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Abstract

In this short paper we improve an almost 30 years old result of Erdős, Sárközy
and Sós on lower bounds for the size of multiplicative square-free sequences. Our
construction uses Berge-cycle free hypergraphs that is interesting in its own right.

1 Introduction
Erdős, Sárközy and Sós [7] defined and started to investigate the following property (in
connection with the multiplicative Sidon problem).

Definition 1. For k ≥ 2 we say that a set of positive integers A has property Pk if the
equation

a1a2 . . . ak = x2, a1, a2, . . . , ak ∈ A, a1 < a2 < . . . < ak

can not be solved for any x ∈ N. Let Γk denote the set of subsets of N that satisfy Pk.
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For k, n ≥ 2 let
Fk(n) := max{|A| : A ⊂ {1, 2, . . . , n},A ∈ Γk}.

Let us denote by π(n) the number of prime numbers that are at most n. Erdős, Sárközy
and Sós [7] proved the following.

Theorem A ([7] Theorem 5, Theorem 6). There exists c > 0 and for every k ∈ N there
exist ck > 0 and n0(k) such that for n > n0(k) we have

• ck(n
1
2 (logn)−1)1+ 1

4k−1 ≤ F4k(n)− π(n) ≤ cn
3
4 (logn)−

3
2 , and

• ck(n
1
2 (logn)−1)1+ 1

4k+1 ≤ F4k+2(n)− (π(n) + π(n2 )) ≤ cn
7
9 logn.

Let us note that there is a typo in the exponent of the lower bound of F4k(n) in [7].
They also proved sharper results for small values of k. The following two results were

achieved in [7]: there exist positive constants c1 and c2 such that

c1n
3
4 (logn)−

3
2 ≤ F4(n)− π(n) ≤ c2n

3
4 (logn)−

3
2 ,

so the order of magnitude of F4(n)−π(n) was determined; and there exist positive constants
c3 and c4 such that

c3n
2
3 (logn)−

3
4 ≤ F6(n)− (π(n) + π(n/2)) ≤ c4n

7
9 logn.

Later, in [8] Győri improved the upper bound on F6(n) and proved that there exists a
positive constant c5 with F6(n) − (π(n) + π(n/2)) ≤ c5n

2
3 logn. The first author could

improve further this upper bound in [13, 14] and finally could prove that there exists a
constant c6 with F6(n)− (π(n) + π(n/2)) ≤ c6n

2
3 (logn)21/3−1/3+o(1).

Notation. We use standard notation for the order of a function. For two functions
f, g : N→ N we write f � g, if there is a (positive) constant c and a natural number n0
such that we have f(n) ≤ cg(n) for all n ≥ n0.

Structure of the paper. The structure of the paper is the following: in Subsection 1.1
we provide an improvement of Theorem A just by using a better (known) graph theoretic
result; then in Subsection 1.2 we state one of our results that connects the hypergraph
girth problem to lower bound constructions of multiplicative square-free sequences; in
Subsection 1.3 we provide constructions concerning the hypergraph girth problem; while in
Subsection 1.4 we give the concrete improvements. In Section 2 we give the proofs of our
results and finally in Section 3 we provide some analysis.

1.1 Some improvement of Theorem A

In this subsection we provide an improvement of Theorem A by following the proof of Erdős,
Sárközy and Sós from [7] and using a better extremal graph theoretic result.
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For k ≥ 2 we denote the cycle of length k by Ck and the set of cycles {C3, . . . , Ck} by
Ck. For two graphs F and G we say that G is F -free, if G does not contain F as a subgraph
and for a set of graphs F we say that G is F-free, if it is F -free for all F ∈ F . For an
integer n and a set of graphs F we denote by ex(n,F) the maximum number of edges that
a simple graph G on n vertices can have if G is F-free. We say that this function is the
extremal or Turán function of F .

