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In this paper we study Lp Marcinkiewicz-Zygmund type inequalities

c1
∑

1≤j≤N

wj |g(xj)|p ≤ ‖g‖pLp(K) ≤ c2
∑

1≤j≤N

wj |g(xj)|p

for general exponential sums of the form g(x) =
∑

1≤j≤n aje〈λj ,x〉, x, λj ∈ Rd, aj ∈
R. One of the main results of the paper asserts that when 1 ≤ p < ∞, K = [a, b]
and the exponents satisfy relations λj+1 −λj ≥ ε, 1 ≤ j ≤ n − 1, max1≤j≤n |λj | ≤
Λ then Marcinkiewicz-Zygmund type inequalities hold for certain point sets of 
cardinality

N ≤ cn ln
1
p
+1 Λ

ε
.

Since the dependence of cardinality on the parameters ε, Λ appears only in the 
logarithmic term, this bound is “almost” degree and separation independent. 
Moreover, the discrete meshes xj and weights wj = xj+1−xj are given explicitly and 
they are universal in the sense that they work for any exponential sum as above. This 
result will rely on some new degree independent Bernstein-Markov type inequality 
for exponential sums. Moreover we will extend our considerations to multivariate 
exponential sums. In addition, it will be shown that much stronger results hold for 
exponential sums with nonnegative coefficients.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Consider the space Lp(K), 1 ≤ p ≤ ∞ endowed with some probability measure on the compact set K ⊂
Rd. Then given a subspace U ⊂ Lp(K) the Marcinkiewicz-Zygmund type problem for 1 ≤ p < ∞ consists 
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in finding discrete point sets YN = {x1, ..., xN} ⊂ K and corresponding positive weights wj > 0, 1 ≤ j ≤ N

such that for any g ∈ U we have

c1
∑

1≤j≤N

wj |g(xj)|p ≤ ‖g‖pLp(K) ≤ c2
∑

1≤j≤N

wj |g(xj)|p (1)

with some constants c1, c2 > 0 depending only on p, d and K. In case when K = [a, b] ⊂ R is an interval 
on the real line a natural choice of the weights associated with the points a < x1 < x2 < ... < xN < b is 
given by wj = xj+1 − xj , 1 ≤ j ≤ N − 1. In this respect the classical Marcinkiewicz-Zygmund inequality for 
trigonometric polynomials states that (1) holds for the space U = Tn of trigonometric polynomials of degree 
≤ n and uniformly distributed points on the period with wj = 1

n and N = 2n + 1. Clearly the cardinality 
of the discrete point set N = 2n + 1 is optimal here. This equivalence relation turned out to be an effective 
tool used for the discretization of the Lp norms of trigonometric polynomials which is widely applied in the 
study of the convergence of Fourier series, Lagrange and Hermite interpolation, positive quadrature formu-
las, scattered data interpolation, see for instance [9] for a survey on the univariate Marcinkiewicz-Zygmund 
type inequalities. An important generalization of the classical Marcinkiewicz-Zygmund inequality for the so 
called doubling weights was given by Mastroianni and Totik [10]. Various extensions of the Marcinkiewicz-
Zygmund inequality for multivariate algebraic and trigonometric polynomials can be found in [1], [4]
and [2].

In this paper we will consider problem (1) for general real exponential polynomials of the form

g(x) =
∑

1≤j≤n

aje
〈λj ,x〉, aj ∈ R, x ∈ Rd (2)

with arbitrary given λj ∈ Rd. In general, results related to these exponential sums depend on the number 
n of terms in the sums and the size of λj-s. The “degree” of these exponential polynomials is given by 
max1≤j≤n |λj |. Here and throughout the paper | · | denotes the usual Euclidian norm of vectors in Rd. 
Naturally one should try to aim for discrete meshes with possibly smallest cardinality. A particularly in-
teresting problem consists in obtaining discrete meshes of cardinality depending only on the dimension n
of the exponential sums (2), that is independent of their degree. For the trigonometric exponential sums 
with λj-s being of the form λj = inj , nj ∈ Z this question is discussed in detail in the survey paper [2]. 
In particular in [12] Theorem 1.1 it is shown that for general trigonometric exponential sums one can get 
meshes of cardinality ∼ n. In trigonometric case the basic property which is the main tool of investigation 
is the pair wise orthogonality of exponentials. In the general algebraic case the exponents in (2) do not have 
this crucial feature. So instead of orthogonality our considerations will rely heavily on Bernstein-Markov 
type inequalities for the size of derivatives of exponential sums. We will verify in this paper some new 
degree independent Bernstein-Markov type inequalities for exponential sums. This will allow us to extend 
Marcinkiewicz-Zygmund type inequalities to general real exponential sums. In particular, it will be shown 
(see Theorem 1 below) that there exist meshes YN = {x1, ..., xN} ⊂ [a, b] ⊂ R of cardinality

N ∼ n ln
1
p+1 Λ

ε
(3)

so that (1) holds with weights wj := xj+1 − xj for every 1 ≤ p < ∞ and every exponential polynomial 
(2) with any λj ∈ R satisfying λj+1 − λj ≥ ε > 0, 1 ≤ j ≤ n − 1 and max1≤j≤n |λj | ≤ Λ. An important 
feature of this result is the fact that the cardinality of the discrete mesh is of optimal order n, while their 
degree Λ and the separation parameter ε of the exponents essentially appear only in the logarithmic term. 
So in this sense our bound is “almost” degree and exponent independent. The explicitly given discrete sets 
used in Theorem 1 are universal in the sense that they work for all exponential sums as above. We will also 
include similar results for multivariate exponential sums. Finally, we will present some new dimension and 
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degree independent Bernstein-Markov type inequalities for multivariate exponential sums with nonnegative 
coefficients. This will lead to a considerable improvement of the corresponding Marcinkiewicz-Zygmund type 
inequalities for multivariate exponential sums with nonnegative coefficients. It should be also noted that all 
discrete meshes are constructed in this paper explicitly.

2. Marcinkiewicz-Zygmund type inequalities for general exponential sums

The next theorem which is one of the main results of this paper presents a Marcinkiewicz-Zygmund type 
inequality for general real univariate exponential sums based on point sets of cardinality N ≤ cn ln

1
p+1 Λ

ε .

