersect x1, while those two elements cannot be the same as
xj must not sum-intersect yj. Consequently when we repeat the above steps, once the
procedure halts, the elements of Sxj \ Syj and of Syj \ Sxj will not remain there, i.e.
the value of the corresponding cj will be at most min(a, b)− 1 when aj = bj = 0.
• The last halt occurs when the system contains a single vector-pair (xj,yj) with aj =
bj = 0 and cj ≥ 1. This situation is reached after performing the above procedure at
most min(a, b) − cj + 1 ≤ min(a, b) times. Note that if cj = 1 then the intersection
conditions exclude the presence of any other vector-pair.

�

Let us repeat that m(k) denotes the maximum number of vector pairs in such a strong
3-sum (k, k)-system and let

f(k) := max
(x+ y + z)!

x! y! z!
,

where the maximum is taken over all nonnegative integers x, y, z such that x + z ≤ k and
y + z ≤ k. Now we are ready to prove

Theorem 1.10. For every k ≥ 1 we have

f(k) ≤ m(k) ≤ k · f(k) .

Proof of Theorem 1.10. The upper bound is a consequence of Theorem 3.2 as all terms on the
left-hand side of (7) are at least (f(k))−1. To obtain the lower bound we choose x, y, z for
which f(k) is attained, and choose a = x, b = y, c = z in Construction 3.1. �
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3.2. Upper bound for weak (q+ 1)-sum IVP-systems in {0, 1, . . . , q}<N. Let {(xj,yj) |
1 ≤ j ≤ m} be a weak (q + 1)-sum IVP-system in {0, 1, . . . , q}<N.

Observation 3.3.
(i) For any weak (q + 1)-sum (a, b)-system F there exists another one F ′ with |F| = |F ′|

such that for any (xj,yj) ∈ F ′ and i with xji + yji > 0 we have xji + yji = q.
(ii) For any strong (q + 1)-sum (a, b)-system F there exists another one F ′ with |F| = |F ′|

such that for any (xj,yj) ∈ F ′ and i with xji + yji > 0 we have xji + yji = q.

Proof. As |xj ∩q+1 yj| = 0 implies xji + yji ≤ q, and increasing a coordinate helps to intersect

other vectors, we can replace yj by yj, with yj,i = q − xji . �

We will say that a weak/strong (q + 1)-sum (k, k)-system is saturated if it satisfies the
property of Observation 3.3. For such F = {(xj,yj) : 1 ≤ j ≤ m}, let us write Aji to denote

{t : xjt = i} and αji to denote |Aji |.

Theorem 3.4. Let pi i = 0, 1, . . . , q be non-negative reals with
∑q

i=0 pi = 1. If F = {(xj,yj) :

1 ≤ j ≤ m} is a saturated weak (q + 1)-sum IVP-system, then
∑m

j=1

∏q
i=0 p

αj
i
i ≤ 1 holds.

Proof. Let (X0, X1, . . . , Xq) be a partition of [n] taken at random by the rule

P(t ∈ X0) = p0 , P(t ∈ X1) = p1 , . . . , P(t ∈ Xq) = pq

applied independently for each t ∈ [n] =:
⋃m
j=1(S(xj) ∪ S(yj)). For j = 1, . . . ,m consider the

events

Ej =

q∧
i=0

(Aji ⊆ Xi) .

We then have

P(Ej) =

q∏
i=0

p
αj
i
i .

Observe that P(Ej ∧ Ej′) = 0 holds for all 1 ≤ j 6= j′ ≤ m. Indeed, otherwise Aji , A
j′

i ⊂ Xi

holds for all i = 0, 1, . . . , q. But then xjz = i implies yjz = q − i or yjz = 0, so |xj ∩q+1 yj| = 0
and similarly xj

′
z = i implies yj

′
z = q − i or yj

′
z = 0, so |xj′ ∩q+1 yj

′ | = 0 — a contradiction to
the weak ISVP-property.