In [7] to prove the lower bound of Theorem A the authors use the result of Erdős stating
that for k ≥ 3 we have ex(n, Ck) � n1+ 1

k−1 . We note that exactly the same way they
derived the lower bounds of Theorem A, if one has ex(n, Ck)� n1+α(k) for some function
α : N→ R, then it implies the existence of a positive constant ck with

ck(n
1
2 (logn)−1)1+α(4k) ≤ F4k(n)− π(n)

and
ck(n

1
2 (logn)−1)1+α(4k+2) ≤ F4k+2(n)− (π(n) + π(n/2)).

To the best of our knowledge the next theorem provides the currently known best lower
bound on the order of magnitude of ex(n, C2k), due to Benson [2]; and Lazebnik, Ustimenko
and Woldar [11]:

Theorem B. For k ≥ 2 we have the following:

• ([11] Corollary 3.3) ex(n, C2k)� n1+ 2
3k−3+ε , where ε = 0, if k is odd and ε = 1, if k is

even, and
• ([2] Theorem 2) ex(n, C10)� n

6
5 .

Theorem B implies the way described above the following.

Corollary 2. For k ≥ 2 we have

• F4k(n)− π(n)� (n
1
2 (logn)−1)1+ 1

3k−1 ,

• F4k+2(n)− (π(n) + π(n2 ))� (n
1
2 (logn)−1)1+ 1

3k ,

• F10(n)− (π(n) + π(n2 ))� (n
1
2 (logn)−1)

6
5 .

Note that the so-called Graph Girth1 Problem, i.e. to give better lower (or upper) bounds
on ex(n, C2k) is a notoriously difficult problem. To improve the results in Corollary 2 just
by improving the lower bound on ex(n, C2k) seems hard.

1Girth is the length of the shortest cycle in a graph.
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1.2 General lower bound construction: one of our results

So – because of the obstacle mentioned in the previous paragraph – instead of using graphs
our new idea is to use hypergraphs in the lower bound constructions to give better lower
bounds for F4k(n) and F4k+2(n) for certain values of k using extremal results for Berge
hypergraphs.

First we state a general theorem that connects lower bounds for F4k(n) and F4k+2(n)
with extremal numbers of 3-uniform Berge hypergraphs of appropriate girth (similarly as in
the graph case). Then we state concrete lower bounds and finally compare them with the
previously known lower bounds.

To be able to state our general theorem, we need some definitions. Similarly to the graph
case one can introduce the Turán function of (a set of) hypergraphs. For two hypergraphs H
and G we say that a hypergraph H is G-free, if H does not contain G as a subhypergraph.
For an integer n and a family of r-uniform2 hypergraphs G the Turán function – denoted
by exr(n,G) – is the maximum number of hyperedges in an r-uniform hypergraph H on n
vertices such that H is G-free for every G ∈ G.

There are many different ways one can generalize the notion of graph cycles to the case
of hypergraphs. The one that will be useful for us is due to Berge [3].

Definition 3. For an integer t ≥ 2 a Berge-cycle of length t is an alternating sequence of t
distinct vertices and t distinct hyperedges (of a hypergraph), v1, e1, v2, e2, v3, . . . , vt, et, such
that vi, vi+1 ∈ ei, for i ∈ {1, 2, . . . , t}, where the indices are taken modulo t. The vertices
v1, v2, . . . , vt are called defining vertices and the hyperedges e1, e2, . . . , et are called defining
hyperedges of the Berge-cycle. We denote the set of all Berge-cycles of length t by BCt.
Let us denote the set {BC3, . . . ,BCk} by BCk.

Note that a cycle in BC2 is just 2 distinct hyperedges whose intersection has cardinality at
least 2. Note also that the notion of being a Berge-cycle of length k means rather a family
of hypergraphs than just a single one. Now we state our general result.

Theorem 4. Let β : N → R be a function. If we have ex3(n,BC2k+1) � nβ(2k+1) for an
integer k, then

F4k+2(n)− (π(n) + π(n/2))� (n
1
2 (logn)−1)

2·β(2k+1)
1+β(2k+1) .

1.3 Berge Hypergraph Girth Problem

According to Theorem 4 the Berge Hypergraph Girth Problem plays a crucial role in the
lower bound constructions for F4k+2(n). Now we list the results that we will use.

