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1. Introduction

Diabetic retinopathy is the most common ocular complicatio
of the systemic disease. The metabolic changes induced by diabe
tes lead to a multifactorial progressive disease of the retina wit
an extremely complex pathogenesis. All major cell types of the re
ina are affected: neuronal as well as the Muller glial cells and pig
ment epithelial cells. The retinal neurodegeneration involvin

Abbreviations: ER, endoplasmatic reticulum; GAPDH, glyceraldehyde 3-pho
phate dehydrogenase; GCL, ganglion cell layer; GSK3b, glycogen synthase kinase
beta; ERKs, extracellular signal-regulated kinases; INL, inner nuclear layer; IP
inner plexiform layer; MAPKs, mitogen activated protein kinases; ONL, out
nuclear layer; OPL, outer plexiform layer; PACAP, pituitary adenylate cycla
activating polypeptide; PAC1-R, PACAP type 1 receptor; PKA, protein kinase A; PK
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by diabetes lead to a multifactorial progressive disease of the retina with a
nesis. One of the mechanisms of retinal cell death in diabetes is via apoptosi
hat pituitary adenylate cyclase activating polypeptide (PACAP) attenuates th
emical changes in a rat model of diabetic retinopathy. The aim of this stud

hanisms of this protective effect.
-induced diabetic rats were analyzed using apoptosis detection combine
tern blot was used to measure levels of pro- and anti-apoptotic pathways.
on markedly attenuated diabetic retinal injury: increased levels of the ant
-ERK2, PKC, Bcl-2, while decreased levels of the pro-apoptotic p-p38MAP
, 12) were detected. The number of apoptotic cells increased in all nuclear lay
ignificantly decreased after PACAP treatment. Our results clearly demonstrat
f PACAP are mediated, at least partly, by attenuating apoptosis, including als
macrine cells. Inhibition of apoptosis is one of the PACAP-induced pathway
in early experimental diabetic retinopathy.

� 2013 Published by Elsevier Lt

ganglion and bipolar cells is caused by the activation of differen
metabolic pathways (Ola et al., 2012). Diabetes-associated hyper
glycemia is generally considered as the key initiator of retinal dam
age, by activation and dysregulation of several metabolic an
signaling pathways, such as protein kinase C (PKC), polyo
pathway, and/or poly-ADP-ribose polymerase activation. Thes
cascades lead to increased oxidative stress, apoptosis, inflamma
tory response, and angiogenesis. The activation of these comple
pathways is closely linked to the degeneration of a variety of ce
types in the retina (Abu El-Asrar et al., 2007).

Before severe vascular complications emerge in the retina, tw
early pathological processes are already in progression. One is neu
ronal damage indicated by alterations in the electroretinogram
(Gastinger et al., 2006). Second, cell death occurs both in the vas
culature and among neuronal cells of the retina. In this proces
the pigmented epithelium may also be affected (Tang and Kern
2011). One of the potential mechanisms of retinal cell death in dia
betes is via apoptosis. A ten-fold increase in the frequency of apop
tosis has been observed after 1 month of streptozotocin-induce
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77 diabetes (Barber et al., 1998; Hammes et al., 1995; Kern and
78 Barber, 2008; Ola et al., 2012). The molecular events regulating
79 apoptosis in the retina are complex and involve several pro- and
80 anti-apoptotic factors (Barber et al., 1998). In the early phases of
81 the apoptotic process, mitochondria release several apoptogenic
82 proteins, such as cytochrome-c and apoptosis-inducing factor into
83 the cytosol. Level and activity of initiator and effector caspases
84 have also been described to increase in early diabetic retinopathy
85 (Kannan and Jain, 2000).
86 Pituitary adenylate cyclase activating polypeptide (PACAP), a
87 member of the vasoactive intestinal peptide (VIP)/secretin/gluca-
88 gon peptide superfamily, is a neuropeptide with highly potent neu-
89 roprotective and general cytoprotective effects. PACAP and its
90 receptors occur in the retina (Izumi et al., 2000; Seki et al., 2000).
91 PACAP receptors can be divided into two main groups: PAC1
92 (PAC1-R), which binds PACAP with much higher affinity than VIP,
93 and VPAC receptors (VPAC1-R and VPAC2-R), which bind PACAP
94 and VIP with similar affinities (Vaudry et al., 2009). Various path-
95 ways regulated by PAC1-Rs are different in distinct cell types
96 depending on the expressed splice variant, the PACAP concentra-
97 tion and other factors present. PACAP has been shown to protect
98 neurons in vitro and in vivo mainly through the PAC1-R, involving
99 various downstream mechanisms of the protein kinase A (PKA)

