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Abstract: By the spread of miniaturized components, like the 0201mm size-code (200 × 100 µm) 
passives, utilizing advanced optimization techniques becomes crucial in this field. A framework was 
established, which used machine-learning-based estimators to predict the yield of any manufacturing 
process in electronics technology. The framework includes using various methods, like artificial neural 
networks (ANN), decision trees and neuro-fuzzy inference systems. It can automatically split the input 
data into training and testing sets for each learning epoch to reach optimal performance and prevent 
possible overfitting at the same time. Besides, optimal structures and description functions are also 
determined automatically. To assess the prediction error, the framework calculates the MAE (Mean 
Absolute Error), the RMSE (Root Mean Square Error) and the MAPE (Mean Absolute Percentage 
Error) parameters to decide if the built estimator structure is appropriate. As an outcome, the 
framework can provide several parameters that the user can optionally select. Parameters like the 
predicted values of a process output parameter over different input process parameters are provided. 
Besides, KPI (Key Process Index) of the output parameters or the Desirability Function (which 
combines many output parameters) can be acquired. The applicability and the performance of the 
framework were analyzed on the stencil printing process by building an ANN structure. 

1. INTRODUCTION 

Enhancing the yield of electronics assembly processes is always in the focus of researchers working in 

electronics packaging technology. By the spread of miniaturized components, like the 0201mm size-code (200 × 

100 µm) passives, utilizing advanced optimization techniques becomes crucial in this field. These components 

are assembled by reflow soldering technology [1–3] onto the printed circuit board (PCB), where the most crucial 

step is stencil printing [4]. Soldering failures of 50–60% originates from the defects of this process, like solder 

paste skipping or solder paste bridging. Typical soldering failures in these cases can be the formation of open 

joints or solder bridges and the shift of the components from their proper location on the PCB [5]. 

Many researchers dealt with the optimization of stencil printing. Edwards showed in 1994 that the early-

phase optimization of this process can significantly improve its first-pass yield [6]. In the beginning, empirical 

optimization methods were readily used like the Taguchi or the DMAIC (Define, Measure, Analyse, Improve 

and Control) methods. Then, methods based on either numerical modelling or machine-learning have spread to 

optimize electronics assembly processes. Wu classified solder joints by using the techniques of decision trees 

and random forests [7]. These methods' classification performances were 98.9% and 100%, respectively, in the 

test scenario. Tsai analyzed the process of stencil printing by utilizing artificial neural networks (ANN) [4]. They 

could predict the deposited volume of the solder paste and the solder joints' subjective quality with a 5–8% error. 

Though they did not assess the apertures' size by their area ratio (AR), but they analyzed only some distinct 

component types (QFP with pitch-size of 0.63, 0.5, 0.4 mm). Similar results were achieved by using neuro-fuzzy 

and fuzzy-logic-based Taguchi methods to optimize the stencil printing process. Up to now, none of the recent 

research works dealt with complex estimator systems, which can flexibly assess electronics manufacturing 

processes. Besides, the stencil printing process analyses also lacked some key input parameters, like the size of 



 

 

the stencil apertures described by their area ratio, or the statistical parameters of the particle size distribution in 

solder pastes. 

2. MATERIALS AND METHODS 

A framework was established, which includes an ANN-based (Artificial Neural Network) estimator structure. 

Users can freely optimize any of their processes by providing an input database for training purposes. Users can 

define a set of output parameters also. After providing the set of data, the framework carries out an automatic 

optimization of the ANN structure using different training methods, as detailed below. 

ANN models include artificial neurons, which receive and forward signals from the input till the output. The 

neurons in the models are arranged into (hidden) layers, and the structure is defined in a strict order; that is, a 

neuron can only communicate with those in a neighboring layer (Fig. 1).    

 

Fig. 1. The general structure of an ANN-based predictor. 

The activation function of a node can formally be described by the following expression (1) [8]: 
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where l

jz  is the input of the j-th neuron in the layer l, 1−l

ka  is the output value of the k-th neuron in the layer l–1, 

l

jkw  is a weighting parameter defined between these two neurons, and bj is a bias factor for the j-th neuron. After 

determining the structure of the ANN, the next step is the training by a set of data for tuning the weighting and 

bias parameters. A widespread training method is the so-called Bayes regularization (BR) for defining the 

weighting parameters in an iterative manner [9]. Though the BR method can provide excellent results, 

predictions with low errors, the training time can be extensive. The other widespread training method is the so-

called Levenberg-Marquardt, which relies on the fitting of smallest squares approach [10]. This can provide 

predictions with a reasonably low error by a much shorter training time. The created framework can apply both 

these training methods by choice of the user. After selecting the training method, the framework carries out the 

automatic fine-tuning of the ANN structure by testing the predicted values to the ones in the training dataset. The 

accuracy of the prediction is characterized by numerous parameters, like the RMSE (root-mean-square error), 

MAE (mean absolute error), MAPE (mean absolute percentage error). Finally, summarizing parameters can be 

selected to be calculated, providing an overview for many process output parameters in one value; these include 

the Key Process Index (KPI) (2) and the Desirability Function (DF) (3) [11]. 
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where KPIi is the index for the i-th output parameter, µi is the target of the i-th parameter, 
iy

)
 is the estimator 

(mean) of the i-th parameter, and wi is a weight parameter for the summation of KPIi-s. 
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where di is the desirability value of a single output parameter, USLi and LSLi are the upper and lower 

specification limits, and s and t are weighting factors. 

