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Abstract. The main goal of this paper is to characterise all the possible

Cesàro and L-asymptotic limits of powerbounded, complex matrices. The

investigation of the L-asymptotic limit of a powerbounded operator goes back
to Sz.-Nagy and it shows how the orbit of a vector behaves with respect to

the powers. It turns out that the two types of asymptotic limits coincide for
every powerbounded matrix and a special case is connected to the description

of the products SS∗ where S runs through those invertible matrices which

have unit columnvectors. We also show that for any powerbounded operator
acting on an arbitrary complex Hilbert space the norm of the L-asymptotic

limit is greater than or equal to 1, unless it is zero; moreover, the same is true

for the Cesàro asymptotic limit of a not necessarily powerbounded operator,
if it exists.

1. Introduction

Let us endow Cd (d ∈ N := {1, 2, . . . }) with the usual inner-product 〈·, ·〉. Both
of the symbols Md and Cd×d will stand for the set of all d × d matrices. We will
denote the elements of the usual standard basis by e1, . . . ed ∈ Cd. Throughout this
paper the notion of matrices and operators on Cd will be identified in the following
natural ways: on the one hand, any operator T will be associated with the matrix(
〈Tej , ei〉

)n
i,j=1

; on the other hand, if we have a d × d complex matrix then the

corresponding operator will be precisely that one for which the image of ej is the
jth columnvector of our matrix (1 ≤ j ≤ d).

Since our motivation, which goes back to B. Sz.-Nagy and will be explained in
the next paragraphs, comes from Hilbert space operator theory let us now define
some necessary definitions. Let H be a (not necessarily finite dimensional) complex
Hilbert space with the inner-product 〈·, ·〉, and B(H) the set of all bounded linear
operators acting on it. An operator A ∈ B(H) is said to be positive, in notation:
A ∈ B+(H), if 〈Ah, h〉 ≥ 0 is satisfied for each vector h ∈ H. In the case of matrices
we also call A a positive semi-definite matrix. If the positive semi-definite matrix
A is also invertible then we refer to it as a positive definite matrix. The set of all
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d×d unitaries and invertible matrices will be denoted by Ud and GLd, respectively.
For any T ∈ B(H) the quantity ‖T‖ will stand for the operator norm of T .

Let us consider a contraction T ∈ B(H) (i. e. ‖T‖ ≤ 1) and the sequence
{T ∗nTn}∞n=1 of positive operators which is trivially decreasing. Therefore there
exists a unique limit

AT = A := lim
n→∞

T ∗nTn

in the strong operator-topology (the topology of point-wise convergence). Clearly,
AT is a positive operator, and it will be called the asymptotic limit of the contraction
T (see [Ku1], [Ku2], [NFBK] for more details). The asymptotic limit tells us how
the orbit of a vector behaves, namely the following is true

lim
n→∞

‖Tnh‖ = lim
n→∞

√
〈Tnh, Tnh〉 =

√
〈ATh, h〉 =

∥∥√ATh∥∥ =
∥∥√ATTh∥∥.

In [SzN] Sz.-Nagy considered powerbounded operators and defined a generaliza-
tion of the context above. An operator T ∈ B(H) is said to be powerbounded, in
notation T ∈ PWB(H) (or T ∈ PWBd if H = Cd) if there exists a bound M > 0
such that ‖Tn‖ < M holds for each n ∈ N. In order to define Sz.-Nagy’s asymp-
totic limit for all powerbounded operators we need the notion of Banach limits.
The Banach space of bounded complex sequences is denoted by `∞. We say that
the bounded linear functional

L : `∞ → C, x 7→ Llim
n→∞

xn

is a Banach limit if the next four points are satisfied:

• ‖L‖ = 1,
• we have Llimn→∞ xn = limn→∞ xn for every convergent sequence,
• L is positive (i. e. if xn ≥ 0 for all n ∈ N, then Llimn→∞ xn ≥ 0) and
• L is shift-invariant (i. e. Llimn→∞ xn = Llimn→∞ xn+1).

Note that a Banach limit is never multiplicative. Now let us take an arbitrary
T ∈ PWB(H) and fix a Banach limit L. We consider the following sesqui-linear
form

H×H → C, (x, y) 7→ Llim
n→∞

〈Tnx, Tny〉

which is obviously bounded and hence there exists a unique positive operator AT,L ∈
B+(H) which represents this form, i. e.

Llim
n→∞

〈Tnx, Tny〉 = 〈AT,Lx, y〉 (∀ x, y ∈ H).

