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Abstract 

 

 The surface excess of the entropy at the liquid-vapour interface of argon and water are 

calculated in a broad temperature range in three different ways involving the computer 

simulation determination of the surface tension. The three methods include (i) the calculation 

of the analytical derivative of a suitably chosen function fitted to the surface tension vs. 

temperature data, (ii) calculation of the numerical derivative of these data, and (iii) direct 

determination of the surface entropy through the surface excess of the energy. Our results 

show that this latter method provides inaccurate results with large error bars, and the 

calculation of the surface entropy this way with reasonable accuracy would require unfeasibly 

long simulations. On the other hand, the use of the numerical and the analytical derivatives 

leads to compatible results that can be obtained in a computationally feasible way in both 

cases. Thus, the present results suggest that the surface entropy, determined as the derivative 

of the surface tension vs. temperature data, can be used to calculate the surface excess of the 

energy in a computationally efficient way. 
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1. Introduction 

 

 Surface tension is a thermodynamic quantity of key importance when studying 

interfacial systems either experimentally, or by computer simulation methods. By definition, 

the surface tension, , is the reversible work needed to the creation of a unit area of surface at 

constant temperature (T), volume (V), and number of particles (N) of all types. In other words, 

it is the derivative of the Helmholtz free energy (F) with respect to its extensive counterpart, 

i.e., surface area (A) [!1]:  
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 Surface tension can be routinely calculated in computer simulations either through the 

mechanical route, using the relation [!1]  

 

      zpp dLN ,     (2) 

 

where pN and pL are the normal and lateral components of the pressure tensor, respectively, 

and z stands for the position along the interface normal axis, or through the thermodynamic 

route using eq. 1 [!2]. It should be noted that in computer simulations, instead of the full 

pressure tensor, often only its virial contribution is used in eq. 2; however, this treatment 

might lead to a systematic error in the computed surface tension value due to the neglect of its 

ideal gas contribution [!3]. 

 The temperature derivative of the surface tension, often associated with (minus) the 

surface entropy [!4], can also be of great importance in certain cases, e.g., when the 

temperature (and hence also the surface tension) along the surface is non-uniform, resulting in 
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the Bénard-Marangoni convection [!5]. The two surface tension anomalies of liquid water are 

also related to this derivative [!6], as it goes through a maximum at 277 K [!7,8], and through 

a minimum at 530 K [!9] rather than decreasing monotonously with increasing temperature, 

as in other molecular liquids. These anomalies are related to the formation of an infinite H-

bonding network of the water molecules, as similar behaviour was observed for network 

forming polymers [!10], and can be explained by a two-state mixture model (at 277 K) [!11], 

and by the percolation transition of the two-dimensional network of the surface molecules (at 

530 K) [!12,13]. 

 The surface entropy can be calculated from a set of computer simulations done at 

different temperatures by performing the derivation of the  vs. T data. Alternatively, several 

direct methods, involving simulations only at the temperature of interest, have been proposed 

in the literature [!4,14,15]. In this paper, we compare the accuracy of several such methods, 

using the analytical derivative of an appropriate function fitted to the surface tension vs. 

temperature data, as a reference. The methods that we test here are chosen because of their 

computational simplicity. Performing a meaningful comparison of such methods has been 

made possible by (i) the continuous development of the routinely available computing power, 

which now enables one to accurately calculate the surface tension within reasonable time, and 

(ii) the existence of a suitable functional form that can be used to fit the surface tension vs. 

temperature data with very high accuracy for markedly different systems. Here we use two 

test systems, and apply the chosen methods to the liquid-vapour interface of argon as well as 

of water. The paper is organized as follows. The main points of the theory of the surface 

excess quantities and of the method considered are described in sec. 2. Details of the 

simulations performed are given in sec. 3. Finally, the obtained results are presented and 

discussed in sec. 4. 
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2. Theory 

 