Theorem 1. Let 1 ≤ p < ∞, [a, b] ⊂ R, 0 < ε ≤ 1, n ∈ N, Λ > 1. Then there exist discrete points sets 
YN = {x1 < ... < xN} ⊂ (a, b) of cardinality

N ≤ cpn ln
1
p+1 Λ

ε

where c > 0 is an absolute constant, so that for every exponential sum (2) with arbitrary λj ∈ R satisfying

λj+1 − λj ≥
ε

b− a
, 1 ≤ j ≤ n− 1, max

1≤j≤n
|λj | ≤ Λ

we have

1
2

∑
1≤j≤N−1

(xj+1 − xj)|g(xj)|p ≤ ‖g‖pLp([a,b]) ≤ 2
∑

1≤j≤N−1
(xj+1 − xj)|g(xj)|p. (4)

Remark 1. One should note the fact that the discrete nodes provided by Theorem 1 are rather universal, 
they work for all exponential sums satisfying the separation condition λj+1 − λj ≥ ε

b−a , 1 ≤ j ≤ n − 1
and the upper bound max0≤j≤n |λj | ≤ Λ. In addition the dependence of cardinality on the parameters 
ε, Λ appears only in the logarithmic term, so the bound on cardinality is “almost” degree and separation 
independent. It should be also mentioned that the constants 1

2 and 2 in (4) can be replaced by 1 − ξ and 
1 + ξ, respectively, with an arbitrarily small 0 < ξ < 1. Of course, one would have to pay a price for this 
in the sense that this will make the constant in the upper bound for the cardinality of YN dependent on 
ξ. The proof of Theorem 1 given below indicates that constants of order − ln ξ

ξ can be used for the upper 
bound of cardinality. In a recent paper [8] the precise dependence of this constant on parameter ξ > 0 was 
given in the classical univariate trigonometric case.

The proof of the above Marcinkiewicz-Zygmund inequality will be based on a new degree independent Lp

Bernstein type inequality for derivatives of exponential sums (2). We will also use the following Lp, 1 ≤ p <
∞ Bernstein type inequality for derivatives of univariate exponential sums fn(x) =

∑
1≤j≤n cje

λjx given in 
[5], Theorem 3.4

‖f ′
n‖Lp[−1+δ,1−δ] ≤

2n− 1
δ

‖fn‖Lp[−1,1], 0 < δ < 1. (5)

This elegant result provides exponent independent upper bounds for Lp norms of derivatives of exponential 
sums inside the interval. The drawback of the above estimate is the appearance of the term 1

δ in the 
upper estimate which leads to larger than required discretization sets in Lp Marcinkiewicz-Zygmund type 
inequalities. Our next lemma shows that introducing a weight 1 − x2 into the Lp norms of derivatives 
of exponential sums allows to replace 1

δ by a substantially smaller term ln 2
δ . This improvement will be 

subsequently used in order to verify near optimal discretization meshes.
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Lemma 1. Let 1 ≤ p < ∞, 0 < δ < 1, n ∈ N. Then for any distinct real numbers λ1, ..., λn ∈ R and any 
exponential sum fn(x) =

∑
1≤j≤n cje

λjx, ∀cj ∈ R we have

‖(1 − x2)f ′
n(x)‖Lp[−1+δ,1−δ] ≤ 9n ln

1
p

2
δ
‖fn‖Lp[−1,1]. (6)

Proof. Using (5) with any 0 < t < 1 and multiplying the p-th power of this estimate by tp−1 yields

tp−1
1−t∫

−1+t

|f ′
n(x)|pdx ≤ (2n− 1)p

t

1∫
−1

|fn(x)|pdx, 0 < t < 1.

Integrating above inequality with respect to t ∈ [ δ2 , 1] we have

1∫
δ
2

1−t∫
−1+t

tp−1|f ′
n(x)|pdxdt ≤ (2n− 1)p

1∫
δ
2

dt

t

1∫
−1

|fn(x)|pdx = (2n− 1)p ln 2
δ

1∫
−1

|fn(x)|pdx.

Furthermore applying Fubini theorem for the integral on the left hand side of above estimate implies

1∫
δ
2

1−t∫
−1+t

tp−1|f ′
n(x)|pdxdt =

1− δ
2∫

−1+ δ
2

1−|x|∫
δ
2

tp−1|f ′
n(x)|pdtdx = 1

p

1− δ
2∫

−1+ δ
2

|f ′
n(x)|p((1 − |x|)p − (δ2)p)dx

≥ 1
p

1−δ∫
−1+δ

|f ′
n(x)|p((1 − |x|)p − (δ2)p)dx ≥ 1

p

1−δ∫
−1+δ

|f ′
n(x)|p((1 − |x|)p − ((1 − |x|)/2)p)dx

≥ 1
p2p+1

1−δ∫
−1+δ

|f ′
n(x)|p(1 − x2)pdx.

Thus combining the last two estimates above we arrive at

1−δ∫
−1+δ

|f ′
n(x)|p(1 − x2)pdx ≤ p22p+1np ln 2

δ

1∫
−1

|fn(x)|pdx.

Finally taking the p-th root above yields the required estimate with a constant c ≤ 4e 2
e ≤ 9.

By a standard linear transformation Lemma 1 can be extended to any interval [a, b] ⊂ R.

Corollary 1. Let 1 ≤ p < ∞, [a, b] ⊂ R, 0 < δ < b−a
2 , n ∈ N. Then for any distinct real numbers λ1, ..., λn ∈ R

and any exponential sum fn(x) =
∑

1≤j≤n cje
λjx, ∀cj ∈ R we have

‖(b− x)(x− a)f ′
n(x)‖Lp[a+δ,b−δ] ≤

9(b− a)
2

(
ln b− a

δ

) 1
p

n‖fn‖Lp[a,b]. (7)

An important feature of Lemma 1 consists in the fact that it provides an estimate for the derivatives of 
exponential sums 

∑
1≤j≤n aje

λjx, x, aj ∈ R which is independent of the exponents λj . In fact the size of 
the derivatives essentially depends just on n, the number of terms in the exponential sum. What makes this 
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happen is the presence of the weight (b − x)(x − a) in the norm of the derivatives. This weight enforces a 
linear decline at the endpoints of the interval. A natural question arises in this respect: can an upper bound 
similar to Lemma 1 hold with a weight (b − x)(x − a)1−ε for some ε > 0? The next simple example shows 
that in general, the answer to this question is negative, i.e., linear decline of the weight is crucial here.

Example. Let n = 1 and consider the exponent g(x) = eλx, λ > 4. Clearly with any 0 < ε < 1 and 
0 < δ < 1/3 we have

‖x(1 − x)1−εg′(x)‖2
L2[δ,1−δ] ≥

1−δ∫
1
2

x2(1 − x)2−2ελ2e2λxdx ≥ λδ2−2ε

8 (e2λ(1−δ) − eλ).

Thus setting δ = 1
λ implies when λ > 4

‖x(1 − x)1−εg′(x)‖2
L2[δ,1−δ] ≥

λ2ε−1e2λ

8 (e−2 − e−λ) ≥ ce2λλ2ε−1.

Since in addition,

‖g(x)‖2
L2[0,1] ≤

e2λ

λ

we arrive at

‖x(1 − x)1−εg′(x)‖2
L2[ 1

λ ,1− 1
λ ] ≥ ce2λλ2ε−1 ≥ cλ2ε‖g(x)‖2

L2[0,1].

Note that when n = 1 and δ = 1
λ we get an upper bound of magnitude O(logλ) in the Bernstein type 

estimate (6) which means that no matter how small is ε > 0 an upper bound similar to (6) is impossible for 
the weight (b − x)(x − a)1−ε. Obviously the same conclusion holds for the weight (b −x)1−ε(x − a), as well.