This AT,L (which obviously depends on the choice of L, see the last section) will be
called here the L-asymptotic limit of T (see e. g. [Ké2], [NFBK] or [SzN] for more
details). If T is a d× d matrix, we obtain AT,L by taking the entry-wise L-limit of
the matrix-sequence {T ∗nTn}∞n=1. Clearly, we have

Llim
n→∞

‖Tnx‖2 =
∥∥√AT,Lx∥∥2

=
∥∥√AT,LTx∥∥2

,

but this is usually not true if we erase the squares.
The notion of asymptotic limits and its generalizations play an important role

in the hyper-invariant subspace problem (see e. g. [BK] [Ca], [Ké1] [Ké2], [Ké3],
[KT], [NFBK] or [SS]). For instance it can be verified quite easily that for any
T ∈ PWB(H) the subspace H0(T ) = H0 := ker(AT,L) = {x ∈ H : Tnx → 0} is
hyper-invariant for T . This subspace is called the stable subspace of T . It can be
shown that H0 = ker(AT,L) = ker(AT ) is fulfilled for contractions.
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Using the L-asymptotic limit, Sz.-Nagy was managed to prove in [SzN] that
any operator T ∈ B(H) is similar to a unitary operator exactly when both T
and T−1 are powerbounded (see a re-phrasing later in this section). In [Du], E.
Durszt used the operator AT to prove a generalization of the Rota model (see
[Ro]) for completely non-unitary contractions (see also [Ku1]). In [NFBK] the
reader can find a construction of the minimal unitary dilation of a contraction
which uses the asymptotic limit. C. S. Kubrusly pointed out in [Ku2] that it is
important to find multifarious characterisations for the case when a contraction has
projective asymptotic limit. In the case when the asymptotic limit is injective, one
can conclude some properties of T from the properties of a corresponding isometry
which is defined in a natural way (see e. g. [Ge1]).

In [Ge2] the present author characterised all of the possible asymptotic limits of
Hilbert space contractions. It was noted there that any contractive matrix T ∈ Cd×d
has an idempotent asymptotic limit. In what follows, we are interested in the
characterization of all the possible L-asymptotic limits of powerbounded matrices.
We note that the proofs in [Ge2] used infinite dimensional techniques, so in order
to proceed we need other ideas.

Before stating our main theorems we need the definition of the Cesàro asymptotic
limit which is an other possible generalization of the notion of asymptotic limit for
contractions. We call AT,C ∈ B(H) the Cesàro asymptotic limit of T ∈ B(H) if
1
n

∑n
j=1 T

∗jT j → AT,C holds in the weak operator-topology (the topology of point-

wise weak convergence). In the matrix case we can take entry-wise convergence
of the Cesàro means instead. Obviously, if T is a contraction then AT,C exists
and coincides with AT . But generally for a T ∈ PWB(H) the Cesàro limit does
not exist always. We also note that even the existence of the Cesàro asymptotic
limit usually does not imply the powerboundedness of T . Counterexamples will
be provided in the last section. However, as we will see from Theorem 7, these
are equivalent conditions for matrices. Trivially, if the Cesàro asymptotic limit of
T ∈ B(H) exists, then

(1)
∥∥√AT,Ch∥∥ =

√
〈AT,Ch, h〉 = lim

n→∞

√√√√ 1

n

n∑
j=1

‖T jh‖2

holds for any h ∈ H. We note that

(2)

∥∥√AT,CTh∥∥ = lim
n→∞

√√√√ 1

n

n+1∑
j=2

‖T jh‖2

= lim
n→∞

√√√√n+ 1

n
·

[
1

n+ 1

n+1∑
j=1

‖T jh‖2
]
− 1

n
‖h‖2 =

∥∥√AT,Ch∥∥.
If for the powerbounded T the Cesàro asymptotic limit AT,C exists then H0 =
kerAT,C holds. This can be verified rather easily.

Obviously for each operator T ∈ B(H) and unitary operator U ∈ B(H) we have
one of the following assertions

(3) AUTU∗ = UATU
∗, AUTU∗,L = UAT,LU

∗, AUTU∗,C = UAT,CU
∗

if at least one side of the corresponding equation makes sense.
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The main aim of this work is to provide the characterisation of all possible L-
asymptotic limits in finite dimension. The first theorem says that the L asymptotic
limit of a powerbounded matrix coincides with the Cesàro asymptotic limit and it
will be proved in the next section.

Theorem 1. For every matrix T ∈ PWB(Cd) AT,C = AT,L holds for all Banach
limits L.

Note that in the infinite dimensional case it can happen for a powerbounded
operator T that the Cesàro asymptotic limit exists and there is a Banach limit
L such that AT,L 6= AT,C (see the last section). The theorem in [SzN] can be re-
phrased as follows: an operator T ∈ B(H) is similar to a unitary operator if and only
if T is powerbounded and both AT,L and AT∗,L are invertible. In case when AT,L
and AT∗,L are only injective, B. Sz.-Nagy and C. Foias called the powerbounded
operator T of class C11, T ∈ C11(H) in notation. Clearly, in Cd these previous
notions are the same. We will first characterise those Cesàro (or L-) asymptotic
limits that arise from a C11 powerbounded matrix or equivalently, that arise from
an operator which is similar to a unitary one.