2.1. Surface excess and the Gibbs dividing surface 

 The surface excess of any extensive thermodynamic quantity, X, can be defined as [!1] 

 
ββααIFs VxVxXX  ,     (3) 

 

where indices  and  refer to the corresponding coexisting bulk phases, s stands for the 

surface excess, IF denotes the interfacial system, V is for the volume, and x denotes the 

density of the extensive quantity X in the corresponding bulk phase, i.e., x = X/V. The value of 

the surface excess, i.e., sX  depends, in general, on the particular choice of the position of the 

(infinitely thin) surface that divides the interfacial system to two coexisting phases. Using the 

particular choice for this surface, called the Gibbs dividing surface or the equimolar surface, 

that satisfies the equation 
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iin ,      (4) 

 

where i and 
s
in  stand for the chemical potential and surface excess of the molar number of 

component i, respectively, has several advantages. Thus, in this case the surface tension, 

defined through eq. 1, can be associated with the surface excess of the Helmholtz free energy, 

sF  [!1], and hence its temperature derivative,  
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with the surface excess of the entropy, sS , often referred to simply as the surface entropy. 

Using the relation  
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where U is the internal energy, the calculation of sS requires, besides the surface tension 

itself, only the surface excess of the internal energy, sU  according to eqs. 3 and 4.  

 In a one component system, eq. 4 simplifies to ns = 0, which, using eq. 3 and 

considering a simulation box with the edge length of LZ along the interfacial normal axis, Z, 

can be written as  

 

  Z
IF
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α LZLZ   ,     (7) 

 

where  is the number density, and ZG denotes the position of the Gibbs dividing surface 

along the axis Z. From eq. 7, the position of the Gibbs dividing surface can be derived as  










α

βIF

ZG LZ .     (8) 

 

2.2. Derivative of the surface tension vs. temperature data 

 Conceptually probably the simplest way of obtaining the surface entropy is using eq. 

1, and calculating the derivative of the surface tension vs. temperature data. This can be done 

either by fitting an appropriate function to several (T) points, or, simply, by computing the 

derivative d/dT numerically, using a suitable finite difference scheme. The drawback of 

using the analytical derivative is that it requires simulations at several different temperatures 

to allow a meaningful fitting of the data. However, besides the particular choice of the 

functional form used in the fitting procedure, this method is free from additional 

approximations. On the other hand, the calculation of the numerical derivative is 

computationally less expensive, however, the accuracy of the result depends on the choice of 
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the temperature interval, which should be (i) small enough to provide a reasonable 

approximation of d/dT, and (ii) large enough to provide a much larger difference of the 

corresponding surface tension values than their statistical uncertainty.  

 Similarly to our previous paper [!16], here we also fit the  vs. T data by the function 

proposed by Vargaftik et al., i.e., 
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since it accurately describes the experimental surface tension of water in a very broad range of 

temperatures [!17]. The fit uses four parameters, i.e., B, b, , and Tc, the latter being the 

critical temperature. The surface entropy can then be obtained from the derivative of eq. 9, 

i.e.,  
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 To perform the numerical derivative, we used the first order forward and backward 

differences:  
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at the extremal temperatures, and the second order centred difference: 
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for the remaining points.  
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2.3. Direct calculation through the surface energy 

 Considering that VIF = A LZ, A being the cross-section area of the simulation box, and 

using eqs. 3 and 8, sU can be written as  
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u and u being the energy densities in the corresponding bulk phases.  