The next lemma provides an explicit construction of nodes used for the discretization of the Lp norms of 
the exponential sums. Essentially these nodes are chosen to be equidistributed with respect to the measure

μ1(E) :=
∫
E

dx

x(1 − x) , E ⊂ (0, 1)

appearing in the Bernstein type inequality (6).

Lemma 2. For any 0 < h < 1/2 and m ≥ 1 set

xj,m := 1
1 + 1−h

h e−(j−1)/m , 1 ≤ j ≤ N = Nm := [2m ln 1 − h

h
] + 2.

Then 1 − h ≤ xNm,m ≤ 1 − h/e and

xj+1,m − xj,m ≤ 4x(1 − x)
m

, x ∈ (xj,m, xj+1,m), 1 ≤ j ≤ Nm − 1. (8)

Proof. Clearly

2 ln 1 − h ≤ Nm − 1 ≤ 2 ln 1 − h + 1

h m h
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and thus we obtain

1 − h = 1
1 + 1−h

h e−2 ln 1−h
h

≤ xNm,m ≤ 1
1 + h

1−he
−1 ≤ 1 − h

e
.

Set hj := 1−h
h e−(j−1)/m. Then evidently

xj+1,m − xj,m

1 − xj+1,m
= hj − hj+1

hj+1(1 + hj)
≤ hj

hj+1
− 1 = e

1
m − 1 ≤ 2

m
.

Hence

xj+1,m − xj,m ≤ 2
m

(1 − x), x ∈ (xj,m, xj+1,m).

Similarly,

xj+1,m − xj,m

xj,m
= 1 + hj

1 + hj+1
− 1 ≤ hj

hj+1
− 1 = e

1
m − 1 ≤ 2

m
,

yielding that

xj+1,m − xj,m ≤ 2
m
xj,m ≤ 2

m
x, x ∈ (xj,m, xj+1,m).

Thus for any x ∈ (xj,m, xj+1,m) we have that

xj+1,m − xj,m ≤ 2
m

min{1 − x, x} ≤ 4x(1 − x)
m

. �
We will also need below an L∞ Markov type inequality verified in [7] for multivariate exponential sums on 

convex bodies. Let us denote by ∇g the gradient of a differentiable function g, |∇g| stands for its Euclidian 
norm which is used in defining ‖∇g‖L∞(K) := supx∈K |∇g(x)|. In addition, c will denote possibly distinct 
positive absolute constants.

Lemma 3. Let K ⊂ Rd, d ≥ 1 be a convex body with rK being the radius of its largest inscribed ball. Then 
for every exponential sum g(w) =

∑
1≤j≤n cje

〈λj ,w〉, w ∈ Rd with λj ∈ Rd satisfying max1≤j≤n |λj | ≤
Λ, |λj+1 − λj | ≥ ε

rK
, j �= k, 0 < ε ≤ 1

‖∇g‖L∞(K) ≤
cd3n3Λ

ε
‖g‖L∞(K).

In addition, when d = 1 the stronger inequality

‖g′‖L∞[a,b] ≤
cnΛ
ε

‖g‖L∞[a,b]

holds.

A standard consequence of an L∞ Markov type inequality is a corresponding Nikolskii type upper bound 
for sup norms via the Lp norms. Namely we can easily deduce from Lemma 3 the next
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Corollary 2. For any convex body K ⊂ Rd, d ≥ 1 and every exponential sum g(w) =
∑

1≤j≤n cje
〈λj ,w〉, w ∈

Rd with λj ∈ Rd satisfying |λj+1 − λj | ≥ ε
rK

, j �= k, 0 < ε ≤ 1, max1≤j≤n |λj | ≤ Λ we have for any 
1 ≤ p < ∞ and some constant c(K, d) > 0 depending on K, d

‖g‖L∞(K) ≤ c(K, d)
(
n3Λ
ε

) d
p

‖g‖Lp(K). (9)

When d = 1 we have the stronger estimate

‖g‖L∞[a,b] ≤ c(a, b)
(
nΛ
ε

) 1
p

‖g‖Lp[a,b]. (10)

Proof. First we need to observe that when K ⊂ Rd is a convex body then for any d dimensional ball Br ⊂ Rd

of radius r centered in K its intersection with K will have Lebesgue measure at least c(K, d)rd with some 
fixed constant depending only on K and d. Furthermore, assuming that ‖g‖L∞(K) = 1 = g(y), y ∈ K we 
have by Lemma 3 that g(x) ≥ 1

2 whenever x ∈ K ∩ Br with Br being the ball centered at y and radius 
r := ε

2cd3n3Λ . Hence

‖g‖pLp(K) ≥
∫

K∩Br

|g|p ≥ 2−pc(K, d)rd ≥ 2−pc(K, d)
( ε

n3Λ

)d

with a proper c(K, d) > 0. This clearly implies (9). The second claim follows analogously.

Now we have all the tools needed in order to prove Theorem 1.

Proof of Theorem 1. Clearly, it suffices to verify the theorem when [a, b] = [0, 1], the general case will then 
follow by a standard linear transformation. We will use the elementary estimate

∣∣∣∣∣∣
b∫

a

g(x)dx− (b− a)g(a)

∣∣∣∣∣∣ ≤ (b− a)
b∫

a

|g′(x)|dx

applied to the function g(x) = |f(x)|p on the interval [xj,m, xj+1,m] where xj,m, 1 ≤ j ≤ Nm − 1 is the 
discrete point set specified in Lemma 2. Then it follows that

∣∣∣∣∣∣∣
xj+1,m∫
xj,m

|f(x)|pdx− (xj+1,m − xj,m)|f(xj,m)|p

∣∣∣∣∣∣∣
≤ (xj+1,m − xj,m)

xj+1,m∫
xj,m

p|f(x)|p−1|f ′(x)|dx.

Applying estimate (8) of Lemma 2 we have
∣∣∣∣∣∣∣
xj+1,m∫
xj,m

|f(x)|pdx− (xj+1,m − xj,m)|f(xj,m)|p

∣∣∣∣∣∣∣
≤ 4p

m

xj+1,m∫
xj,m

x(1 − x)|f(x)|p−1|f ′(x)|dx, 1 ≤ j ≤ Nm − 1.

Summing up above upper bounds for 1 ≤ j ≤ Nm − 1 we arrive at
∣∣∣∣∣∣∣
xNm∫

x

|f(x)|pdx−
∑

1≤j≤Nm−1
(xj+1,m − xj,m)|f(xj,m)|p

∣∣∣∣∣∣∣
≤ 4p

m

xNm∫
x

x(1 − x)|f(x)|p−1|f ′(x)|dx.