100 and PKC pathways (D’Agata and Cavallaro, 1998; Ohtaki et al.,
101 2008; Shioda et al., 2006; Somogyvari-Vigh and Reglodi, 2004;
102 Vaudry et al., 2009; Waschek, 2002). PACAP has strong anti-apop-
103 totic effects in various different neuronal and non-neuronal cell
104 types, exerted by acting at different levels of the apoptotic cascade
105 (Seaborn et al., 2011; Somogyvari-Vigh et al., 1998; Somogyvari-
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139under light/dark cycles of 12:12 h; all experimental procedures
140were in accordance with approved protocols (University of Pecs,
141Hungary, BA02/2000-24/2011). For induction of diabetes, 70 mg/
142kg streptozotocin (Sigma, Hungary) was intravenously injected
143(n = 20). Diabetes induction and PACAP treatment was performed
144according to our previous descriptions (Szabadfi et al., 2012a).
145Blood glucose concentration was measured before the induction
146of diabetes and weekly thereafter (Glucotrend Accu-Check, Roche,
147Hungary). Rats with glucose levels higher than 11 mmol/l were
148classified as diabetic and were included in further experiments.
149PACAP (100 pmol/5 ll saline solution; 20 lM) was injected three
150times during the last week of survival: 7, 4, and 1 day before sacri-
151fice into the vitreous body of the right eye (n = 20) with a Hamilton
152syringe under isoflurane anesthesia. The same volume of saline
153was injected into the other eye to serve as untreated diabetic con-
154trol. The dose of PACAP was based on previous observations where
155this dose was effective (Szabadfi et al., 2012a; Tamas et al., 2004). A
156separate group of animals without induced diabetes served as con-
157trol injected with saline (n = 16). The vitreous of the right eyes of
158these rats were injected with PACAP (n = 16). One day after the last
159PACAP treatment, animals were sacrificed with an overdose of
160anesthetic and eyes were further processed for examination.

1612.2. TUNEL protocol and immunohistochemistry

162Terminal transferase dUTP nick end labeling (TUNEL) was per-
163formed with fluorescein detection (TUNEL Kit, Roche, Hungary)
164in 10 lm thick cryostat sections after 4% PFA fixation, according
165to the manufacturer’s protocol (n = 8/control; n = 12/diabetes, and
166n =
167
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gh and Reglodi, 2004).
There is increasing evidence that PACAP is protective in retinal

thologies. It has been shown that PACAP attenuates retinal dam-
e in excitotoxic, ischemic and UV light-induced retinal degener-
ion (Atlasz et al., 2010; Nakamachi et al., 2012). We have recently
scribed that PACAP is protective in diabetic retinopathy. This
otection was manifested in the elevated level of tyrosine hydrox-
se (TH), the rate-limiting enzyme of dopamine synthesis mea-

red by qRT-PCR and Western blot methods. Also the
orphological characteristics of the dopaminergic cells resembled
ose in the healthy retina, which resulted in a morphologically
ore retained retinal structure (Szabadfi et al., 2012a). The degen-
ation of the dopaminergic amacrine cells is one of the early
ents in the course of diabetic retinopathy. In addition, we found
upregulation of PAC1-R in PACAP-treated diabetic retinas, sug-

sting an autoregulatory induction role of PACAP, further aug-
enting its own action. A recent study has shown that the initial
regulation of PACAP, VIP, and related receptors and subsequent
wnregulation in retina of diabetic rats along with the protective
ects of PACAP treatment, suggest a role for both peptides in the
thogenesis of diabetic retinopathy by different mechanisms
iunta et al., 2012). In the light of the above results the aims of
e present study were (i) to provide evidence that PACAP-treat-
ent attenuates apoptosis in certain cell types of the retina, partic-
arly in the TH-containing dopaminergic amacrine cells, (ii) to
entify PACAP-induced pathways involved in the structural rescue
the diabetic retina, with special attention to clarify the molecu-
background of the PACAP-induced protection in early diabetic

tinopathy.