 The determination of (/T) through eqs. 5, 6 and 14 requires thus (i) the values of 

IFU and sF , which can be easily obtained from the simulation of the interfacial system, 

and (ii) also those of u, u,  and , which can be taken from the energy and number 

density profiles along the interface normal axis, Z, as the constant values corresponding to the 

two bulk phases. Note that if periodic boundary conditions are applied, the excess internal 

energy and free energy obtained this way have to be divided by the number of interfaces 

present in the basic box (i.e., two in our case). Alternatively, u and u can also be easily 

determined from short simulations of the two bulk phases, done at the same temperature and 

density as those of the corresponding bulk parts of the interfacial system simulated, as the 

ratio of the total internal energy and the volume of the simulation box. Although this latter 

treatment, employed also here, requires two additional bulk phase simulations besides the 

interfacial one, it avoids the complication that arises when the total energy of the interfacial 

system needs to be distributed among the interaction sites in the calculation of the energy 

density profile, especially when certain contributions to the total energy are not pairwise 

additive (e.g., the reciprocal space contribution of the long range correction of the 
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electrostatic interaction when using Ewald summation [!18,19] or one of its particle mesh 

variants [!20,21]).  

 

3. Molecular dynamics simulations  

 

 The liquid-vapour interface of argon as well as of water has been simulated on the 

canonical (N,V,T) ensemble, at six different temperatures each. In the case of argon, the basic 

simulation box, having the X, Y, and Z edge lengths of 40 Å, 40 Å, and 180 Å, respectively, 

has consisted of 2237 atoms, while in the case of water 1024 molecules have been placed in a 

30 Å× 30 Å× 100 Å basic box (Z being the interface normal direction). The temperatures of 

the simulations have covered the range between 84.2 K and 114.3 K with a step of about 6 K 

(i.e., between 0.7 and 0.95 with a step of 0.05 in terms of reduced units) for argon, and the 

range between 300 K and 550 K with a step of 50 K for water. The temperature range 

considered here falls between the triple point and critical point of the system in both cases. 

[!22]. Further, to evaluate u and u in eq. 14, the bulk liquid and vapour phase of both 

systems have also been simulated at the same temperatures as the interfacial systems. In these 

simulations, the basic box of the liquid and vapour phase has always contained 2048 and 21 

argon atoms, or 649 and 20 water molecules, respectively. The edge lengths of the cubic basic 

box has always been chosen in such a way that the density of the bulk system has agreed with 

that of the corresponding bulk phase in the interfacial simulation; these values are collected in 

Tables 1 and 2 for argon and water, respectively. 

 Argon atoms have been described by the potential model of Rahman, which describes 

the interatomic interaction by a Lennard-Jones potential, having the distance and energy 

parameter values of  = 3.4 Å and (/kB) = 120 K (kB being the Boltzmann constant) [!23]. 

Water has been modelled by the rigid, non-polarizable, three-site SPC/E potential model 
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[!24]. In this model, the H atoms carry fractional charges of +0.4238e, compensated by the 

fractional charge of -0.8476e at the O atom. The O atom is also the centre of the Lennard-

Jones interaction, corresponding to the distance and energy parameters of  = 3.166 Å and 

 = 0.65 kJ/mol, respectively, while the O-H bond length and H-O-H bond angle are 1.0 Å 

and 109.47o, respectively [!24]. In the simulations, all interactions have been truncated to zero 

beyond the cut-off distance of 11 Å (in the case of water this refers to the distance of the O 

atoms). The long range part of both the electrostatic and dispersion interaction has been 

accounted for using the smooth Particle Mesh Ewald method [!21,25] with the grid spacing of 

1.5 Å, and accuracy of the reciprocal space contribution of 10-5 for the Coulomb and 10-3 for 

the Lennard-Jones interaction. It should be noted that taking the long-range part of the 

Lennard-Jones interaction into account using an Ewald-based method is particularly important 

in the presence of an interface, as in this case the anisotropy of the system prevents the use of 

the analytical tail correction [!26]. The temperature of the systems has been controlled by the 

Nosé-Hoover thermostat [!27,28] with a relaxation time of 1 ps. The geometry of the water 

molecules has been kept rigid by means of the SETTLE algorithm [!29]. 