1,m 1,m
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Moreover, applying the Hölder inequality to the integral on the right hand side it follows that
∣∣∣∣∣∣∣
xNm∫

x1,m

|f(x)|pdx−
∑

1≤j≤Nm−1
(xj+1,m − xj,m)|f(xj,m)|p

∣∣∣∣∣∣∣
≤ 4p

m
‖f‖p−1

Lp[0,1]‖x(1 − x)f ′(x)‖Lp[x1,m,xNm ].

Thus
∣∣∣∣∣∣‖f‖

p
Lp[0,1] −

∑
1≤j≤Nm−1

(xj+1,m − xj,m)|f(xj,m)|p
∣∣∣∣∣∣ ≤

4p
m

‖f‖p−1
Lp[0,1]‖x(1 − x)f ′(x)‖Lp[x1,m,xNm ]

+
x1,m∫
0

|f(x)|pdx +
1∫

xNm

|f(x)|pdx. (11)

Now we need to estimate the three terms on the right hand side of (11).
In order to estimate the first term recall that by Lemma 2 we have 1 −h ≤ xNm,m ≤ 1 −h/e and x1,m = h. 

Therefore

‖x(1 − x)f ′(x)‖Lp[x1,m,xNm ] ≤ ‖x(1 − x)f ′(x)‖Lp[h/e,1−h/e].

Furthermore, applying estimate (7) with [a, b] = [0, 1] and δ := h
e yields

‖x(1 − x)f ′(x)‖Lp[h/e,1−h/e] ≤
9
2(1 − ln h)

1
pn‖f‖Lp[0,1].

Using the last upper bound for the first term on the right hand side of (11) we obtain

4p
m

‖f‖p−1
Lp[0,1]‖x(1 − x)f ′(x)‖Lp[x1,m,xNm ] ≤

18p
m

(1 − ln h)
1
pn‖f‖pLp[0,1].

For the second and third terms on the right hand side of (11) we can proceed using (10) as follows

x1,m∫
0

|f(x)|pdx +
1∫

xNm,m

|f(x)|pdx ≤ 2h‖f‖pL∞[0,1] ≤ c1h

(
nΛ
ε

) 1
p

‖f‖pLp[0,1].

Substituting the last two bounds into (11) we arrive at
∣∣∣∣∣∣‖f‖

p
Lp[0,1] −

∑
1≤j≤Nm−1

(xj+1,m − xj,m)|f(xj,m)|p
∣∣∣∣∣∣ ≤

18p
m

(1 − ln h)
1
pn‖f‖pLp[0,1] + c1h

(
nΛ
ε

) 1
p

‖f‖pLp[0,1].

(12)

Now setting h := ξ
(

ε
nΛ

) 1
p and m := pn(1−lnh)

1
p

ξ evidently yields

∣∣∣∣∣∣‖f‖
p
Lp[0,1] −

∑
1≤j≤Nm−1

(xj+1,m − xj,m)|f(xj,m)|p
∣∣∣∣∣∣ ≤ (18 + c1)ξ‖f‖pLp[0,1].

Since 0 < ξ < 1 can be chosen arbitrarily the last estimate obviously implies the required Marcinkiewicz-
Zygmund type inequality after proper choice of the constant ξ.
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It remains now to check the cardinality Nm = [2m ln 1−h
h ] + 2 of the discrete point set. Clearly

Nm ≤ cm ln 1
h
≤ cpn ln

1
p+1 1

h
≤ cpn ln

1
p+1 nΛ

ε
.

Recalling that |λj+1 − λj | ≥ ε, j �= k and max1≤j≤n |λj | ≤ Λ it follows that

(n− 1)ε ≤ 2Λ (13)

i.e., ln nΛ
ε ≤ c ln Λ

ε . This clearly yields that Nm ≤ cpn ln
1
p+1 Λ

ε . �
Remark 2. Theorem 1 provides explicit discrete meshes xj of cardinality ∼ n ln

1
p+1 Λ

ε for the weighted 
Marcinkiewicz-Zygmund type inequalities with weights xj+1 − xj . The nodes xj are equidistributed with 
respect to the measure μ1(E) =

∫
E

dx
x(1−x) , E ⊂ (0, 1). It should be noted that Theorem 1 remains valid 

for any sequence of nodes satisfying (8) together with the proper restrictions on the first and last nodes. 
In addition, the restrictions of the exponents imposed in Theorem 1 were used only for the first and last 
intervals of the partition. This means that “near” discretization of the norm ‖f‖Lp[δ,1−δ] is possible using 
order of n log 1

δ nodes without the separation and the degree requirements on the exponents.
The arguments given in the proof of Theorem 1 can be used to derive a Marcinkiewicz-Zygmund type 

result with equal weights 1 for uniformly distributed discrete meshes x0 := h, xj := h + 1−2h
m j, 0 ≤ j ≤ m

leading to the next

Proposition 1. Let 1 ≤ p < ∞, 0 < ε ≤ 1, n ∈ N, Λ > 1. Then given equidistributed discrete points sets 
x0 := h, xj := h + 1−2h

m j, 0 ≤ j ≤ m, h = c 
(

ε
nΛ

) 1
p of cardinality

m ≤ c1n

(
Λ
ε

) 2
p

where c, c1 > 0 are proper absolute constants, we have that

1
2m

∑
1≤j≤m−1

|g(xj)|p ≤ ‖g‖pLp[0,1] ≤
2
m

∑
1≤j≤m−1

|g(xj)|p (14)

for every exponential sum (2) satisfying λj+1 − λj ≥ ε, 1 ≤ j ≤ n − 1 and max1≤j≤n |λj | ≤ Λ.

Proof. Since the proof of the proposition uses the same technique as Theorem 1 we give a brief outline. The 
Bernstein type inequality of Lemma 1 can be replaced by estimate (5). Then similarly to (12) we will arrive 
at

∣∣∣∣∣∣‖f‖
p
Lp[0,1] −

1
m

∑
0≤j≤m−1

|f(xj,m)|p
∣∣∣∣∣∣ ≤

cpn

mh
‖f‖pLp[0,1] + c1h

(
nΛ
ε

) 1
p

‖f‖pLp[0,1].

Now setting h := ξ
(

ε
nΛ

) 1
p and m := pn

ξh with a proper 0 < ξ < 1 will lead to a Marcinkiewicz-Zygmund 
type result with equal weights 1 and uniformly distributed mesh of cardinality

m ≤ cn

(
nΛ
ε

) 1
p

≤ cn

(
Λ
ε

) 2
p

.