Materials and methods

. Animals

Adult male Wistar rats (n = 36, weight: 300 g; source: Animal
use of the University of Pecs, Medical School) were housed
ease cite this article in press as: Szabadfi, K., et al. PACAP promotes neuron surv
tp://dx.doi.org/10.1016/j.neuint.2013.11.005
12/diabetes + PACAP).
Each slide was stained with 50 ll of the TUNEL reaction mixture
37 �C for 1 h. The TUNEL reaction mixture contained 45 ll Label
lution and 5 ll Enzyme solution. For positive control, retinas
re incubated with recombinant DNase I (Roche, Hungary) for
min at 37 �C to induce DNA strand breaks prior to labeling pro-

dures. For negative control, slides were incubated with only the
bel solution (without terminal transferase) instead of the TUNEL
action mixture. Finally, slides were rinsed in phosphate buffer
th saline and coverslipped in Fluoromount-G (Southern Biotech,
A). The number of TUNEL-positive cells ± SEM was measured in
00 lm section length of the retina. We have also determined the
rcentage of TUNEL-positive cells in each cellular layer of the
uroretina, values are given in percentages.
For the colocalization study, TUNEL staining was used to stain
lm cryostat sections simultaneously with antibodies to TH

d PAC1-R. These were detected with corresponding Cy5, Alexa
or ‘‘568’’, and Alexa Fluor ‘‘405’’ in the dark (Table 1), then

verslipped using Fluoromount-G (Southern Biotech, USA). For
ntrol experiments, primary antibodies were omitted, and
ss-reactivity of the non-corresponding secondary antibodies

th the primaries was also checked. Photographs were taken with
oview FV-1000 Laser Confocal Scanning Microscope (Olympus,
an) and further processed with Adobe Photoshop 7.0 program.
ages were adjusted for contrast only, aligned, arranged, and la-
led using the functions of the above program. Images were eval-
ted by an examiner blinded to the treatment.

. Western Blot analysis

Retinas (n = 8 in control groups; n = 8 in diabetes, and n = 8 in
CAP-treated diabetic groups) were removed 24 h after the last
CAP treatment. Samples were processed for Western blot analy-
as described earlier (Racz et al., 2006). Membranes were probed

ernight at 4 �C with anti-caspase 8, anti-caspase 3, anti-caspase
, anti-p38 mitogen activated protein kinases (MAPK),
ospho-specific anti-p38MAPK (Thr180/Tyr182), anti-Akt,
ival in early experimental diabetic retinopathy. Neurochem. Int. (2013),

http://dx.doi.org/10.1016/j.neuint.2013.11.005
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201 phospho-specific anti-Akt-1 Ser473, phospho-specific anti-GSK3b
202 Ser9, anti-PKC, anti-ERK, phospho-specific anti-ERK1/2 Thr202/
203 Tyr204, anti-Bcl-2, and anti-GAPDH antibodies (Table 1).
204 Membranes were washed 6 times for 5 min in Tris buffered saline
205 (pH 7.5) containing 0.2% Tween prior to addition of goat anti-rabbit
206 or anti-mouse horseradish peroxidase-conjugated secondary
207 antibody. The antibody-antigen complexes were visualized by
208 chemiluminescence. After scanning, results were quantified by
209 the NIH ImageJ program. The retina from each rat was analyzed
210 twice in two separate experiments. The band intensities were nor-
211 malized to GAPDH levels. Data are presented by pixel density in
212 arbitrary unit ± SEM.

213 2.4. Statistical analysis

214 Statistical comparisons were made using one-way ANOVA test
215 followed by Tukey-B posthoc analysis (⁄p < 0.05; ⁄⁄p < 0.001 vs.
216 control group; ##p < 0.001 vs. diabetic group). Data are presented
217 as mean ± SEM.

218 3. Results

219 3.1. Apoptosis in retinal neurons

220 We have previously described that cones and dopaminergic
221 amacrine cells suffer damage and Müller glial cells increase their
222 glial fibrillary acidic protein expression in early diabetic retinopa-
223 thy (Szabadfi et al., 2012a). Based on these results we examined
224 the cell death processes in diabetic retinopathy. In contrast to
225 the positive control (Fig. 1A) apoptotic cells were not observed in
226 non-diabetic (Fig. 1B) and PACAP-treated non-diabetic retinas
227 (not shown). However, TUNEL-positive cells were observed in all
228 nuclear layers of the diabetic retinas (outer nuclear layer – ONL,
229 ic
230 r
231 s

232t
233s
234s/
2351000 lm retinal length) than after PACAP treatment (23.00 ±
2363.63 cells/1000 lm section length) (p < 0.05; Fig. 1E). Distribution
237e
238s.
239ls
240–
241e
242

243-
244s.
245e
246-
247fi
248-
249a
250n
251t
252y
253l
254a
255e
256-
257t
258

259

260h
261ic
262,
263-
264d
265r

Table 1
Antibodies used in immunohistochemical and western blot experiments.