Theorem 2 (Characterisation in the C11 case). The following statements are equiv-
alent for a positive definite A ∈Md

(i) A is the Cesàro asymptotic limit of a T ∈ C11(Cd),
(ii) A is the L-asymptotic limit of a T ∈ C11(Cd),
(iii) if the eigenvalues of A are t1, . . . , td > 0, each of them is counted according

to their multiplicities, then

(4)
1

t1
+ · · ·+ 1

td
= d

holds,
(iv) there is an S ∈ GLd with unit columnvectors such that

A = S∗−1S−1 = (SS∗)−1.

The above theorem will be proved in Section 3. After that in the same section
we will be able to deal with the non-C11 case. In the proof of that case we will use
the C11 case and a block-diagonalization of a special type of block matrices. We
call a T ∈ PWBd l-stable (0 ≤ l ≤ d) if dimH0 = l. We will see later that the
C11 class powerbounded matrices are exactly the 0-stable matrices and that for a
T ∈ PWBd the matrices T and T ∗ are simultaneously l-stable. In the forthcoming
theorem the symbol Il stands for the l × l identity matrix, 0k ∈ Mk is the zero
matrix and ⊕ denotes the orthogonal sum.

Theorem 3 (Characterisation of the non-C11 case). The following four points are
equivalent for a non-invertible A ∈ B+(Cd) and 1 ≤ l < d:

(i) there exists an l-stable T ∈ PWB(Cd) such that AT,C = A,
(ii) there exists an l-stable T ∈ PWB(Cd) such that AT,L = A,
(iii) let k = d− l, if t1, . . . tk denotes the non-zero eigenvalues of A counted with

their multiplicities, then

1

t1
+ · · ·+ 1

tk
≤ k,
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(iv) there exists such an S ∈ GLd that has unit columnvectors and

A = S∗−1(Il ⊕ 0k)S−1.

One could ask whether is there any connection between the Cesàro asymptotic
limit of a matrix and the Cesàro asymptotic limit of its adjoint. If T ∈ Md

is contractive then the asymptotic limits satisfies the equality AT∗ = AT (see
[Ku1]) moreover, they are the projections onto the subspace H0(T )⊥ = H0(T ∗)⊥.
In the case of powerbounded matrices usually the subspaces H0(T ) and H0(T ∗)
are different and hence AT∗ and AT differ, too. However, we provide the next
connection for C11 class 2 × 2 powerbounded matrices which will be proved in
Section 3.

Theorem 4. For each T ∈ C11(C2) the harmonic mean of the Cesàro asymptotic
limits AT,C and AT∗,C is exactly the identity I, i. e.

(5) A−1
T,C +A−1

T∗,C = 2I2.

In Section 4 we will deal with operators acting on an arbitrary space and tell
some properties of the Cesàro asymptotic limits and L-asymptotic limits. In [Ge2]
the author proved that the asymptotic limit of a Hilbert space contraction has norm
1 or 0. The next two results tell us a similar property of Cesàro and L-asymptotic
limits.

Theorem 5. Assume T is a (not necessarily powerbounded) operator for which
AT,C exists and it is not zero. Then the inequality

‖AT,C‖ ≥ 1

is fulfilled.

Theorem 6. Suppose L is a fixed Banach limit and T is a powerbounded operator
for which AT,L 6= 0 holds. Then the inequality

‖AT,L‖ ≥ 1

is satisfied.

2. The Cesàro and L-asymptotic limit of a matrix coincide

This section is devoted to prove Theorem 1 but before that we need some aux-
iliary results. First, we describe the Jordan decomposition of a powerbounded
matrix. For an operator T ∈ B(H) the quantity r(T ) stands for the spectral radius
of T . Note that for any operator B ∈ B(H) the equation limn→∞ ‖Bn‖ = 0 holds
exactly when r(B) < 1. The verification of this is quite easy for a matrix by the
Jordan decomposition theorem but it is also valid in the operator case (see [Ku2,
Proposition 0.4]). The symbol diag(. . . ) expresses a diagonal matrix.

Proposition 1 (Jordan decomposition of powerbounded matrices). Suppose T ∈
PWBd and let us consider its Jordan decomposition: SJS−1. Then we have

J = U ⊕B

with a unitary U = diag(λ1, . . . λk) ∈ Mk (k ∈ Z+ = N ∪ {0}) and a B ∈ Md−k
for which r(B) < 1.

Conversely, if J has the previous form, then necessarily T is powerbounded.
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Proof. For the first assertion, let us consider the block-decomposition of J :

J = J1 ⊕ · · · ⊕ Jk

where Jj is a λj-Jordan block. It is clear that powerboundedness is preserved by
similarity. Since

(6) Jnj =



λj 1 0 . . . 0
0 λj 1 . . . 0

0 0 λj
. . . 0

...
...

. . .
. . .

...
0 0 0 . . . λj



n

=



λnj nλn−1
j

(
n
2

)
λn−2
j

. . .
. . .

0 λnj nλn+1
j

. . .
. . .

0 0 λnj
. . .

. . .
...

...
. . .

. . .
. . .

0 0 0 . . . λnj


,

holds, we obtain that if λ is an eigenvalue of T , then either |λ| < 1, or |λ| = 1 and
the size of any corresponding Jordan-block is exactly 1× 1.