The framework was tested on the process of stencil printing. The training database was created by empirical 

methods to test the framework. For the input dataset, different types of solder pastes (Type-3, Type-4, Type-5) 

were deposited through apertures with varying sizes at different printing speeds (from 20 mm/s to 120 mm/s). 

The dimensions of the apertures were characterized by their area ratio (ratio between the area and the wall-

surface), and they were varied between 0.35 and 1.7. The output data vector included the area, the height, and 

the volume of the deposits. By the predicted values, the KPI and DF were calculated.   

3. RESULTS 

The framework was trained by LM method at first for predicting the quality of stencil printing. The ANN 

structure consisted of one hidden layer. During the automatic fine-tune of the structure, the number of the hidden 

neurons was varied between 10 and 100. The framework split the input database into training and testing sets 

automatically. More than one training cycles were performed since the split into the training and test sets is 

random. Thereby, the average prediction capability (characterized by the MAPE parameter) of the ANN 

structure could be addressed. The average values and the deviation of the MAPE are illustrated in Fig. 2., 

whereas the training time is presented in Fig. 3.  



 

 

 

Fig. 2. MAPE of the ANN prediction over the number of neurons by LM training (blue: average MAPE; red: deviation of 

the MAPE). 

 

Fig. 3. Training time over the number of neurons. 

 

The best prediction accuracy, the lowest MAPE, was obtained at a neuron number 85, with a reasonably low 

training time. The average MAPE value was 3.6%, in which the prediction error was the lowest for the deposited 

solder paste thickness (2.2%). The prediction errors for the deposited area and volume were slightly larger, 3.8% 

and 4.8%, respectively. A significant decrease in the prediction error could not have been reached either with 

much longer training times based on the experiments. 

The ANN structure was trained utilizing also the BR training method. The MAPE values and the training 

times are presented in Fig. 4 and 5. 



 

 

 

Fig. 4. MAPE of the ANN prediction over the number of neurons by BR training (blue: average MAPE; red: deviation of 

the MAPE). 

 

Fig. 5. Training time over the number of neurons. 

The best prediction error was obtained at the neuron number 80. The average MAPE was 1.5% in this case; 

the MAPE for predicting the area, thickness and volume of the deposited solder pastes were 1.3%, 1.2%, 1.9%, 

respectively. At the same time, the training time was much longer, reached eve 5–10 minutes. For specific cases, 

specific processes, users can set thresholds either for the desired MAPE or the training time, and the framework 

can utilize the appropriate training method; that is, the LM method is slightly less accurate but faster, the BR 

method more accurate, but slower. 

After the successful training, the ANN predicted the expected transfer efficiency over the size of apertures 

(described by the area ratio). The measured and predicted values are illustrated in Fig. 6; the predicted values are 

in the proximity of the measured ones at all aperture sizes. 



 

 

 

Fig. 6. ANN predicted transfer efficiency; acceptance by mean (green arrow), or 1st quartile (orange arrow). 

Exciting question if the acceptance limit should be set for the mean of the efficiency or the first quartile, 

which would stand a stricter requirement against the process. Note that the transfer efficiency can extend 100%. 

The reason is that slight air gaps can exist between the stencil and the printed circuit board, yielding thicker paste 

deposits than the thickness of the stencil and thereby producing deposits with a larger volume than the volume of 

stencil aperture. 

Then, the DF (consisting of the output parameter space) was also calculated for the different printing speeds 

and solder paste types (Type-3 – µg = 26.6 µm; Type-4 – µg = 25 µm; Type-5 – µg = 19.1 µm). The obtained DF 

values are illustrated in Fig. 7. In the investigated case, the highest DF values were obtained at the printing speed 

of 20 mm/s for the Type-4 and Type-5 solder pastes. The highest DF value for the Type-3 solder paste was 

reached at the printing speed of 45 mm/s. The DF values extended 50% for all the investigated cases. By 

analyzing DF plots, one can determine an optimal printing speed (or any process parameter), considering the 

desired throughput of the manufacturing line and an acceptable value of DF. 

 

 

Fig. 7. DF over the printing speed and the various types of solder pastes (µg and σg are the geometric mean and SD of the 

particle sizes). 

4. CONCLUSION 

A framework was established, which used machine-learning-based estimators to predict the yield of any 

manufacturing process in electronics technology. An appropriate predicting capability was obtained for the 

process of stencil printing by testing the applicability of the framework. By using the proposed framework, 

process optimization can be performed on a daily basis, and the yield can be enhanced significantly. 
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