For 3-uniform hypergraphs we have the following theorem (and we are not aware of any
better lower bound). The proof is coming from the (bipartite) graph girth problem.

2For an integer r ≥ 1 we call a hypergraph r-uniform, if the cardinality of each hyperedge is r.
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Theorem 5. For k ≥ 2 we have

• ex3(n,BC2k+1)� n1+ 2
3k−3+ε , where ε = 0, if k is odd and ε = 1, if k is even, and

• ex3(n,BC11)� n
6
5 .

1.4 The main result

Theorem 4 and Theorem 5 imply our main result, that is

Theorem 6. For k ≥ 2 we have

• F4k+2(n)−(π(n)+π(n2 ))� (n
1
2 (logn)−1)1+ 1

3k−2+ε , where ε = 0, if k is odd and ε = 1,
if k is even, and

• F22(n)− (π(n) + π(n2 ))� (n
1
2 (logn)−1)

12
11 .

Comparing our main result with previous results

We put the first few values of the exponent of n
1
2 (logn)−1 in Theorem A, Corollary 2 and

Theorem 6 into the following table.

k 2 3 4 5 6

Thm A 10
9

14
13

18
17

22
21

26
25

Cor 2 7
6

10
9

13
12

16
15

19
18

Thm 6 6
5

8
7

12
11

12
11

18
17

One can easily check that Corollary 2 improves the result of Theorem A for all k ≥ 2. It
can also be computed that Theorem 6 improves the exponent of n

1
2 (logn)−1 in Corollary 2

by
1

3k − 2 + ε
− 1

3k ,

where ε = 0, if k is odd and ε = 1, if k is even; for all k ≥ 2, with the exception of k = 5.
For k = 5 check the table for the precise result.

2 Proofs

2.1 The proof of Theorem 4, a construction

In this section we describe a general construction that can be considered as the hypergraph
analogue of the construction used in [7] to prove the lower bounds of Theorem A and it
will serve as a core of the proof of Theorem 6.
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Construction. For a set of integers X let us denote by P (X) the set of primes in
X. For two real numbers a and b we denote by (a, b] the set of integers x in the interval
a < x ≤ b. To describe the construction we give three different sets of integers as follows.
Let the first two sets be the following (where we specify 1

2 < α < 1 and S = nα+o(1) later):

• P1 := {p : p ∈ P ((S, n])}
• P2 := {2p : p ∈ P ((S, n2 ])}

To define the third set of integers (and the parameters α, S) we need some preparation.
Let us divide the set P ((0, S]) into two disjoint sets A and B in such a way that there
exists a 3-uniform hypergraph H(B) on B for which the number of hyperedges in H(B)
is |E(H(B))| = |A| and let us assign different prime numbers from A to the hyperedges
of H(B). So let the hyperedge set of H(B) be {ep = {rp, sp, tp} : p ∈ A, rp, sp, tp ∈ B}.
Finally, let us set

• P3 := {p · q : p ∈ A, q ∈ ep}

Note that if the product of the largest element of A and the largest element of B is at
most n, then P1 ∪ P2 ∪ P3 ⊆ {1, 2, . . . , n}.

Now we prove the following lemma (we also state it in case of F4k(n) that we refer to
in the last Section) that connects those subsets of P1 ∪ P2 ∪ P3 whose product is a square
with Berge-cycles in H(B).

Lemma 7. Suppose that we have distinct elements a1, a2, . . . , ak ∈ P1 ∪ P2 ∪ P3 and an
integer x such that a1a2 . . . ak = x2. Then we have

1. a1, a2, . . . , ak ∈ P1 ∪ P2, or

2. if k = 4`, then there is a BCj in H(B) for some j ∈ {2, 3, . . . , 2`}, or

3. if k = 4`+ 2, then there is a BCj in H(B) for some j ∈ {3, . . . , 2`+ 1}.

Proof. First note that for any a1, a2, . . . , ak ∈ P1∪P2∪P3 and integer x with a1a2 . . . ak = x2,
we have that a1, a2, . . . , ak contains exactly 4s numbers from the set P1 ∪ P2 (for some
integer s ≥ 0).