On the other hand, if J = U ⊕B, then it is obviously powerbounded, and hence
T ∈ PWBd. �

The forthcoming theorem says that the Cesàro asymptotic limit exists for T ∈
Md if and only if T is powerbounded.

Theorem 7. Let T ∈ PWBd and by using the notations of Proposition 1 let us
consider the matrices J ′ = U ⊕ 0 and T ′ = SJ ′S−1. Then the Cesàro asymptotic
limits AT,C and AT ′,C always exist and

AT,C = AT ′,C .

Conversely, if the Cesàro asymptotic limit exists for a matrix, then it is necessarily
powerbounded.

Proof. For the first part, let us consider the following:

(7)

1

n

n∑
j=1

T ∗jT j − 1

n

n∑
j=1

T ′∗jT ′j

=
1

n
S∗−1

( n∑
j=1

J∗jS∗SJj −
n∑
j=1

J ′∗jS∗SJ ′j
)
S−1

= S∗−1
( 1

n

n∑
j=1

(0⊕B)∗jS∗S(0⊕B)j +
1

n

n∑
j=1

(U ⊕ 0)∗jS∗S(0⊕B)j

+
1

n

n∑
j=1

(B ⊕ 0)∗jS∗S(U ⊕ 0)j
)
S−1.

Since limj→∞(0⊕B)j = 0, we obtain that AT ′,C and AT,C co-exist simultaneously
and if they exist, they have to be equal.

Now we consider the partial sums of the Cesàro asymptotic limit of T ′:
1
n

∑n
j=1 T

′∗jT ′j . It is easy to see that multiplying from the right by a diagonal
matrix acts as multiplication of the columns by the corresponding diagonal ele-
ments. Similarly, for the multiplication from the left action this holds with the
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rows. We have the next equality:
(8)

J ′∗jS∗SJ ′j =

‖Se1‖2 λn2λ1
n〈Se1, Se2〉 . . . λnmλ1

n〈Se1, Sem〉 0 . . . 0

λn1λ2
n〈Se2, Se1〉 ‖Se2‖2 . . . λnmλ2

n〈Se2, Sem〉 0 . . . 0
...

...
. . .

...
...

...

λn1λm
n〈Sem, Se1〉 λn2λm

n〈Sem, Se2〉 . . . ‖Sem‖2 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 0 . . . 0


.

Since

lim
n→∞

∣∣∣∣∣ 1n
n∑
j=1

λj

∣∣∣∣∣ = lim
n→∞

|λn − 1|
n|λ− 1|

= 0

if |λ| ≤ 1, λ 6= 1 (for λ = 1 the above limit is 1) and multiplying by a fix matrix
does not have an effect on the fact of convergence, we can easily infer that AT ′,C
and hence AT,C exists.

For the reverse implication, let us assume that AT,C exists for a T ∈ Md.

According to (1) there exists a large enough M̃ > 0 such that

1

n

n∑
j=1

‖T jh‖2 =
1

n

n∑
j=1

‖SJjS−1h‖2 ≤ M̃

holds for each unit vector h ∈ Cd. Since S is bounded from below, the above
inequality holds exactly when

1

n

n∑
j=1

‖Jjh‖2 ≤M

holds for every unit vector h ∈ Cd with a large enough bound M > 0. On the
one hand, this implies that r(J) = r(T ) ≤ 1. On the other hand, if there is an at
least 2× 2 λ-Jordan block in J where |λ| = 1, then this above inequality obviously
cannot hold for any unit vector (see (6)). This ensures the powerboundedness of
T . �

Now we are in position to prove our first main theorem. Before that let us point
out that if a sequence of matrices {Sn}∞n=1 is entry-wise L-convergent then

Llim
n→∞

XSn = X · Llim
n→∞

Sn

and
Llim
n→∞

SnX = (Llim
n→∞

Sn) ·X

hold. This can be easily verified from the linearity of L.

Proof of Theorem 1. The equality Llimn→∞ λn = λLlimn→∞ λn holds for every
|λ| ≤ 1 which gives us Llimn→∞ λn = 0 for all λ 6= 1, |λ| ≤ 1 (the Banach limit
is trivially 1 if λ = 1). Now, if we take a look at equation (8), we can see that
AT ′,L = AT ′,C holds for every Banach limit. Since

(0⊕B)∗jS∗S(0⊕B)j + (0⊕ U)∗jS∗S(0⊕B)j + (B ⊕ 0)∗jS∗S(0⊕ U)j → 0
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the equation-chain

AT,L = AT ′,L = AT ′,C = AT,C

is yielded. �

A natural question arises here. When does the sequence {T ∗nTn}∞n=1 ⊆ Md

converge? The last theorem of the section is dealing with this question where we
will use a theorem of G. Corach and A. Maestripieri. The symbol rank(A) denotes
the rank of the matrix A.