Note that the last estimate above follows from the inequality (13).
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Remark 3. As noted at the end of the proof of Theorem 1 under given assumptions on exponents λj we 
have that (n − 1)ε ≤ 2Λ. Thus the quantity Λ

ε appearing both in Theorem 1 and Proposition 1 ideally 
is of order n for proper distributions of exponents λj . This results in discrete meshes of cardinality ∼
n ln

1
p+1 n, 1 ≤ p < ∞ in Theorem 1. Similarly in Proposition 1 when all weights equal 1 the cardinality 

will be of order ∼ n1+ 2
p for every 1 ≤ p < ∞. In a recent paper [3], Theorem 2.3 the authors verified 

a weighted Marcinkiewicz-Zygmund type inequality for Lp, 1 ≤ p ≤ 2 norm with meshes of cardinality 
∼ n ln3 n and arbitrary n-dimensional subspaces of L∞. This is a rather general beautiful result, but in 
contrast to Theorem 1 the weights and meshes are not given explicitly. In addition in [3], Theorem 2.2 a 
Marcinkiewicz-Zygmund type result with weights 1 is verified for Lp, 1 ≤ p ≤ 2 norms with the cardinality 
of the discrete mesh being effected by the quantity appearing in a required Nikolskii type inequality. On the 
other hand it is known that for general exponential sums the magnitude of the factors in a Nikolskii type 
inequality depends on the exponents λj and it can be very large, see [6], Theorem 1. Hence even though 
Theorem 1 and Corollary 3 are less general in comparison to [3] in terms of subspaces considered for the 
exponential sums our results provide a compensation in terms of explicit nature of meshes and weights, 
their universality, smaller cardinality of discrete meshes and their validity for every 1 ≤ p < ∞.

We can extend Marcinkiewicz-Zygmund type inequalities for general multivariate exponential sums, as 
well. Similarly to the univariate case this can be done by applying the Bernstein-Markov type estimates 
verified earlier. In addition, we will have to overcome a technical difficulty related to the separation condition 
|λj+1 − λj | ≥ δ which needs to be imposed on the exponents. For this end the next auxiliary proposition, 
see [7], Lemma 5 will be required.

Lemma 4. Let λj ∈ Rd, 1 ≤ j ≤ n, d ≥ 2 satisfy the separation condition |λj − λk| ≥ δ > 0, j �= k. Then 
for any w ∈ Rd, w �= 0 any every ε > 0 there exist u ∈ Rd, |w − u| ≤ ε, |w| = |u| so that with some cd > 0
depending only on d we have

|〈λj − λk,u〉| ≥
cdδε

d−1

|w|d−2n2 , ∀j �= k. (15)

The above lemma shows that the separation condition |λj − λk| ≥ δ > 0, j �= k is preserved in a 
certain form when the exponents are restricted to small perturbations of arbitrarily chosen lines. Clearly 
the orthogonal projections of λj-s into lines {tu : t ∈ R}, u ∈ Sd−1 are given by 〈λj , u〉u, where these 
projections are separated by quantities |〈λj − λk, u〉|.

Consider the unit cube in Rd given by Id := [0, 1]d. Using Bernstein-Markov type estimates verified 
above and separation Lemma 4 we can prove the next Marcinkiewicz-Zygmund type inequality for general 
multivariate exponential sums on the cube. We shall use below the notation A ∼ B in order to indicate that 
c1(d, p)A ≤ B ≤ c2(d, p)A with some positive constants c1(d, p), c2(d, p) depending only on p, d.

Theorem 2. Let 1 ≤ p < ∞, d, n ∈ N, Λ > 1, 0 < δ < 1, and consider any λj ∈ Rd, 1 ≤ j ≤ n satisfying

|λj − λk| ≥ δ > 0, j �= k, max
1≤j≤n

|λj | ≤ Λ.

Then there exist positive weights b1, ..., bN and discrete point sets YN = {w1, ..., wN} ⊂ Id of cardinality

N ≤ c(d, p)nd ln
d
p+d Λ

δ
,

so that for every exponential sum g(w) =
∑

cje
〈λj ,w〉, w ∈ Rd we have
1≤j≤n
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‖g‖p
Lp(Id) ∼

∑
1≤i≤N

bi|g(wi)|p. (16)

Proof. The proof of the theorem would be a straightforward product type argument if the separation 
condition |λj − λk| ≥ δ > 0, j �= k was true for the orthogonal projections of λj-s to every coordinate axis 
in Rd. Indeed, if this was the case then successive integration plus standard induction would accomplish 
the proof. Thus if |〈λj − λk, es〉| ≥ δ∗ > 0, j �= k with some δ∗ > 0 and es := (δs,i)1≤i≤d ∈ Rd, 1 ≤ s ≤ d

being the standard basis in Rd then for certain positive weights b1, ..., bN and a discrete point set YN =
{x1, ..., xN} ⊂ Id of cardinality N ≤ c(d, p)nd ln

d
p+d Λ

δ∗

‖g‖p
Lp(Id) ∼

∑
1≤i≤N

bi|g(xi)|p, g(x) =
∑

1≤j≤n

cje
〈λj ,x〉. (17)

Now we will apply Lemma 4 to certain properly chosen vectors. For any ε < 1
4d set

e∗s := (1 − ε)es + ε
∑
k 
=s

ek,
1
2 < |e∗s| < 2, 1 ≤ s ≤ d.

Note that each coordinate of e∗s is not smaller than ε. By Lemma 4 for every 1 ≤ s ≤ d there exist 
us ∈ Rd, |e∗s − us| ≤ ε, |e∗s| = |us| so that

|〈λj − λk,us〉| ≥
cdδε

d−1

n2 , ∀j �= k. (18)

Since all coordinates of e∗s are ≥ ε the condition |e∗s − us| ≤ ε implies that

us ∈ Rd
+ := {x = (x1, ..., xd) ∈ Rd : xj ≥ 0, |x| = 1}.

Consider now the parallelepiped in Rd given by

Jd := {t1u1 + ... + tdud, 0 ≤ ts ≤
1

1 + 2dε , 1 ≤ s ≤ d}.

Since us ∈ Rd
+ and |e∗s − us| ≤ ε, 1 ≤ s ≤ d it is easy to check that Jd ⊂ Id.

Denote by T : Rd → Rd the regular matrix transformation defined by T (es) = us

1+2dε , 1 ≤ s ≤ d. Then 
evidently, T (Id) = Jd. Furthermore, note that

∣∣∣∣ us

1 + 2dε − es
∣∣∣∣ ≤

∣∣∣∣ e∗s
1 + 2dε − es

∣∣∣∣ + ε ≤ |e∗s − es|
1 + 2dε + (2d + 1)ε ≤ (3d + 1)ε, 1 ≤ s ≤ d.

Evidently, this means that for every x =
∑

1≤s≤d tses ∈ Id, 0 ≤ ts ≤ 1 we have

|x − T (x)| =

∣∣∣∣∣∣
∑

1≤s≤d

tses −
∑

1≤s≤d

ts
us

1 + 2dε

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

1≤s≤d

ts

(
es −

us

1 + 2dε

)∣∣∣∣∣∣ ≤ d(3d + 1)ε.