Primary antibodies Company Raised
in

Dilution Second

Anti-TH Millipore, USA Mouse 1:1000 Cy5

Alexa F
Anti-PAC1-R Kind gift of Prof.

Seiji Shioda
Rabbit 1:100 Alexa F

Anti-caspase 3 Santa Cruz,
Hungary

Rabbit 1:200 Horser
conjug

Anti-caspase 8 Cell Signaling
Technology, USA

Rabbit 1:500

Anti-caspase 12 Rabbit 1:1000
Anti-p38MAPK Rabbit 1:500
Phospho-specific anti-p38

MAPK (Thr180/Tyr182)
Rabbit 1:500

Anti-Akt Rabbit 1:500
Phospho-specific anti-GSK3b

Ser9
Rabbit 1:500

Phospho-specific anti-Akt-1
Ser473

R&D Systems,
Hungary

Rabbit 1:1000

Anti-ERK1, anti-ERK2 Santa Cruz.
Hungary

Rabbit 1:2000

Phospho-specific anti-ERK1/2
Thr202/Tyr204

Cell Signaling
Technology, USA

Rabbit 1:1000

Anti-Bcl-2 Rabbit 1:500
Anti-PKC Sigma–Aldrich,

Hungary
Mouse 1:500

Anti-GAPDH Mouse 1:5000

Abbreviations: ERKs: extracellular signal-regulated kinases; GAPDH: glyceraldehyde in
kinase C; TH: tyrosine hydroxylase.
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inner nuclear layer – INL, and ganglion cell layer – GCL). Apoptot
cells included photoreceptors, bipolar, amacrine, horizontal, Mülle
glial, and ganglion cells (Fig. 1C). Comparison of the retinal tissue
Please cite this article in press as: Szabadfi, K., et al. PACAP promotes neuron
http://dx.doi.org/10.1016/j.neuint.2013.11.005
from diabetic and PACAP-treated diabetic rats revealed a differen
level of TUNEL-labeling. The number of TUNEL-positive cells wa
significantly higher in diabetic retinas (42.00 ± 11.53 cell

ary antibodies Company Dilution Methods

Invitrogen,
USA

1:500 Immunhisto-chemistry
(combined with TUNEL)

luor ‘‘405’’
luor ‘‘568’’

adish-peroxidase
ated secondary antibody

BioRad,
Hungary

1:3000 Western blot

3-phosphate dehydrogenase; GSK3b: glycogen synthase kinase 3 beta; PKC: prote
of TUNEL-labeled cells was almost similar in the diabetic and th
PACAP-treated diabetic retina (29.38% – 12.33 ± 3.76 cells v
29.00% – 6.67 ± 1.45 cells in the ONL; 46.05% – 19.33 ± 5.61 cel
vs. 43.48% – 10.00 ± 4.16 cells in the INL, and 24.62%
10.33 ± 3.93 cells vs. 27.57% – 6.33 ± 3.38 cells in the GCL in th
whole retinal section).

Double and triple labeling was used to confirm that dopaminer
gic amacrine cells were among the degenerating apoptotic cell
Therefore immunocytochemistry was combined with TUNEL. Th
rationale of this experiment was that we observed decreased dopa
minergic amacrine cell density in diabetic retinopathy (Szabad
et al., 2012a). These cells are known to be among the first degener
ating cells in diabetic retinopathy (Seki et al., 2004). Dopamine is
trophic factor for maintaining retinal integrity and it is also know
to contribute to several important physiological processes (e.g. ligh
adaptation). TUNEL positive dopaminergic cells were consistentl
found in diabetic retinas (Fig. 1D), but not in vehicle-treated contro
(not shown) and PACAP-treated diabetic retinas (Fig. 1F). These dat
confirm that, among others, dopaminergic amacrine cells becom
apoptotic in the diabetic retina. After PACAP treatment PAC1-R con
taining cells and dopaminergic amacrine cells were found withou
TUNEL labeling, in contrast to the diabetic retinas (Figs. 1D,F).