Consequently the events E1, . . . , Em mutually exclude each other, which implies that the
sum of their probabilities is at most 1. �

Now we prove

Theorem 1.11. For any q ≥ 1 let m(q, k) and m′(q, k) denote the maximum size of a strong

/ weak (q + 1)-sum (k, k)-system. Then limk→∞
k
√
m(q, k) = limk→∞

k
√
m′(q, k) = (

√
q + 1)2.
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Proof. Let us prove the upper bound first. By Observation 3.3, we can assume that F is

saturated. Then we apply Theorem 3.4 with p0 = pq =
√
q−1
q−1 and p1 = p2 = · · · = pq−1 = p20 =

q+1−2√q
(q−1)2 . (Observe that 2p0 +(q−1)p20 = 1 as required.) As αj0 = k−

∑q−1
i=1 α

j
i = αjq, we obtain

q∏
i=0

p
αj
i
i = p

αj
0+α

j
q

0 p
2(k−

∑q−1
i=1 α

j
i )

0 = p2k0 .

Therefore, Theorem 3.4 implies |F| ≤ (p−20 )k = (( q−1√
q−1)2)k = (

√
q + 1)2k.

The lower bound is obtained using Construction 3.1. For fixed q and growing N , we
let αi = piN for i = 0, 1, . . . , q with pi as above in the proof of the lower bound, and so

k =
p0+(q−1)p20
2p0+(q−1)p20

N = (p0 + (q − 1)p20)N . Then the number of pairs in the construction is∏q
i=0

((1−∑i−1
j=0 pj)N

piN

)
. Using Stirling’s formula and omitting polynomial terms, this is[

1

p2p00 (p20)
(q−1)p20

]N
= (p−20 )(p0+(q−1)p20)N = (p−20 )k =

(
q − 1
√
q − 1

)2k

= (
√
q + 1)2k.

Taking kth root yields the claimed lower bound. �

4. Concluding remarks

There exist lots of intersection theorems all waiting to be addressed in the sum-intersection
setting. We just would like to point out one. Katona’s intersection theorem [14] gives the
maximum size of a non-uniform t-intersecting family F ⊆ 2[n]. The extremal family consists of
all sets of size at least n+t

2
if n+ t is even, while if n+ t is odd, then extremal family consists of

all sets of size at least dn+t
2
e together with

( [n−1]
bn+t

2
c

)
. One would hope to see a similar result for

non-uniform s-sum t-intersecting families. That is extremal families are expected to consist
of vectors of large rank. This is not going to hold as for two such vectors x,y there might be
coordinates where they s-sum ‘intersect very much’ (i.e. xi + yi is much larger than s), but
do not intersect anywhere else.

To remedy this situation, we can define the size of the multi -s-sum intersection of two
vectors x,y ∈ Qn as |x ∩m,s y| =

∑n
i=1(xi + yi − s + 1)+, where for any real z we define

z+ := max{0, z}. A family F ⊆ Qn is s-multisum t-intersecting if for any x,y ∈ F we have
|x ∩m,s y| ≥ t. Below, we show the first step towards such intersection theorems. Katona’s
tool was his intersecting shadow theorem and we will need a similar result.

We need to define the well-known shifting operation τi,j for the vector setting. For a vector
x of length n and integers 1 ≤ i 6= j ≤ n we let τi,j(x) be the vector obtained from x by
exchanging its ith and jth coordinates if xi < xj and we let τi,j(x) = x otherwise. For a
family F of vectors we define τi,j(F) = {τi,j(x) : x ∈ F , τi,j(x) /∈ F} ∪ {x ∈ F : τi,j(x) ∈ F}.

The next lemma shows 2 basic properties of the shifting operating that are well-known for
set systems.
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Lemma 4.1. For any F ⊆ Q(n, r) and 1 ≤ i, j ≤ n we have |∆(τi,j(F))| ≤ |∆(F)|. Further-
more, if F is s-multisum t-intersecting, then so is τi,j(F).