Theorem 8. The following are equivalent for a T ∈ PWBd
(i) the sequence {T ∗nTn}∞n=1 ⊆Md converge,

(ii) the eigenspaces of T corresponding to eigenvalues with modulus 1 are mu-
tually orthogonal to each other.

Moreover the following three sets coincide

(9)

{
A ∈ B+(Cd) : ∃ T ∈ PWBd, A = lim

n→∞
T ∗nTn

}
,{

P ∗P ∈ B+(Cd) : P ∈Md, P
2 = P

}
,{

A ∈ B+(Cd) : σ(A) ⊆ {0} ∪ [1,∞),dim ker(A) ≥ rankE
(
(1,∞)

)}
,

where E denotes the spectral measure of A.

Proof. The (ii)=⇒(i) implication is quite straightforward from (8).
For the reverse direction let us consider (8) again. This tells us that if λl 6= λk,

then 〈Sel, Sek〉 has to be 0 which means exactly the orthogonality.
In order to prove the further statement, we just have to take such a T that

satisfies (ii). Since the limit of {T ∗nTn}∞n=1 exists if and only if the sequence
{T ′∗nT ′n}∞n=1 converge (by a similar reasoning to the beginning of the proof of
Theorem 7), we consider

T ′∗nT ′n = S∗−1(J ′∗nS∗SJ ′n)S−1.

Trivially, we can take an orthonormal basis in every eigenspace as columnvectors
of S and if we do so, then the columnvectors of S corresponding to modulus 1
eigenvalues will form an orthonormal sequence, and the other columnvectors (i.
e. the zero eigenvectors) will form an orthonormal sequence, too. But the whole
system may fail to be an orthonormal basis. This implies that

lim
n→∞

T ′∗nT ′n = S∗−1(I ⊕ 0)S−1 = S∗−1(I ⊕ 0)S∗S(I ⊕ 0)S−1.

By Theorem 6.1 of [CM] we get (9). �

3. The characterisation

In the present section we will prove Theorem 2, 3 and 4.

Proof of Theorem 2. The (i) ⇐⇒ (ii) part follows from the results of the previous
section. We begin with the (i) ⇐⇒ (iv) part. Let us suppose that T = SUS−1

holds with an S ∈ GLd and a U = diag(λ1, . . . λd) ∈ Ud. Of course, it can be
supposed without loss of generality that S has unit columnvectors (this is just a
right choice of eigenvectors). Moreover, if an eigenvalue λ has multiplicity more
than one, then the corresponding unit eigenvectors (as columnvectors in S) can be
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chosen to form an orthonormal sequence in that eigenspace. Trivially, this does not
change T . Now considering (8), we get

1

n

n∑
j=1

U∗jS∗SU j → I

and therefore

AT,C = S∗−1S−1.

In order to yield the other implication take an S such that it has unit colum-
nvectors. If we put λj-s to be pairwise different in U and T = SUS−1 then we
obviously get AT,C = S∗−1S−1 from equation (8).

After that we turn to the (iv)⇐⇒ (iii) part. By the spectral mapping theorem

we have d = tr(S∗S) = tr(SS∗) =
∑d
j=1

1
tj

, where tr(·) denotes the trace.

In order to show the reverse direction, it would be enough to find such a unitary
matrix U ∈ Cd×d which satisfies∥∥diag(

√
1/t1, . . . ,

√
1/td) · Uej

∥∥ = 1.

Indeed, if we chose

S := diag(
√

1/t1, . . . ,
√

1/td) · U,
SS∗ would become diag(1/t1, . . . , 1/td) and (3) would give what we want.

The idea is that we put such complex numbers in the entries of U which have
modulus 1/

√
d, because then the columnvectors of S will be unit ones and we only

have to be careful with the orthogonality of the columnvectors of U . In fact, the
right choice is to consider a constant multiple of a Vandermonde matrix:

U :=
(
ε(j−1)(k−1)/

√
d
)d
j,k=1

where ε = e2iπ/d. We show that its columnvectors are orthogonal to each other
which will complete the proof. For this we consider j1 6= j2, j1, j2 ∈ {1, 2, . . . d} and
the inner product

〈Uej1 , Uej1〉 =

d∑
k=1

ε(j1−1)(k−1)

√
d

ε(j2−1)(k−1)

√
d

=
1

d

d∑
k=1

ε(j1−j2)(k−1) = 0.

This shows that U is unitary. �

Now we are able to deal with the case when the stable subspace is non-trivial
but first we have to start with a structure theorem of powerbounded matrices. In
[Ké2, Lemma 1.] L. Kérchy proved a generalization of [NFBK, Theorem II.4.1.].
This lemma can be re-phrased as in the next lemma. We say that a powerbounded
operator T is of class C0· if AT,L = 0, and it is of class C1· if AT,L is injective. We
remind the reader that H0(T ) is hyperinvariant for T .

Lemma 1 (Kérchy). Let us consider an arbitrary T ∈ PWB(H) with stable sub-
space H0 and its block-matrix representation with respect to the orthogonal decom-
position H0 ⊕H⊥0

T =

(
T0 R
0 T1

)
.