Hence for any x ∈ Id \Jd we have that T (x) ∈ Jd and |x−T (x)| ≤ d(3d +1)ε. Obviously this means that Id
is contained in a 1 + d(3d + 1)ε dilation of Jd about the origin which in turn implies that μ(Id \ Jd) ≤ cdε

where μ stands for the Lebesgue measure.
Consider now any exponential sum g(w) =

∑
1≤j≤n cje

〈λj ,w〉, w ∈ Rd with |λj −λk| ≥ δ > 0, j �= k. Since 
Jd ⊂ Id and μ(Id \ Jd) ≤ cdε we have by (9)
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∣∣∣∣∣∣
∫
Id

|g|p −
∫
Jd

|g|p
∣∣∣∣∣∣ ≤ cdε‖g‖pL∞(Id) ≤ c(p, d)ε

(
n3Λ
δ

)d ∫
Id

|g|p.

Thus setting ε := 1
2c(p,d)

(
δ

n3Λ
)d in the above upper bound we obtain that

1
2

∫
Id

|g|p ≤
∫
Jd

|g|p ≤ 3
2

∫
Id

|g|p. (19)

Moreover denoting by T ∗ the transpose of T and substituting w = T (x), x ∈ Id we have

∫
Jd

|g(w)|pdw = |detT |
∫
Id

|
∑

1≤j≤n

cje
〈λj ,T (x)〉|pdx = |detT |

∫
Id

|
∑

1≤j≤n

cje
〈T∗(λj),x〉|pdx, (20)

where by (18) we have

|〈T ∗(λj − λk), es〉| = |〈λj − λk,
us

1 + 2dε 〉| ≥
cdδε

d−1

n2 , ∀j �= k.

The last relation means that exponents T ∗(λj) satisfy the coordinate wise separation condition needed for 
(17) with

δ∗ := cdδε
d−1

n2 ≥ c(p, d)
(

δ

n3Λ

)d2

.

In addition,

max
1≤j≤n

|T ∗(λj)| ≤ c(d) max
1≤j≤n

|λj | ≤ c(d)Λ.

Hence setting wi := T (xi), 1 ≤ i ≤ N we have by (17)

∫
Id

|
∑

1≤j≤n

cje
〈T∗(λj),x〉|pdx ∼

∑
1≤i≤N

bi|g(wi)|p (21)

with

N ≤ c(d)nd ln
d
p+d Λ

δ∗
≤ c(p, d)nd ln

d
p+d nΛ

δ
.

Recall that |λj+1 − λj | ≥ δ, j �= k and max1≤j≤n |λj | ≤ Λ. Hence all open balls of radius δ centered at λj-s 
are disjoint while all of them are contained in a ball of radius Λ + δ yielding that n ≤ c(d) 

(Λ
δ

)d. Using this 
upper bound in the last estimate for cardinality N provides the required upper bound N ≤ c(d, p)nd ln

d
p+d Λ

δ . 
Finally, combining relations (19)-(21) and using that detT ∼ 1 we have

∫
|g|p ∼

∫
|g|p ∼

∫
|
∑

1≤j≤n

cje
〈T∗(λj),x〉|pdx ∼

∑
1≤i≤N

bi|g(wi)|p. �

Id Jd Id



A. Kroó / J. Math. Anal. Appl. 507 (2022) 125770 13
3. Marcinkiewicz-Zygmund type inequalities for exponential sums with nonnegative coefficients

We can get a substantial improvement of the Marcinkiewicz-Zygmund type inequalities proved in the 
previous section when exponential sums g(x) =

∑
1≤j≤n aje

〈λj ,x〉, x ∈ Rd have nonnegative coefficients, 
that is aj ≥ 0, 1 ≤ j ≤ n. This is due to the fact that we are able to verify a much stronger upper bound 
in the Bernstein type inequality for univariate exponential sums with nonnegative coefficients which are 
independent of n and λj-s. Similarly to Lemma 1 this will be accomplished below by measuring the Lp

norm of the derivative of exponential sums with weight 1 − x2. In addition, the Lp norm considered is also 
endowed with the Jacobi type weight φ(x) := (1 − x)α/p(1 + x)β/p, α, β > 0. This Jacobi type weight will 
make it possible to extend the univariate results to multivariate convex polytopes.

Lemma 5. Let p ∈ N, φ(x) := (1 − x)α/p(1 + x)β/p, 0 < α < β. Then for any n ∈ N and any distinct real 
numbers λj ∈ R, 1 ≤ j ≤ n and arbitrary exponential sum fn(x) =

∑
1≤j≤n aje

λjx, aj ≥ 0 with nonnegative 
coefficients we have

‖(1 − x2)φ(x)f ′
n(x)‖Lp[−1,1] ≤ 4(1 + β/p)‖φ(x)fn(x)‖Lp[−1,1]. (22)

Proof. Using notation ψ(x) := φp(x) = (1 − x)α(1 + x)β it is easy to see that

‖φ(x)fn‖pLp[−1,1] =
1∫

−1

ψ(x)(
∑

1≤j≤n

aje
λjx)pdx =

∑
1≤s1≤n

...
∑

1≤sp≤n

p∏
k=1

ask

1∫
−1

ψ(x)e(λs1+...+λsp )xdx; (23)

‖(1 − x2)φ(x)f ′
n(x)‖pLp[−1,1] ≤

1∫
−1

(1 − x2)pψ(x)(
∑

1≤j≤n

aj |λj |eλjx)pdx =

∑
1≤s1≤n

...
∑

1≤sp≤n

p∏
k=1

ask |λsk |
1∫

−1

(1 − x2)pψ(x)e(λs1+...+λsp )xdx. (24)

Evidently, integrating by parts p times yields

1∫
−1

(1 − x2)pψ(x)e(λs1+...+λsp )xdx = (−1)p

(λs1 + ... + λsp)p

1∫
−1

Gα,β
p (x)e(λs1+...+λsp )xdx

where Gα,β
p (x) := dp

dxp (1 − x)p+α(1 + x)p+β is a scalar multiple of the classical Jacobi polynomial Jα,β
p (x) of 

degree p. Namely using relations given in [11], pp. 67-68 we have that

Gα,β
p (x) = (−1)p2pp!(1 − x)α(1 + x)βJα,β

p (x) =

(−1)p2pp!(1 − x)α(1 + x)β
∑

0≤k≤p

(
p + α

p− k

)(
p + β

k

)(
x− 1

2

)k (
x + 1

2

)n−k

, x ∈ [−1, 1].

Hence we clearly get that

|Gα,β
p (x)| ≤ 2pp!(1 − x)α(1 + x)β

∑
0≤k≤p

(p + α)p−k

(p− k)!
(p + β)k

k! ≤ 4p(p + β)pψ(x), x ∈ [−1, 1].

Thus applying this upper bound in the above integral and using also the arithmetic geometric mean 
inequality we obtain
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p∏
k=1

|λsk |
1∫

−1

(1 − x2)pψ(x)e(λs1+...+λsp )xdx =

∣∣∣∣∣∣
λs1 ...λsp

(λs1 + ... + λsp)p

1∫
−1

Gα,β
p (x)e(λs1+...+λsp )xdx

∣∣∣∣∣∣

≤ 4p(p + β)pp−p

1∫
−1

ψ(x)e(λs1+...+λsp )xdx ≤ (4 + 4β/p)p
1∫

−1

ψ(x)e(λs1+...+λsp )xdx.