Proof. Let us start with the proof of the claim concerning t-intersection. Suppose for x,y ∈
τi,j(F) we have |x ∩m,s y| < t. We cannot have x,y ∈ F , as it is impossible by the s-
multisum t-intersecting property of F . If x,y ∈ τi,j(F) \ F , then τj,i(x), τj,i(y) ∈ F and
t > |x ∩m,s y| = |τj,i(x) ∩m,s τj,i(y)| contradicts the s-multisum t-intersecting property of F .
Finally, if x ∈ F and y ∈ τi,j(F) \ F , then y′ := τj,i(y) ∈ F \ τi,j(F). So if x = τi,j(x),
then t > |x ∩m,s y| = |x ∩m,s y′| contradicts the s-multisum t-intersecting property of F . If
x′ := τi,j(x) 6= x, then as x ∈ τi,j(F), we must have x′ ∈ F , and thus t > |x∩m,sy| = |x′∩m,sy′|
contradicts the s-multisum t-intersecting property of F . This finishes the proof that shifting
preserves multisum intersecting properties.

To see |∆(τi,j(F))| ≤ |∆(F)| we define an injection i : ∆(τi,j(F))\∆(F)→ ∆(F)\∆(τi,j(F))
by letting i(x) be the vector obtained from x by interchanging its ith and jth coordinate. This
is clearly an injection, all we need to verify is that every image belongs to ∆(F) \∆(τi,j(F)).
So let x ∈ ∆(τi,j(F))\∆(F) be arbitrary. Then there exists y ∈ τi,j(F)\F with x ∈ ∆(y) and
y′ := τj,i(y) ∈ F\τi,j(F). Clearly, i(x) ∈ ∆(y′) ⊂ ∆(F). It remains to show i(x) /∈ ∆(τi,j(F)).
First we claim xi > xj. Indeed, as y ∈ τi,j(F) \ F , we have yi > yj showing xi ≥ xj, and
xi = xj would mean x ∈ ∆(y′) and x ∈ ∆(F) contradicting x ∈ ∆(τi,j(F)) \ ∆(F). Now,
xi > xj implies i(x)i < i(x)j. Assume for a contradiction that there exists y∗ ∈ τi,j(F) with
i(x) ∈ ∆(y∗). Then we must have y∗i ≤ y∗j . This is only possible if τi,j(y

∗) ∈ F . But then
x ∈ ∆(τi,j(y

∗)) ⊂ ∆(F) contradicting x ∈ ∆(τi,j(F)) \∆(F). This finishes the proof. �

Note that Lemma 4.1 is not valid for s-sum t-intersection instead of s-multisum t-intersec-
tion in the case of general t as, say, the family {(3, 2), (1, 3)} is 4-sum 2-intersecting, while its
(1, 2)-shift {(3, 2), (3, 1)} is only 4-sum 1-intersecting.

We say that F is left-shifted if τi,j(F) = F for all i < j. Whenever τi,j(F) 6= F for some
i < j, then w(F) =

∑
x∈F

∑n
i=1 ixi strictly decreases, so starting from any family F , after a

finite number of shift operations one obtains a left-shifted family. Furthermore, by Lemma 4.1,
the size of the shadow does not increase and intersection properties are preserved. Therefore,
when proving a lower bound on the size of shadows, one can assume that F is left-shifted.
We use the notation 2(n, r) for the set of vectors of rank r in {0, 1, 2}n.

Theorem 4.2. If F ⊆ 2(n, r) is 3-sum intersecting, then |∆(F)| ≥ |F|.

Proof. We proceed by induction on n. If n < r, then for any x ∈ 2(n, r) we have |{i : xi =
2}| > |{j : xj = 0}|. Therefore for any F ⊆ 2(n, r) in the auxiliary bipartite graph B with
parts F and ∆(F) and edges between pairs y ∈ ∆(x), we have that the degrees of any vector
x in F is at least as large as the degree of any of its neighbors y ∈ ∆(x). Consequently,
|∆(F)| ≥ |F| as claimed.