Then T0 ∈ C0·(H0) and T1 ∈ C1·(H⊥0 ).
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It is worth noting that usually if we consider such a block upper triangular matrix
above with an arbitrary element R, then usually T is not powerbounded. However,
the powerboundedness is automatic if we assume that T is a matrix.

Lemma 2. Suppose that the matrix T ∈Md has the block-matrix upper triangular
representation above, with respect to an orthogonal decomposition H = H′ ⊕ H′′
such that T0 ∈ C0·(H′) (R ∈ B(H′′,H′) is arbitrary) and T1 ∈ C1·(H′′) holds. Then
necessarily T is powerbounded and its stable subspace is precisely H′.

Proof. By an easy calculation we get

Tn =

(
Tn0 Rn
0 Tn1

)
where

Rn =

n∑
j=1

Tn−j0 RT j1 .

Let us assume that ‖Tn0 ‖, ‖Tn1 ‖, ‖R‖ < M for each n ∈ N. In order to see the
powerboundedness of T , one just has to use that ‖Tn0 ‖ ≤ rn holds for large n-
s with a number r < 1, since we are in a finite dimensional space. It is quite
straightforward that H′ ⊆ H0(T ) and since for any vector x ∈ H′′ the sequence
{Tn1 x}∞n=1 does not converge to 0, then neither does {Tnx}∞n=1. Consequently we
obtain that H′ = H0(T ). �

The above proof works for those kind of infinite dimensional operators as well,
for which r(T0) < 1 is satisfied.

Now, we are in position to show the characterisation in the non-C11 case.

Proof of Theorem 3. The equivalence of (i), (ii) and (iv) can be handled very sim-
ilarly as in Theorem 2.

The (i)⇐⇒ (iii) part: Let us write

T ∗ =

(
0 R̃
0 E∗

)
=

(
0 RE∗

0 E∗

)
(E ∈ C11(Ck))

for the adjoint of a powerbounded matrix (up to unitarily equivalence) which is gen-
eral enough for our purposes (see Theorem 7 and Lemma 2). Since E∗ is invertible
it is equivalent to investigate the two forms above. From the equation

T ∗nTn =

(
0 RE∗n

0 E∗n

)(
0 0

EnR∗ En

)
=

(
RE∗nEnR∗ RE∗nEn

E∗nEnR∗ E∗nEn

)
,

we get

AT,C =

(
RAE,CR

∗ RAE,C
AE,CR

∗ AE,C

)
.

Calculating the null-space of AT,C suggests that for the block-diagonalization we
have to take the following invertible matrix

X =

(
Il R
−R∗ Ik

)(
(Il +RR∗)−1/2 0

0 (Ik +R∗R)−1/2

)
.

The inverse of X is

X−1 =

(
(Il +RR∗)−1/2 0

0 (Ik +R∗R)−1/2

)(
Il −R
R∗ Ik

)
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which shows that X ∈ Ud. With a straightforward calculation we derive

X−1AT,CX = 0l ⊕
[
(Ik +R∗R)1/2AE,C(Ik +R∗R)1/2

]
.

Here (Ik + R∗R)1/2 = Ik + Q holds with a positive semi-definite Q for which
rank(Q) ≤ l holds and conversely, every such Ik + Q can be given in the form
(Ik + R∗R)1/2. So the set of all L-asymptotic limits of l-stable powerbounded
matrices (again, up to unitarily equivalence) are given by:

0l ⊕ [(Ik +Q)AE,C(Ik +Q)] (Q ∈ B+(Ck), rank(Q) < l,E ∈ C11(Ck))

and every positive operator of such form is the L-asymptotic limit of an l-stable
powerbounded matrix.

Finally, let us write

(Ik +Q)−2 = U · diag(q1, . . . qk) · U∗

and
U∗A−1

E,CU = (αi,j)
k
i,j=1,

where U ∈ Uk and qj ≤ 1 for each 1 ≤ j ≤ k. Therefore

1

t1
+ · · ·+ 1

tk
= tr

(
(Ik +Q)−1A−1

E,C(Ik +Q)−1
)

= tr
(
A−1
E,C(Ik +Q)−2

)
= tr

(
U∗A−1

E,CU · diag(q1, . . . qk)
)

=

k∑
j=1

qjαj,j ≤ tr(A−1
E,C) = k,

is fulfilled for each l-stable powerbounded matrix T . For the reverse, set some
positive numbers t1, . . . tk such that

1

t1
+ · · ·+ 1

tk
≤ k

is valid. If we take such a 0 < c < 1 for which
1

c · t1
+

1

t2
+ · · ·+ 1

tk
= k,

then obviously A = diag(c · t1, t2 . . . tk) arises as the Cesàro asymptotic limit of
a powerbounded operator from C11(Ck). Therefore, if we take the rank-one Q =
diag(1/

√
c − 1, 0, . . . 0) positive semi-definite matrix, we get (Ik + Q)A(Ik + Q) =

diag(t1, t2 . . . tk). This ends the proof. �

After the proof of the characterisations we give the proof of Theorem 4.