3.2. Examination of pro- and anti-apoptotic factors by Western blot

Diabetes lasting for 3 weeks influenced the expression of bot
the pro- and anti-apoptotic factors. Among the pro-apoptot
factors, levels of caspase 8, caspase 3, caspase 12 (Fig. 2), p38MAPK
and p-p38MAPK (Fig. 3) were determined. Among the anti-apopto
tic factors, the levels of the total protein (Akt and ERK) an
phosphorylated survival kinases (p-ERK1, p-ERK2, p-Akt) and othe
survival in early experimental diabetic retinopathy. Neurochem. Int. (2013),

http://dx.doi.org/10.1016/j.neuint.2013.11.005
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266 su
267 wa

268Level of all examined caspases in both inactive (caspase
2698–55 kDa, caspase 3–32 kDa, and caspase 12–55 kDa) and active
270(caspase 8–31 kDa and 26 kDa, caspase 3–12 kDa, and caspase
27112–36 kDa) forms were significantly increased in diabetic retinal
272lysates indicating the involvement of these caspases in diabetic
273retinopathy-induced cell death. Administration of PACAP in dia-
274betic rats significantly reduced the cleaved forms of the three
275above mentioned caspases (Fig. 2A,B,C). The activated (cleaved)
276form of both caspase 3 and caspase 12 could be detected only in
277the diabetic retinas (Figs. 2B,C). In addition, diabetes increased
278the total protein level of the p38MAPK and the phosphorylation
279of the pro-apoptotic p38MAPK, which was significantly attenuated
280by PACAP treatment (Fig. 3).
281Total ERK1 levels increased in diabetes compared to control,
282control + PACAP and diabetes + PACAP conditions, while ERK2
283showed an opposite pattern (Fig. 4A). PACAP treatment alone
284slightly increased the amount of phosphorylated form of both
285ERKs, while diabetes induced similar changes in phosphorylation
286of ERK1 and ERK2 than it was observed in the case of total ERK
287proteins (increased p-ERK1 and decreased p-ERK2, respectively).
288PACAP administration in the diabetic retina increased the phos-
289phorylation of both ERK1 and ERK2 (Fig. 4A).
290
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Fig. 1. TUNEL labeling method and its combination with immunohistochemistry:
TUNEL positive control (A), non-diabetic (B), diabetic (C,D) and PACAP-treated
diabetic (E,F) retinas. In control retina preparation we could not observe TUNEL-
positive cells (B), but in diabetic retina all cellular layers (ONL, INL, GCL) contained
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Pl
ht
rvival pathway constituents such as PKC and Bcl-2 (Figs. 4A,B)
s also determined in the retinas.

ptotic cells (green, C). Dopaminergic amacrine cells die by apoptosis in diabetic
ina (green – TUNEL; red – dopaminergic amacrine cell; inset: TUNEL-positive
paminergic cell with high magnification (D). Decreased number of TUNEL-
sitive cells could be detected in PACAP-treated diabetic retinas, only a few green
ls could be found in ONL and INL (E). In diabetes + 3 � PACAP-treated group we
ld observe retained dopaminergic amacrine (blue) and PAC1-R containing (red)

ls; a few TUNEL-positive cells are seen (green; F). Scale bars in all pictures: 20 lm.
breviations: ONL – outer nuclear layer; INL – inner nuclear layer; IPL – inner
xiform layer; GCL – ganglion cell layer. (For interpretation of the references to
or in this figure legend, the reader is referred to the web version of this article.)
ease cite this article in press as: Szabadfi, K., et al. PACAP promotes neuron surv
tp://dx.doi.org/10.1016/j.neuint.2013.11.005
Total Akt level were identical under all examined conditions
g. 4B). PACAP treatment alone did not change the amount of
osphorylated form of Akt, but diabetes led to a significant de-
ase in the levels of p-Akt, and its’ downstream target p-GSK3b,
ich followed the pattern of p-Akt level. PACAP administration in

e diabetic retina increased the phosphorylation of the cytopro-
ctive kinases Akt (Fig. 4B). Changes in the anti-apoptotic PKC
d Bcl-2 protein showed similar pattern to that of p-Akt
g. 4A,B). Our results indicate that retinal PACAP treatment

tenuated the diabetes-induced pro-apoptotic pathways, while it
vated the proteins of the anti-apoptotic signaling.