If n ≥ r, then, by Lemma 2.4, we can assume that F is left-shifted. For a = 0, 1, 2 we
introduce Fa := {x ∈ F : xn = a} and F−a := {x− : x ∈ Fa}, where x− is the vector obtained
from x by omitting its last coordinate. Observe that if y ∈ ∆(F−a ), then y+a ∈ ∆(F), where
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y+a is the vector obtained from y by concatenating a as a last coordinate. So, by induction,
|∆(F)| ≥

∑2
a=0 |∆(F−a )| ≥

∑2
a=0 |F−a | = |F| if we can prove for the second inequality that

F−a is 3-sum intersecting for all a = 0, 1, 2. This is clear for a = 0, 1 as vectors in Fa 3-sum
intersect but as their last coordinate is 0 or 1, they must 3-sum intersect among the first n−1
coordinates.

Finally, consider F−2 . Suppose for a contradiction that x−,y− ∈ F−2 with |x− ∩3 y−|
= 0. If for some i ∈ [n − 1] we have xi = 0, yi ≤ 1, then |τi,n(x) ∩3 y| = 0 contradicting the
3-sum intersecting property of F2. We derive the same contradiction if xi ≤ 1, yi = 0. But
x−,y− ∈ 2(n−1, r−2), so there are at most r−2 coordinates from i ∈ [n−1] with xi, yi ≥ 1,
hence there exists at least one coordinate i for which we get the desired contradiction. �

Theorem 4.3. If F ⊆ 2n is 3-multisum 2-intersecting, then |F| ≤ | ∪2n
r=n+1 2(n, r)|.

Proof. Let F be a 3-multisum 2-intersecting family of maximum size. Clearly, F is upward
closed, i.e. y > x ∈ F implies y ∈ F . Observe that writing ∇(x) = {y > x : r(y) = r(x)+1},
we have that for any x ∈ F the shade ∇(x) is disjoint with F . Let r be the rank of a smallest
ranked vector in F and consider Fr = {x ∈ F : r(x) = r}. Observe that F ′ := (F\Fr)∪∇(Fr)
is 3-multisum 2-intersecting. Indeed, vectors from F ′ \ F are all of rank 2n − r + 1 and
vectors from F ∩ F ′ are all of rank at least r + 1, so they must 3-multisum 2-intersect. As
|∇(F)| = |∆(F)|, by Theorem 4.2, |F ′| ≥ |F| and we can repeat this procedure as long as
r ≤ n and thus 2n− r + 1 > r. We obtain that |F| ≤ | ∪2nr=n+1 2(n, r)|. �

Theorem 4.4. If F ⊆ 2n is 3-multisum 3-intersecting, then |F| ≤ | ∪2nr=n+2 2(n, r)| + M(n),
where M(n) denotes the maximum size of a 3-multisum 3-intersecting family in 2(n, n+ 1).

Proof. The proof is almost identical to that of Theorem 4.3. Let F be a 3-multisum 3-
intersecting family of maximum size. Observe that writing ∇2(x) = {y > x : r(y) = r(x)+2},
we have that for any x ∈ F the 2-shade ∇2(x) is disjoint with F . Let r be the rank of a
smallest ranked vector in F and consider Fr = {x ∈ F : r(x) = r}. Observe that F ′ :=
(F \ Fr) ∪ ∇2(Fr) is 3-multisum 2-intersecting. Indeed, vectors fro F ′ \ F are all of rank
2n − r + 2 and vectors from F ∩ F ′ are all of rank at least r + 1, so they must 3-multisum
3-intersect. Note that if G is s-multisum t-intersecting, then ∆(G) is s-multisum (t − 2)-
intersecting. So applying Theorem 4.2 twice and |∇2(F)| = |∆(∆(F))|, we obtain |F ′| ≥ |F|
and we can repeat this procedure as long as r ≤ n and thus 2n− r + 2 > r. We obtain that
there exist a maximum-sized 3-multisum 2-intersecting family F consisting only of vectors of
rank at least n+ 1. �
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Alfréd Rényi Institute of Mathematics
Email address: vizermate@gmail.com