Combining the last estimate with relations (24) and (23) clearly yields

‖(1 − x2)φ(x)f ′
n(x)‖pLp[−1,1] ≤ (4 + 4β/p)p‖φ(x)fn(x)‖pLp[−1,1].

Finally, taking the p-th root above completes the proof. �
Note that for a general interval [a, b] estimate (22) appears in the form

‖(b− x)(x− a)χ(x)f ′
n(x)‖Lp[a,b] ≤ 2(b− a)(1 + β/p)‖χ(x)fn‖Lp[a,b], (25)

where χ(x) := (2/(b − a))(α+β)/p(b − x)α/p(x − a)β/p, α, β > 0.
Now we can use Lemma 5 and the method applied in the proof of Theorem 1 to exponential sums g(x) =∑
1≤j≤n aje

λjx, aj ≥ 0 with nonnegative coefficients in order to derive a corresponding Marcinkiewicz-
Zygmund type inequality. Note that we have |g′(x)| ≤ λ∗

ng(x), x ∈ R for any such exponential sum.

Theorem 3. Let p ∈ N, Λ > 1. Set w(x) := (1 − x)αxβ , 0 < α < β. There exist discrete points sets 
YN = {x1, ..., xN} ⊂ [0, 1] of cardinality

N ≤ c(p + β)(ln p + ln Λ + α + 1)

so that for any distinct real numbers λj ∈ R, 1 ≤ j ≤ n with max1≤j≤n |λj | ≤ Λ and for every exponential 
sum fn(x) =

∑
1≤j≤n aje

λjx, aj ≥ 0 with nonnegative coefficients we have

1
2

∑
1≤j≤N

(xj+1 − xj)w(xj)fp
n(xj) ≤

1∫
0

w(x)fp
n(x)dx ≤ 2

∑
1≤j≤N

(xj+1 − xj)w(xj)fp
n(xj). (26)

Proof. Similarly to the proof of Theorem 1 we use the discrete point set of Lemma 2 to derive

∣∣∣∣∣∣
1∫

0

w(x)fp
n(x)dx−

∑
1≤j≤Nm−1

(xj+1,m − xj,m)w(xj)fp
n(xj,m)

∣∣∣∣∣∣

≤ 4
m

xNm∫
x1,m

x(1 − x) |(w(x)fp
n(x))′| dx +

x1,m∫
0

w(x)fp
n(x)dx +

1∫
xNm

w(x)fp
n(x)dx ≤

4
m

xNm∫
x1,m

x(1 − x)|w′|fp
ndx + 4p

m

xNm∫
x1,m

x(1 − x)wfp−1
n |f ′

n|dx +
x1,m∫
0

wfp
ndx +

1∫
xNm

wfp
ndx (27)

Now we need to estimate the four terms on the right hand side of (27). Using that x(1 −x)|w′| ≤ βw, x ∈ [0, 1]
we obtain for the first integral
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4
m

xNm∫
x1,m

x(1 − x)|w′|fp
ndx ≤ 4β

m

xNm∫
x1,m

w(x)fp
n(x)dx ≤ 4β

m

1∫
0

w(x)fp
n(x)dx.

For the second term on the right hand side of (27) we will need the Bernstein type inequality (25) transformed 
to the interval [0, 1] which gives with w(x) := (1 − x)αxβ

1∫
0

w(x)(x(1 − x)|f ′
n(x)|)pdx ≤ (2 + 2β/p)p

1∫
0

w(x)fp
n(x)dx.

Thus using the Hölder inequality and last upper bound we obtain for the second term on the right hand 
side of (27)

4p
m

xNm∫
x1,m

x(1 − x)wfp−1
n |f ′

n|dx ≤ 4p
m

⎛
⎝

1∫
0

w(x)fp
n(x)dx

⎞
⎠

p−1
p

⎛
⎝

1∫
0

w(x)(x(1 − x)|f ′
n(x)|)pdx

⎞
⎠

1
p

≤ 8(p + β)
m

1∫
0

w(x)fp
n(x)dx.

The estimate of the third and fourth terms in (27) is analogous and it uses relations x1,m = h, 1 −h ≤ xNm

(see Lemma 2) and the following upper bound

|(fp
n(x))′| ≤ pλ∗

nf
p
n(x) ≤ pΛfp

n(x), x ∈ R. (28)

Furthermore, with arbitrary h < 1
2pΛ < 1

2 set γ := ‖fp
n‖L∞[h,1/2] = fp

n(y), μ := ‖fp
n‖L∞[0,1/2] = fp

n(z). Then 
using (28) we clearly have

1
2∫

h

fp
n(x)dx ≥

∫
|x−y|≤ 1

2pΛ

fp
n(x)dx ≥ γ

4pΛ .

In addition, let us show that μ ≤ 2γ. Indeed, assuming that μ > γ it follows that z ∈ [0, h] and hence 
applying again (28)

μ− γ ≤ fp
n(z) − fp

n(h) ≤ hpΛμ ≤ μ

2 , i.e. μ ≤ 2γ.

Using the last two upper bounds we obtain for the third term on the right hand side of (27)

x1,m∫
0

wfp
ndx =

h∫
0

(1 − x)αxβfp
ndx ≤ hβ+1μ ≤ 2hβ+1γ ≤ 8pΛhβ+1

1
2∫

h

fp
n(x)dx ≤ 8p2αΛh

1
2∫

h

w(x)fp
n(x)dx.

Since the same estimate holds for the fourth term on the right hand side of (27) we can now collect all 
above upper bounds yielding that the right hand side of (27) can be estimated from above by

(
8p + 12β

m
+ 16p2αΛh

) 1∫
w(x)fp

n(x)dx

0
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Finally, choosing h := 1
64p2αΛ , m := 32p +48β yields a constant 12 in front of the integral above. Evidently 

this implies the required Marcinkiewicz-Zygmund type inequality. It remains to note that with this choice 
of parameters h, m we have that

Nm := [2m ln 1 − h

h
] + 2 ≤ c(p + β) ln 1

h
+ 2 ≤ c(p + β)(ln p + ln Λ + α + 1). �

It is remarkable, that above theorem provides a dimension and exponent independent Lp Marcinkiewicz-
Zygmund type inequality for exponential sums with nonnegative coefficients in case when p ∈ N is an 
integer. A slight modification leads to a similar result in case of any p ≥ 1.