Discussion

This study reports that PACAP-induced pathways may attenuate
optosis in diabetic retinopathy. Previous studies have shown
at PACAP protects the retina from excitotoxic, ischemic, and
-A-induced degeneration (Atlasz et al., 2010; Nakamachi et al.,
12; Racz et al., 2006; Szabo et al., 2012). PACAP exerts its protec-
e effects by increasing anti- and decreasing pro-apoptotic
tors.
Apoptosis is an early and persistent event in the diabetic retina.

can be observed even after termination of hyperglycaemia and as
rly as 1 month after the induction of diabetes in rats (Gao et al.,
09). Apoptosis of retinal neurons has been recognized as a criti-
l event and a prominent pathological feature of diabetic retinop-
hy. The increased retinal apoptosis mainly affects the ganglion
lls (Abu El-Asrar et al., 2004; Barber et al., 1998; Hammes
al., 1995; Kern and Barber, 2008). In our previous study, we

owed that PACAP protected the cells in ganglion cell layer in
perimental diabetes (Szabadfi et al., 2012a). In addition to the
ll loss of ganglion cell layer, the degeneration of dopaminergic
acrine cells is another early neuronal event in diabetic retinop-

hy (Seki et al., 2004). In this study we found significantly more
NEL-positive cells in all nuclear layers of diabetic retinas and
confirmed that dopaminergic amacrine cells died by apoptosis.

r present results provide evidence that ganglion cells, photore-
ptors, bipolar, horizontal, Müller glial, and amacrine cells under-
nt apoptosis and that PACAP treatment could attenuate this

generation. Among amacrine cells, dopaminergic cells are cer-
inly affected. We suggest that PACAP has an ameliorating effect

dopaminergic cell degeneration. It has recently been suggested
an avian model of retinal development that PACAP may support
ival in early experimental diabetic retinopathy. Neurochem. Int. (2013),
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Fig. 2. Analysis of caspases in control, control + PACAP, diabetic, and PACAP-treated diabetic retinas. GAPDH served as normalization control. Blots and relative quantities
(arbitrary unit) are presented of caspase 8 in (A), caspase 3 in (B), and caspase 12 in (C). Retinal caspase 8, caspase 3, and caspase 12 levels in diabetic eyes were significantly
decreased in PACAP-treated diabetic eyes. Diabetes significantly increased both the non-activated (caspase 8–55 kDa, caspase 3–32 kDa, and caspase 12–55 kDa) and the
cleaved (caspase 8–31 kDa and 26 kDa, caspase 3–12 kDa, and caspase 12–36 kDa) form of caspase 8, caspase 3, and caspase 12, whereas treatment with PACAP reduced both
the active and the cleaved forms of the examined caspases. Data are presented as mean ± SEM. ⁄⁄p < 0.001 compared to control; ##p < 0.001 compared to diabetic retinas (one-
way ANOVA with Tukey-B posthoc analysis).
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the appearance of cells with newly acquired dopaminergic pheno
type (Fleming et al., 2013). Although this possibility cannot b
discounted in our case, it is less likely than protection mediate
by PACAP in case of the original dopaminergic cells.

Our further aim was to understand more details about the pro
tective mechanisms of PACAP in diabetes. The effects of PACAP o
apoptosis have been studied in several in vitro and in vivo model
PACAP influences apoptotic signaling at various levels, from initia
tion to downstream cytosolic and mitochondrial pathways and fi
nally affecting executor caspases (Somogyvari-Vigh and Reglod
2004; Vaudry et al., 2009). A metabolic abnormality characterist

Fig. 3. Analysis of p38MAPK and p-p38MAPK in control, control + PACAP, diabeti
and PACAP-treated diabetic retinas. GAPDH served as normalization control. Resul
are presented in blots and relative quantities (arbitrary unit).After 3 weeks
diabetes, expression of the pro-apoptotic factor p38MAPK and p-p38MAPK w
significantly higher in the retinas from control animals, while significant
decreased in the PACAP-treated diabetic retinas. Data are presented as mean ± SEM
⁄⁄p < 0.001 compared to control; ##p < 0.001 compared to diabetic retinas (one-wa
ANOVA with Tukey-B posthoc analysis).
Please cite this article in press as: Szabadfi, K., et al. PACAP promotes neuron
http://dx.doi.org/10.1016/j.neuint.2013.11.005
inal injury (Racz et al., 2006; Szabo et al., 2012). Our present result
further suggest that the protective effects of PACAP involve severa
mechanisms.