 All simulations have been performed using the GROMACS 5.1 molecular dynamics 

program package [!30]. Equations of motion have been integrated in time steps of 1 fs. The 

systems have been equilibrated for 1 ns. Then, in the 5 ns long production stage of the 

simulations, the energy of the system and, in the case of the interfacial simulations, also the 

elements of the pressure tensor have been averaged over 5 ×104 equilibrium sample 

configurations, separated by 0.1 ps long trajectories each. Finally, the surface tension of the 

interfacial systems has been calculated according to eq. 2.  
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4. Results and discussion 

 

 The surface tension values obtained for argon and water at the six-six temperatures 

considered are collected in Tables 1 and 2, respectively. Further, the (T) data corresponding 

to both systems are also plotted in Figure 1, along with their best fits with eq. 9. The 

parameters corresponding to the best fits are collected in Table 3. As is seen, eq. 9 provides an 

excellent fit of the simulated data in both cases. For this reason, we consider here the 

functions resulted from the analytical derivative of the fitted curves (eq. 10) as reference 

results, to which the data obtained by the other methods are compared. 

 The numerical derivative of the (T) data along with the curves obtained from the 

analytical derivative of the fitted functions are shown in Figures 2 and 3 as obtained for argon 

and water, respectively. The surface entropy values obtained from the direct calculation are 

also included in these figures, while the energies of the two bulk and the interfacial system are 

collected in Tables 1 and 2 as obtained for argon and water, respectively. As is seen, the 

values corresponding to the numerical derivative agree well with the reference curve of eq. 10 

in the entire temperature range considered for both systems. In most cases, the agreement is 

within error bars, and even if it is not, it usually does not exceed 2-3%. On the other hand, the 

data resulted from the direct calculation show a considerably worse agreement with the curves 

corresponding to the analytical derivative of the fitted (T) functions. More importantly, the 

error bars corresponding to these data are considerably, by one and, in several cases, even two 

orders of magnitude larger than those of the numerical derivatives. These surprisingly large 

error bars suggest that the data obtained by the direct calculation are very sensitive to the 

exact position of the equimolar surface, and small inaccuracies occurring in its determination 

are amplified when calculating the surface entropy. Considering that the position of the Gibbs 

dividing surface is determined through the densities of the coexisting bulk phases (see eq. 8), 
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accurate calculation of the surface entropy requires the determination of these densities with 

very high accuracy. These densities, however, have to be determined from the interfacial 

simulation (as they are already used as input data of the bulk ones), where (i) the Z ranges in 

which the two phases can be regarded as bulk ones, because all effects caused by the vicinity 

of the interface are vanished, and hence can be used to determine the bulk phase densities are 

not unambiguously defined, and (ii) the density profile even in the bulk-like parts of the 

system are affected by oscillations due to the capillary waves of the surface [!31]. Therefore, 

accurate enough determination of the bulk phase densities, and hence that of the surface 

entropy requires very long simulation of a very large interfacial system. This requirement 

makes the direct method, once hoped to be a computationally more efficient alternative of 

calculating the derivative of the  vs. T data, computationally rather inefficient. On the other 

hand, with the presently available computing capacities, d/dT can routinely be calculated 

using either the numerical derivative scheme (involving simulations at two or three 

temperatures), or that of the analytical derivative (involving 5-10 simulations), and these 

methods can provide compatible results with each other. It should finally be noted that the 

original purpose of developing the direct method was to provide access to the surface excess 

of the entropy through the surface excess of the energy [!14], our present results suggest that 

this relation (eq. 6) should rather be used in the other way around, namely that if the surface 

excess energy is needed to be calculated, it can computationally feasibly be done through the 

surface entropy, i.e., as 

T
TU s

d

d
  .     (15) 
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Tables 

 

Table 1. Properties of the simulated systems of argon. L, N, and U stand for the basic box edge length, number of particles in the basic box, and 

energy of the system, respectively; superscripts vap, liq, and IF denote bulk vapour, bulk liquid, and interfacial simulations, respectively. 