Observe also that if for some 1 ≤ i ≤ k and q ∈ ep we have pq = ai ∈ P3, then p must
occur in some other ai′ = pq′ with 1 ≤ i′ ≤ k, i 6= i′, q 6= q′ ∈ ep and similarly q must occur
in some ai′′ = p′q with 1 ≤ i′′ ≤ k, i 6= i′′, p′ 6= p. This observation means that if we have
at least one element ai in P3, then we get a Berge-cycle of length j with 2 ≤ j ≤ k/2 and
actually the elements in P3 gives the union of some Berge-cycles in H(B).

As a BC2 is assigned to 4 elements, in case k = 4`+ 2 (using the remark above) we get
that there is a Berge-cycle of length j with 3 ≤ j ≤ 2`+ 1(= k/2) also.
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To finish the proof of Theorem 4 we define A and B the following way. Let c > 0 and

B := P ((0, cn1−α(logn)
β(2k+1)−1
β(2k+1)+1 ]) and A := P ((cn1−α(logn)

β(2k+1)−1
β(2k+1)+1 , S]),

where S is chosen in such a way that the number of hyperedges of our 3-uniform BC2k+1-free
hypergraph on B is exactly |A|. If c > 0 and α are chosen in such a way that

S ≤ (1/c)nα(logn)−
β(2k+1)−1
β(2k+1)+1

holds, then we can carry out the construction described above. To get this the following
inequality should hold:

[
π

(
cn1−α(logn)

β(2k+1)−1
β(2k+1)+1

)]β(2k+1)
�

� π

(
(1/c)nα(logn)−

β(2k+1)−1
β(2k+1)+1

)
− π

(
cn1−α(logn)

β(2k+1)−1
β(2k+1)+1

)
(1)

Note that we want to choose P3 as large as possible, and that means we would like to
choose α > 1

2 as small as possible. One can easily check that inequality (1) is satisfied
with α = β(2k+1)

1+β(2k+1) and a sufficiently small constant c > 0. So we are able to carry out the
construction with this exponent.

The improvement compared to the bound π(n) + π(n/2) is (1− o(1))|E(H(B))|, so we
are done with the proof of Theorem 4, since for the above choice of the parameters we have

|E(H(B))| � (n
1
2 (logn)−1)

2·β(2k+1)
1+β(2k+1) .

2.2 Proof of Theorem 5, the Turán function of large girth Berge hyper-
graphs

Now we introduce a construction that helps us in the proof. First we prove that if we have
a lower bound ex(n, Ck)� nγ(k) for some γ : N→ R, then from that construction we can
get another implying ex(n,BCk)� nγ(k).

Construction 8. Let us suppose that G = ((A,B), E) is a bipartite graph with vertex set
A ∪B (A ∩B = ∅) and edge set E. Let us define the 3-uniform hypergraph H(G,A) in the
following way:
• let the vertex set of H(G,A) be A1 ∪A2 ∪B with A1 ∩A2 = ∅ and |A| = |A1| = |A2|

(for any a ∈ A we denote the corresponding vertices in A1 and A2 by a1 and a2, respectively),
and
• let the set of hyperedges be {(a1, a2, b) : (a, b) ∈ E}.
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Lemma 9. If G = ((A,B), E) is Ck-free for some k ≥ 3, then H(G,A) is BCk-free.

Proof. Suppose by contradiction that there exists a Berge-cycle of length at most k in
H(G,A) and G is Ck-free. Then consider its defining vertices: v1, v2, . . . , vj for some j ≤ k.
Note that for two consecutive vertices there are two possibilities: either v` and v`+1 (where
` ≤ j and indices are meant modulo j) are both coming from A1 ∪ A2 or one of them is
coming from A1 ∪A2 and the other one is coming from B. However, also note that

Case 1: if v`, v`+1 ∈ A1 ∪A2, then {v`, v`+1} = {a1, a2} for some a ∈ A (observe that
this also implies that we can not have for 3 consecutive vertices v`, v`+1, v`+2 ∈ A1 ∪A2),
and

Case 2: if v` ∈ A1 ∪A2 and v`+1 ∈ B , then (a, v`+1) is an edge in G with a for which
v` ∈ {a1, a2}. (Or symmetrically: if v`+1 ∈ A1 ∪A2 and v` ∈ B and then (v`, a) is an edge
in G with a for which v`+1 ∈ {a1, a2}.)