One element in this complex process is the downregulation o
the precursor and active forms of caspase 8, caspase 3, and caspas
12 by PACAP in diabetic retinas. The last stage of apoptosis
marked by the activation of caspases. Activation of initiator caspas
es, such as caspase 8, by death receptors activates in turn the exe
cutioner caspases, such as caspase 6, 7, and 3. Endoplasmat
reticulum (ER) stress activates caspase 12, another initiator cas
pase, which also activate the downstream caspases, resulting i
apoptosis (Degterev et al., 2003; Nakagawa et al., 2000). Our re
sults correlate with those by Martin et al. (2004), who found stron
activation of caspases in diabetic retinas. The reduced caspas
activity after PACAP treatment found in the present study is i
agreement with the results of several previous studies, reportin
on the cytoprotective effects of PACAP. PACAP, in various concen
trations, has been described to act on caspases in several neurona
and non-neuronal cell types, such as cerebellar granule cells, endo
thelial cells, and thymocytes (Racz et al., 2007; Vaudry et al., 200
2002; Zhang et al., 2012). There are less data available on th
in vivo effects of PACAP treatment on caspases. Our present result
confirm that the well-known caspase-inhibiting effect of PACAP
also present in vivo, in a model of diabetic retinopathy.

The upstream signaling leading to caspase activation can b
very divergent. However, in the retinal degeneration models stud
ied so far, there were standard pathways established. In thes
experiments p-Akt and p-ERK1/2 were always anti-apoptotic whil
p-p38MAPK was pro-apoptotic (Racz et al., 2006; Seaborn et a
2011). PACAP has been previously shown to activate several ant
apoptotic factors and inhibit pro-apoptotic signaling molecule
MAPKs seem to play an important role in the PACAP-induced ce
lular protection in several retinal injuries in vitro and in vivo (Dz
ema and Obrietan, 2002; Mester et al., 2011; Racz et al., 2006
Szabo et al., 2012). We found that PACAP-treatment suppresse
the expression and the phosphorylation of p38MAPK in diabete
It has been shown that p38MAPK inhibitor SB202190 decrease
survival in early experimental diabetic retinopathy. Neurochem. Int. (2013),
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e p38MAPK in the response of IL-1b (Frost et al., 2000). This
ocess could be attenuated by PACAP treatment in early diabetic
tinopathy: PACAP decreased the IL-1 level in ischemic retinal
generation (Szabo et al., 2012) and under hyperglycemic condi-
ns it decreased the degenerative effects on ARPE 19 cells in vitro

cuderi et al., 2013). The activated ERK1/2 in PACAP-treated dia-
tic retinas after 3 weeks of diabetes suggests that the activity
MAPKs pathways may account, in part, for the relative protec-

. 4. Western blots of the protective factors protein levels: (A) ERK1/2, p-ERK1/2, Bc
rmalization control. In PACAP-treated diabetic retinas p-ERK1, p-ERK2, PKC, and Bcl-2
reased, no p-GSK3b could be observed in diabetes and increased in PACAP-treated re
< 0.001 compared to diabetic retinas with one-way ANOVA with Tukey-B posthoc
430an
431di
432th
433m
434stu
435be
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437ha
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442W
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444et
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449di
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453di
454an
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457an
458by
n of the retinal cells. PKC comprises a superfamily of isoenzymes
at is activated in response to various stimuli, and which can take
rt in the delay of the onset or stop the progression of diabetic
mplications such as diabetic retinopathy (Pathak et al., 2012).
CAP treatment could potentiate these effects in early diabetic

tinopathy. Bcl-2 family proteins are central coordinators of mito-
ondria-mediated apoptotic pathways. This family consists of
ti-apoptotic members, such as Bcl-2 and Bcl-xL, and pro-apopto-
proteins, such as Bax. It has been previously described that Bcl-

levels decrease early in diabetic retinopathy, possibly leading to
optosis of retinal cells (Gao et al., 2009). In agreement with this
servation, the expression of the anti-apoptotic Bcl-2 was de-
ased in diabetic retinas as early as 3 weeks after induction of

abetes. In PACAP-treated retinas, this reduction was not so
arked, possibly accounting for the observed protection by the
uropeptide. In the present study we also demonstrated that PA-
P reduces apoptosis via elevated level of p-Akt protein and its
wnstream target GSK3b phosphorylation. Our result are in
reement with former studies on mesangial cells in induced type
iabetes (Landau et al., 2009; Lin et al., 2006), where these groups
ported that increased levels of p-GSK3 were associated with sup-
essed apoptotic signals. In contrast to Abu El-Asrar et al. (2007)

found that Akt phosphorylation was reduced in diabetes, which
s prevented by PACAP-treatment. As previously described, Akt
naling seems to play an important role in the neuroprotective
ects of PACAP in different retinal and other injuries (Lazarovici
al., 2012; Li et al., 2005; Racz et al., 2006; Szabo et al., 2012).
Most of the cytoprotective effects of PACAP are mediated