Proof of Theorem 4. Let T = S diag(λ1, λ2)S−1 with |λ1| = |λ2| = 1 and S ∈ GL2

for which the columnvectors are unit ones. We have learned from the proof of
Theorem 2 that in this case we have A−1

T,C = SS∗. The matrix S can be written in
the following form

S =

(
µ1,1s µ1,2t

µ2,1

√
1− s2 µ2,2

√
1− t2

)
where |µj,l| = 1 (j, l ∈ {1, 2}) and s, t ∈ [0, 1] provided that the above matrix is
invertible.

By taking diag(1/µ1,1, 1/µ2,1) · S instead of S and using (3), we can see that
without loss of generality µ1,1 = µ2,1 = 1 can be assumed, so we have

S =

(
s µ1,2t√

1− s2 µ2,2

√
1− t2

)
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and thus

A−1
T,C = SS∗ =

(
s2 + t2 s

√
1− s2 + t

√
1− t2µ22µ12

s
√

1− s2 + t
√

1− t2µ22µ12 2− s2 − t2

)
.

Finally, since T ∗ = S∗−1 diag(λ1, λ2)S∗ and we have

S∗−1 =
1

s
√

1− t2µ22 − t
√

1− s2µ12

(√
1− t2µ22 −

√
1− s2

−tµ12 s

)
we immediately obtain

A−1
T∗,C =

(√
1− t2µ22 −

√
1− s2

−tµ12 s

)(√
1− t2µ22 −tµ12

−
√

1− s2 s

)

=

(
2− s2 − t2 −s

√
1− s2 − t

√
1− t2µ22µ12

−s
√

1− s2 − t
√

1− t2µ22µ12 s2 + t2

)
and this implies (5). �

In the proof we used that the inverse of a 2 × 2 matrix can be expressed quite
nicely. A natural question arises, what happens in higher dimension? If the dimen-
sion of H is infinite then we can get counterexamples quite easily. Let us consider
a weighted bilateral shift which has weights 1 everywhere except for one weight
which is 1/2. This trivially defines a contraction and hence both AT,C = AT and
AT∗,C = AT∗ hold. Moreover, AT and AT∗ are invertible which implies that T
is similar to a unitary. But AT , AT∗ ≤ I, AT 6= I and AT∗ 6= I which implies
A−1
T,C +A−1

T∗,C ≥ 2I and A−1
T,C +A−1

T∗,C 6= 2I.
In the matrix case we do not have such an easy counterexample. However,

computations tell us that usually (5) does not hold even for 3 × 3 matrices. For
example if we consider

T =

i 2 1
0 1 i
1 0 4

1 0 0
0 −1 0
0 0 i

i 2 1
0 1 i
1 0 4

−1

then we get that the eigenvalues of A−1
T,C + A−1

T∗,C are approximately the numbers
1.27178, 2.1285 and 2.59972.

Of course, a natural question arises.

Question 1. How can we describe the set of all pairs {(AT,C , AT∗,C) : T ∈ PWBd}
if d ∈ N is fixed?

A weaker form of the question above is the following.

Question 2. How can we describe the set of all pairs {(AT,C , AT∗,C) : T ∈
C11(Cd)} if d ∈ N is fixed?

As a consequence of Theorem 4 and the Corach-Maestripieri theorem (a 1-stable
2× 2 powerbounded matrix is always a projection) we could do these descriptions
very easily in the case when d = 2, but because of its easiness, we omit it in this
paper.
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4. Some properties in arbitrary dimension

In the last section we prove Theorem 5 and 6 and we also give some examples.

Proof of Theorem 5. Suppose that 0 < ‖AT,C‖, we will show that in this case
1 ≤ ‖AT,C‖ holds as well. Consider a unit vector v ∈ H and an arbitrarily small
number ε > 0 for which ∥∥√AT,C v

∥∥ > (∥∥√AT,C∥∥− ε)
is satisfied. By (2):∥∥∥∥∥√AT,C T kv

‖T kv‖

∥∥∥∥∥ =
‖
√
AT,Cv‖
‖T kv‖

>

(∥∥√AT,C∥∥− ε)
‖T kv‖

.

Since lim infk→∞ ‖T kv‖ ≤ ‖
√
AT,C‖, for every η > 0 there exists a k0 ∈ N for

which ‖T k0v‖ ≤ ‖
√
AT,C‖+ η holds. This implies that∥∥∥∥∥√AT,C T k0v

‖T k0v‖

∥∥∥∥∥ > (‖
√
AT,C‖ − ε)
‖T k0v‖

≥
(‖
√
AT,C‖ − ε)

‖
√
AT,C + η‖

.

But this is true for all η > 0, therefore√
‖AT,C‖ =

∥∥√AT,C∥∥ ≥ (∥∥√AT,C∥∥− ε)∥∥√AT,C∥∥ .