So if we replace in the defining vertex set v1, v2, . . . , vk each pair of vertices v`, v`+1 for
which {v`, v`+1} = {a1, a2} (i.e., we are in Case 1) with the corresponding vertex a, then
we get a cycle in G whose length is at most k.

Note that if we have a series of graphs showing ex(n, Ck)� nγ(k), then we also have a
series of bipartite graphs as we can make any graph bipartite by deleting at most half of its
edges. Then by Lemma 9 and Theorem B we get Theorem 5.

3 Analysis of the results and some remarks
There are natural questions that emerge concerning the construction provided. What can
be the limit of different methods just by improving bounds in the different girth questions?
Could we give a similar construction for F4k(n)? We answer these questions in this section.

3.1 Improving the lower bound using lower bound results for the graph
girth problem

An old conjecture of Erdős states the following:

Conjecture 10 (Erdős’ Girth Conjecture [5] for k). For any positive integer k, there exist
a constant c > 0 depending only on k, and a family of graphs {Gn} such that |V (Gn)| = n,
|E(Gn)| ≥ cn1+1/k and the girth of Gn is more than 2k.

If Erdős’ Girth Conjecture holds, then we can increase the exponent of n
1
2 (logn)−1 in

Corollary 2 to the following:

• F4k(n)− π(n)� (n
1
2 (logn)−1)1+ 1

2k
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• F4k+2(n)− (π(n) + π(n/2))� (n
1
2 (logn)−1)1+ 1

2k+1

However, note that if Erdős’ Girth Conjecture holds, then the exponent is tight by a
result of Alon, Hoory and Linial [1] who proved the following upper bound on ex(n, C2k).

Theorem C ([1] Theorem 1). For any k ≥ 2 we have

(i) ex(n, C2k) < 1
2n

1+1/k + 1
2n,

(ii) ex(n, C2k+1) < 1
21+1/kn

1+1/k + 1
2n.

So Theorem C implies that the above mentioned “possible lower bound” is the best we
can hope for F using the technique of Erdős, Sárközy and Sós.

3.2 Improving the lower bounds for F4k+2(n) using hypergraphs

In the proof of Theorem 6 we used lower bound results for the Berge Hypergraph Girth
Problem. However, note that Győri and Lemons [9] proved the following result:

Theorem D ([9] Theorem 1.5). For every ` ≥ 3, r ≥ 3 and k = b `2c we have

exr(n,BC`)� n1+ 1
k .

This means that the best possible lower bound result we can get is F4k+2(n)− (π(n) +
π(n/2))� (n

1
2 (logn)−1)1+ 1

2k .

3.3 Possible improved lower bounds for F4k(n)
It is a natural question to ask whether similar improvement that worked in Theorem 6
would work in case of F4k(n) also.

We say that a hypergraph is linear, if it does not contain two hyperedges whose
intersection has cardinality at least 2. So for a hypergraphs being linear is equivalent to
being BC2-free. For an integer n and a family of r-uniform linear hypergraphs G the linear
Turán number – denoted by exlin

r (n,G) – is the maximum number of hyperedges in an
r-uniform linear hypergraph H on n vertices such that H is G-free for every G ∈ G.

We can prove the following theorem for F4k(n) (that can be considered as the analogue
of Theorem 4; see e.g. Lemma 7 for the main ingredient of the proof).

Theorem 11. Let βlin : N → R be a function. If we have exlin
3 (n,BC2k) � nβlin(2k), then

we have
F4k(n)− π(n)� n

βlin(2k)
1+βlin(2k) .
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So the Linear Berge Hypergraph Girth Problem could play a similar role in possible
lower bound constructions for F4k(n) as Berge Hypergraph Girth Problem plays in lower
bound constructions for F4k+2(n).