Corollary 3. Let p ≥ 1, n ∈ N. There exist discrete points sets YN = {x1, ..., xN} ⊂ [0, 1] of cardinality

N ≤ c(p + β)(ln p + ln Λ + α)

so that for any distinct real numbers λj ∈ R, 1 ≤ j ≤ n with max1≤j≤n |λj | ≤ Λ, Λ > 1 and for every 
exponential sum fn(x) =

∑
1≤j≤n aje

λjx, aj ≥ 0 with nonnegative coefficients we have

1
2

∑
1≤j≤N

(xj+1 − xj)|fn(xj)|[p]+1 ≤ ‖fn‖[p]+1
Lp[0,1] ≤ 2

∑
1≤j≤N

(xj+1 − xj)|fn(xj)|[p]+1. (29)

Proof. Clearly for every p ≥ 1

‖fn‖L[p][0,1] ≤ ‖fn‖Lp[0,1] ≤ ‖fn‖L[p]+1[0,1].

Now using (26) with [p] +1 and [p] and w = 1 we can estimate ‖fn‖[p]+1
L[p]+1[0,1] and from above, and ‖fn‖[p]

L[p][0,1]

from below by 
∑

1≤j≤N (xj+1−xj)|fn(xj)|[p]+1 and by 
∑

1≤j≤N (xj+1−xj)|fn(xj)|[p], respectively. It should 
be noted that as in the proof of Theorem 3 in both upper and lower bounds we can use the same discrete 
point set xj , 1 ≤ j ≤ N given by Lemma 2 as long as h < 1

64([p]+1)Λ and m > 32([p] + 1). Then relations 
(29) easily follow since the lp norm is monotone decreasing in p. With the above choice of parameters h, m
we have again the same bound on the cardinality of the discrete mesh. �

The weighted univariate result given by Theorem 3 leads to an extension of Marcinkiewicz-Zygmund type 
inequality for multivariate exponential sums with nonnegative coefficients to convex polytopes. Namely we 
have the next

Theorem 4. Let d, p ∈ N, Λ > 1. Consider any convex polytope K ⊂ Rd. There exist discrete points sets 
YN = {x1, ..., xN} ⊂ K of cardinality

N ≤ c(K, d)(p + d)d(ln p + ln(Λ + 1))d

and positive weights b1, ..., bN so that for any distinct λj ∈ Rd, 1 ≤ j ≤ n with max1≤j≤n |λj | ≤ Λ and for 
every exponential sum g(x) =

∑
1≤j≤n cje

〈λj ,x〉, x ∈ Rd, cj ≥ 0 with nonnegative coefficients we have

‖g‖pLp(K) ∼
∑

1≤i≤N

big(xi)p. (30)

Proof. Clearly if max1≤j≤n |λj | ≤ Λ then for any affine mapping T of Rd we have max1≤j≤n |T (λj)| ≤ cΛ
with some c > 1. In addition, affine maps preserve the property of the exponential sum to have nonnegative 
coefficients. Evidently, replacing Λ by cΛ in the estimate for cardinality of the mesh in the above theorem 
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will only alter the size of c(K, d). Therefore since every convex polytope K ⊂ Rd decomposes into a finite 
union of simplices it suffices to verify the theorem for any of the standard simplices

Δd := {x = (x1, ..., xd) ∈ Rd : xj ≥ 0, 1 ≤ j ≤ d, x1 + ... + xd−1 ≤ xd ≤ 1},
Ωd := {x = (x1, ..., xd) ∈ Rd : xj ≥ 0, 1 ≤ j ≤ d, x1 + ... + xd ≤ 1}.

We will verify the theorem for the simplex by induction on the dimension d. The case d = 1 is covered by 
Theorem 3. Let us assume now that the statement of Theorem 4 holds for the d − 1 dimensional simplex 
Δd−1 (or Ωd−1). Now for given g(x) =

∑
1≤j≤n cje

〈λj ,x〉, x ∈ Rd, cj ≥ 0 consider the integral

‖g‖p
Lp(Δd) =

∫
Δd

g(x)pdx =
1∫

0

∫
x1+...+xd−1≤xd

g(x1, ..., xd)pdx1...dxd−1dxd.

For any a fixed xd ∈ [0, 1] the change of the variable x = xd(y+ed), y = (y1, ..., yd−1, 0), ed := (0, ..., 0, 1) ∈ Rd

establishes a bijection between x ∈ Δd and y ∈ Ωd−1 where the Jacobian of this transformation has its 
determinant equal to xd−1

d . So performing this transformation for the above integral yields

∫
Δd

g(x)pdx =
1∫

0

∫
x1+...+xd−1≤xd

g(x1, ..., xd)pdx1...dxd−1dxd =
1∫

0

xd−1
d

∫
Ωd−1

g(xd(y + ed))pdydxd. (31)

Now using the induction hypothesis for the integral on the d − 1 dimensional simplex Ωd−1 it follows that 
there exist discrete points sets Ym = {y1, ..., ym} ⊂ Ωd−1 of cardinality

m ≤ (c(p + d− 1)(ln p + ln Λ + 1))d−1 (32)

and positive weights a1, ..., am so that for every fixed xd ∈ [0, 1] we have for the exponential sum with 
nonnegative coefficients g(xd(y + ed)) of variable y ∈ Ωd−1

∫
Ωd−1

g(xd(y + ed))pdy ∼
∑

1≤i≤m

aig(xd(yi + ed))p.

Substituting this relation into (31) we obtain

∫
Δd

g(x)pdx ∼
∑

1≤i≤m

ai

1∫
0

xd−1
d g(xd(yi + ed))pdxd. (33)

Now note that for every 1 ≤ i ≤ m the function g(xd(yi + ed)) is a univariate exponential sum with 
nonnegative coefficients of variable xd ∈ [0, 1] with the maximal size of exponents not exceeding cΛ. So we 
can apply to g(xd(yi + ed)), 1 ≤ i ≤ m Theorem 3 with weight xd−1

d that is α = 0, β = d − 1. Hence there 
exist discrete meshes YNi

= {x1,i, ..., xNi,i} ⊂ [0, 1] of cardinality

Ni ≤ c(p + d− 1)(ln p + ln Λ + 1), 1 ≤ i ≤ m (34)

so that

1∫
xd−1
d g(xd(yi + ed))pdxd ∼

∑
1≤j≤N

(xj+1,i − xj,i)xd−1
j,i g(xj,i(yi + ed))p, 1 ≤ i ≤ m.
0 i
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Thus using the last relation together with (33) we arrive at
∫
Δd

g(x)pdx ∼
∑

1≤i≤m

∑
1≤j≤Ni

ai(xj+1,i − xj,i)xd−1
j,i g(xj,i(yi + ed))p.

Clearly this last relation provides a needed Marcinkiewicz-Zygmund type inequality with positive weights 
ai(xj+1,i − xj,i)xd−1

j,i and discrete mesh xj,i(yi + ed), 1 ≤ j ≤ Ni, 1 ≤ i ≤ m. Finally, by (32) and (34) the 
cardinality N :=

∑
1≤i≤m Ni of this point set satisfies upper bound

N ≤ m max
1≤i≤m

Ni ≤ (c(p + d− 1)(ln p + ln Λ))d−1(p + d− 1)(ln p + ln Λ) ≤ (c(p + d)(ln p + ln Λ))d. �
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