T/K Lvap/Å Lliq/Å vap/g cm-3 liq/g cm-3 Uvap/kJ mol-1 Uliq/kJ mol-1 UIF/kJ mol-1 /mN m-1 

84.19 73.275 45.957 4.085×10-3 1.399 -2.879×10-2 -6.072 -5.710 16.56 ± 0.046 

90.21 62.481 46.333 5.708×10-3 1.366 -3.434×10-2 -5.878 -5.504 14.96 ± 0.045 

96.22 50.382 46.738 1.089×10-2 1.330 -5.784×10-2 -5.691 -5.288 13.31 ± 0.046 

102.23 46.416 47.197 1.738×10-2 1.292 -1.013×10-1 -5.490 -5.060 11.77 ± 0.046 

108.25 38.127 47.675 2.513×10-2 1.253 -1.429×10-1 -5.294 -7.824 10.18 ± 0.046 

114.26 33.326 48.126 3.763×10-2 1.219 -2.043×10-1 -5.082 -4.556 8.56 ± 0.045 
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Table 2. Properties of the simulated systems of water. L, N, and U stand for the basic box edge length, number of particles in the basic box, and 

energy of the system, respectively; superscripts vap, liq, and IF denote bulk vapour, bulk liquid, and interfacial simulations, respectively. 

T/K Lvap/Å Lliq/Å vap/g cm-3 liq/g cm-3 Uvap/kJ mol-1 Uliq/kJ mol-1 UIF/kJ mol-1 /mN m-1 

300 584.25 26.905 3.0×10-6 0.9968 -5.82×10-3 -46.71 -45.57 61.85 ± 0.15 

350 179.76 27.207 1.03×10-4 0.9640 -8.00×10-1 -43.72 -42.52 54.28 ± 0.16 

400 95.542 27.643 6.86×10-4 0.9191 -9.95×10-1 -40.83 -39.54 45.37 ± 0.16 

450 60.513 28.230 2.700×10-3 0.8630 -1.720 -37.93 -36.46 35.52 ± 0.16 

500 40.839 29.038 8.784×10-3 0.7929 -3.662 -34.88 -33.08 25.15 ± 0.17 

550 28.587 30.287 2.561×10-2 0.6988 -6.185 -31.45 -28.99 14.46 ± 0.16 
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Table 3. Parameters obtained by fitting the simulated surface tension vs. temperature data of 

argon and water by eq. 9. 

 B/mN m-1 b  Tc/K 

argon 12.6216 2.293 0.3301 132.22 

water 217.639 -0.6665 1.2852 632.38 
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Figure legend 

 

Fig. 1.  Surface tension of argon (top panel) and water (bottom panel) as obtained from our 

simulations at the six-six temperatures considered (full black circles), together with their fits 

according to eq. 9 (red solid curves). Error bars are always smaller than the symbols. 

 

Fig. 2.  Surface entropy of argon, as obtained from our simulations at the six temperatures 

considered through the calculation of the surface excess energy (eqs. 6 and 14, full green 

squares), from the numerical derivation of the surface tension vs. temperature data (full black 

circles), and from the analytical derivation of the function fitted to these data (red solid 

curve). Error bars are only shown when larger than the symbols.  

 

Fig. 3.  Surface entropy of water, as obtained from our simulations at the six temperatures 

considered through the calculation of the surface excess energy (eqs. 6 and 14, full green 

squares), from the numerical derivation of the surface tension vs. temperature data (full black 

circles), and from the analytical derivation of the function fitted to these data (red solid 

curve). Error bars are only shown when larger than the symbols. 
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Figure 1 
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Figure 2 

Sega et al. 
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Figure 3 

Sega et al. 

 

 

 

 

 

 

300 350 400 450 500 550
0.08

0.10

0.12

0.14

water

 

 

S
s / k

J 
m

o
l-1

 K
-1
 n

m
-2

T
 
/
 
K

 direct calculation (eq. 6)

 numerical derivative of (T)

 derivative of the (T) fit

 



 22 

Figure 4. 
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