There is a conjecture concerning the Turán number of linear hypergraphs of high girth
(see e.g., [16]).

Conjecture 12. For every ` ≥ 3, r ≥ 2 and k = b `2c we have

exlin
r (n,BC`) = Θ(n1+ 1

k
−o(1)).

This conjecture is known to be true for ` = 3, 4 and r ≥ 3, see e.g., [6, 12, 15, 17], and wide
open for ` ≥ 5 and r ≥ 3. Note that by Győri and Lemons [9] we have exr(n,BC`)� n1+ 1

k

and also note that the o(1) term in Conjecture 12 is necessary for ` = 3 by [15] and for
` = 5 by [4].

By a standard probabilistic argument (see e.g., [10]) for r ≥ 2 and ` ≥ 3 one can prove

exlin
r (n,BC`) = Θ(n1+ 1

`−1 ).

We are not aware of any better result and the known results do not give better lower
bounds than those in Corollary 2.

References
[1] N. Alon, S. Hoory, N. Linial. The Moore bound for irregular graphs. Graphs Combin.,

18(1) (2002), 53–57.

[2] C. T. Benson. Minimal regular graphs of girths eight and twelve. Canadian Journal of
Mathematics, 18 (1966), 1091–1094.

[3] C. Berge. The theory of graphs. Courier Corporation, 2001.

[4] D. Conlon, J. Fox, B. Sudakov, Y. Zhao. The regularity method for graphs with few
4-cycles., arXiv preprint, arXiv:2004.10180, 2020.

[5] P. Erdős. Extremal problems in graph theory. In: Proc. Symp. Theory of Graphs and
its Applications, 29–36, 1964.

[6] P. Erdős, P. Frankl, V Rödl. The asymptotic number of graphs not containing a fixed
subgraph and a problem for hypergraphs having no exponent. Graphs and Combinatorics,
2(1) (1986), 113–121.

[7] P. Erdős, A. Sárközy, V. T Sós. On Product Representations of Powers, I. European
Journal of Combinatorics, 16(6) (1995), 567–588.

10



[8] E. Győri. C6-free bipartite graphs and product representation of squares. Discrete
Mathematics, 165 (1997), 371–375.

[9] E. Győri, N. Lemons. Hypergraphs with no cycle of a given length. Combinatorics,
Probability & Computing, 21(1-2) (2012), 193–201.

[10] S. Janson, T. Luczak, A. Rucinski. Random graphs (Vol. 45). John Wiley & Sons, 2011.

[11] F. Lazebnik, V. A. Ustimenko, A. J. Woldar. A new series of dense graphs of high
girth. Bulletin of the American mathematical society, 32(1) (1995), 73–79.

[12] F. Lazebnik, J. Verstraëte. On hypergraphs of girth five. The Electronic Journal of
Combinatorics, 10(1) (2003), R25.

[13] P. P. Pach. Generalized multiplicative Sidon sets. Journal of Number Theory, 157
(2015), 507–529.

[14] P. P. Pach. An improved upper bound for the size of the multiplicative 3-Sidon sets.
International Journal of Number Theory, 15(8) (2019), 1721–1729.

[15] I. Z. Ruzsa, E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18, 939–945, 1978.

[16] S. Spiro, J. Verstraëte. Counting Hypergraphs with Large Girth. arXiv preprint,
arXiv:2010.01481, 2020.

[17] C. Timmons, J. Verstraëte. A counterexample to sparse removal. European Journal of
Combinatorics, 44 (2015), 77–86.

11


	Introduction
	Some improvement of Theorem A
	General lower bound construction: one of our results
	Berge Hypergraph Girth Problem
	The main result

	Proofs
	The proof of Theorem 4, a construction
	Proof of Theorem 5, the Turán function of large girth Berge hypergraphs

	Analysis of the results and some remarks
	Improving the lower bound using lower bound results for the graph girth problem
	Improving the lower bounds for F4k+2(n) using hypergraphs
	Possible improved lower bounds for F4k(n)