Since ε > 0 was arbitrarily small, we conclude ‖AT,C‖ ≥ 1. �

The next proof is similar to the one above, but we note that the squares are
needed, because the Banach limits are not multiplicative.

Proof of Theorem 6. Assume that 0 < ‖AT,L‖ happens. Take a vector v ∈ H, ‖v‖ =
1 and an arbitrarily small number ε > 0 such that

Llim
n→∞

‖Tnv‖2 =
∥∥√AT,Lv∥∥2

>
(∥∥√AT,L∥∥− ε)2

is satisfied. Consider now the following inequality:∥∥∥∥∥√AT,L T kv

‖T kv‖

∥∥∥∥∥
2

=
‖
√
AT,Lv‖2

‖T kv‖2
>

(∥∥√AT,L∥∥− ε)2
‖T kv‖2

.

Since lim infk→∞ ‖T kv‖2 ≤ Llimk→∞ ‖T kv‖2 ≤ ‖
√
AT,L‖2, for every η > 0 there

exists a k0 ∈ N for which ‖T k0v‖2 ≤ (‖
√
AT,L‖+ η)2 holds. This suggests that∥∥∥∥∥√AT,L T k0v

‖T k0v‖

∥∥∥∥∥
2

>
(‖
√
AT,L‖ − ε)2

‖T k0v‖2
≥

(‖
√
AT,L‖ − ε)2

‖
√
AT,L + η‖2

.

Since this holds for every η > 0, we infer that

‖AT,L‖ =
∥∥√AT,L∥∥2 ≥

(∥∥√AT,L∥∥− ε)2∥∥√AT,L∥∥2 .

In the beginning we could choose an arbitrarily small ε > 0, hence ‖AT,L‖ ≥ 1 is
verified. �
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Now we are intend to give some examples. First we provide an example for such
a powerbounded weighted shift operator T for which the L-asymptotic limit really
depends on the choice of the particular Banach limit L and moreover, the Cesàro
asymptotic limit of T exists. We will use a characterisation from [Lo] of all the
possible Banach limits of a bounded real sequence. Namely, G. G. Lorentz proved
that for every x ∈ `∞ real sequence the equality{

Llim
n→∞

xn : L ∈ B
}

= [q′(x), q(x)] ⊆ R

holds where B denotes the set of all Banach limits and

q(x) = inf
{

lim sup
k→∞

1

p

p∑
j=1

xnj+k : p ∈ N, n1, . . . np ∈ N
}
,

q′(x) = sup
{

lim inf
k→∞

1

p

p∑
j=1

xnj+k : p ∈ N, n1, . . . np ∈ N
}
.

Example 1. Let us fix an orthonormal basis {ej}j∈N and define T in the following
way

Tej =


√

2 · ej+1 j = 3l for some l ∈ N√
1/2 · ej+1 j = 3l + l for some l ∈ N
ej+1 otherwise

.

Since ‖Tn‖ =
√

2 holds for each n ∈ N, T is powerbounded. A rather easy calcula-
tions shows that the equation

T ∗nTne1 =

{
2e1 3l ≤ n < 3l + l for some l ∈ N
e1 otherwise

is valid. Therefore by Lorentz’s characterisation we get{
〈AT,Le1, e1〉 : L ∈ B

}
= [1, 2].

It is quite easy to see that the sequence {T ∗nTn}∞n=1 consists of diagonal opera-
tors (with respect to our fixed orthonormal basis). Thus AT,C is also diagonal and
the convergence 1

n

∑n
j=1 T

∗jT j → AT,C holds in the strong operator topology in
case when AT,C exists. But the existence of the Cesàro limit can be verified by a
very simple calculation, in fact we have AT,C = I.

In what follows we show two further examples concerning the existence of the
Cesàro asymptotic limit and powerboundedness. It was mentioned in the Introduc-
tion that none of them implies the other one which will be illustrated bellow.

Example 2. We define T with the equation

Tej =


√

2 · ej+1 j = 3l for some l ∈ N√
1/2 · ej+1 j = 2 · 3l for some l ∈ N
ej+1 otherwise

.

Clearly

T ∗nTne1 =

{
2 · e1 3l ≤ n < 2 · 3l for some l ∈ N
e1 otherwise

holds. The Cesàro means of the sequence {〈T ∗nTne1, e1〉}n∈N does not converge,
hence the the Cesàro asymptotic limit of T does not exist. On the contrary, ‖Tn‖ =√

2 is satisfied for every n ∈ N, thus T is powerbounded.
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Example 3. Our shift operator is defined as follows

Tej =

{√
2 · ej+1 3l ≤ j < 3l + l for some l ∈ N
ej+1 otherwise

.

Clearly it is not powerbounded, because ‖Tn‖ =
√

2
n
. But on the other hand, it

is not hard to see that the Cesàro means of the sequence {T ∗nTn}n∈N of positive
operators converge strongly to I = AT,C .
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[Ké1] L. Kérchy, Generalized Toeplitz Operators, Acta Sci. Math. (Szeged), 68 (2002) 373–400.
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