rough activation of PAC1-R, which can induce a signaling cascade
ease cite this article in press as: Szabadfi, K., et al. PACAP promotes neuron surv
tp://dx.doi.org/10.1016/j.neuint.2013.11.005
stimulate protective factors and block caspase activation (Sea-
rn et al., 2011). Endogenous PACAP has also been found to have
otective effects. We have shown that mice lacking endogenous
CAP are more vulnerable to injuries, including retinal ischemia
eglodi et al., 2012; Szabadfi et al., 2012b). Furthermore, PACAP
d its specific PAC1-R have been reported to be upregulated after
rious types of injuries (Somogyvari-Vigh and Reglodi, 2004).
ese data imply that cells expressing higher levels of PACAP
d/or PAC1-R are more resistant to harmful stimuli. Indeed, we
d not observe TUNEL positive PAC1-R containing cells any of
e diabetic retinas, suggesting that PAC1-R containing cells are
ore resistant. In addition, we have described in our previous
dy that mRNA and protein levels for PAC1-R are higher in dia-

tic retinas after PACAP-treatment (Szabadfi et al., 2012a).
Tsutsumi et al. (2002) described that activation of VPAC1-R

s been implicated in elevating glucose output, whereas activa-
n of VPAC2-R may be involved in insulin secretion. PACAP ex-

ts an inhibitory activity on hyperglycemia-induced endothelial
ll proliferation, thus suggesting that the effect might be
ediated by PAC1 and VPAC2 receptors (Castorina et al., 2010).
e have also found unusual cells, like pericytes, granulocytes,
d macrophages in PACAP-treated diabetic retina (Szabadfi
al., 2012a). According to our preliminary data (Szabadfi et al.,
13) this can be correlated with the changing mRNA and protein
els of VPAC1-R and VPAC2-R, through which receptors PACAP
d VIP may have an action in inflammation. Thus all three
CAP receptors may have positive contribution to fighting

abetes and its consequences.
Agents which elevate the anti-apoptotic and decrease pro-

optotic pathways can be used at formulating neuroprotective
ategies. Based on our results, intravitreal PACAP-treatment acts

rectly along with its receptors by regulating the levels of both
ti- (ERK1/2; Bcl-2; Akt; PKC) and pro-apoptotic (caspase 8; cas-
se 3; caspase 12; p38) proteins to which may lead to protection.
e alterations in the TUNEL-labeled cells and levels of pro- and
ti-apoptotic factors suggested that apoptosis would be reduced
PACAP administration in diabetic retinopathy.

(B) Akt, p-Akt, p-GSK3b, PKC in retinas from different groups. GAPDH served as
tein levels were significantly increased compared to diabetic retinas. p-Akt level
s. Data are presented as mean ± SEM. ⁄p < 0.05; ⁄⁄p < 0.001 compared to control;
sis.
ival in early experimental diabetic retinopathy. Neurochem. Int. (2013),
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Thus, as described above, four pathways influenced by PACA
(MAPKs, PI3 K/Akt, PKC, and inhibiting ER stress by reducing activ
caspase 12 release) converge to minimize apoptotic damage o
retinal neurons in PACAP-treated diabetic retinas. These lines o
evidence suggest that PACAP might have therapeutic potential i
the treatment of diabetes. Besides the effects in pancreas islet
only a few studies have shown that PACAP may also attenuat
the diabetes-related pathologies. Systemic PACAP treatment de
creases the streptozotocin-induced nephropathy in rats (Bank
et al., 2013; Li et al., 2008), and attenuates experimental neuropa
thy (Dickinson et al., 1999), as well as diabetic retinopathy. In th
latter respect, our findings in recent and the present studies hav
revealed that diabetes-induced pro-apoptotic pathways can b
inhibited, while anti-apoptotic survival pathways can be stimu
lated by PACAP treatment in vivo. This series of events, leading t
sufficient protection is required to maintain the structural an
functional integrity of the retina during diabetic challenge. Furthe
work is necessary to clearly distinguish what is cause or conse
quence in PACAP-mediated signaling in order to reduce apoptot
activity under pathologic conditions.

5. Conclusions

Our results clearly demonstrate that the protective effects o
PACAP may be mediated through attenuating apoptosis. We con
clude that there is a therapeutic potential of PACAP through rescu

ing neurons from apoptosis in diabetic retinopathy.
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