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1. INTRODUCTION

Recall that the n-th Bell polynomial (named also Touchard polynomial) Bn (x) and
the n-th r-Bell polynomial Bn,r (x) are defined by

B0 (x) = 1 and Bn (x) =
n

∑
k=0

{
n
k

}
xk,

B0,r (x) = 1 and Bn,r(x) =
n

∑
k=0

{
n+ r
k+ r

}
r
xk,

where
{n

k

}
is (n,k)-th Stirling number of the second kind which counts the number of

partition of the set [n] into k non-empty subsets, and
{n

k

}
r is the r-Stirling numbers of

the second kind which counts the number of partition of the set [n] into k non-empty
subsets such that the numbers 1, . . . ,r are in distinct subsets see [2].
The numbers Bn := Bn (1) is the n-th Bell number which counts the number of all
partitions of the set [n] := {1, . . . ,n} and Bn,r := Bn,r (1) is the n-th r-Bell number
which counts the number of all partitions of set [n+ r] into k+ r non-empty subsets
such that the first r elements are in distinct subsets, see [6]. These polynomials are
also given by the Dobinski formula

Bn (x) = exp(−x) ∑
j≥0

jn x j

j!
and Bn,r (x) = exp(−x) ∑

j≥0
( j+ r)n x j

j!
. (1.1)
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In 1933 Touchard [11] established for any prime number p the following congruence

Bn+p ≡ Bn+1 +Bn (mod p), n ∈ N.
Later Gertsch and Robert [3], by the umbral calculus method proved that

Bn+p (x)≡ Bn+1 (x)+ xpBn (x) (mod pZp [x]), n ∈ N.
Benyattou and Mihoubi [1] proved that

Bn+p,r(x)≡ Bn+1,r(x)+ xpBn,r(x) (mod pZp [x]), n,r ∈ N,
where Zp denotes the ring of p-adic integers.

Several congruences involved the Bell polynomials are given in [1,3,9,10] and are
linked to other polynomials such the Lah and derangement polynomials. Motivated
by the congruences studied in the above references we use in this paper the differen-
tial operator and its properties to establish some congruences and to give a new proof
for some known congruence concerning the Bell polynomials, r-Bell polynomials,
derangement polynomials and r Lah polynomials. This paper is organized as follow:
In the next section by the differential operator we define the Bell polynomials also
we give a new proofs of some known congruences. In the third section we present
some congruences on the r-Lah polynomials and the derangement polynomials.
In the remainder of this paper we use the notations

(x)0 := 1, (x)n := x(x−1) · · ·(x−n+1) if n ≥ 1,

⟨x⟩0 := 1 ⟨x⟩n := x(x+1) · · ·(x+n−1) if n ≥ 1,

and

(x)n =
n

∑
k=0

(−1)n−k
[

n
k

]
xk, xn =

n

∑
k=0

{
n
k

}
(x)k ,

where
[n

k

]
is the absolute Stirling number of the first kind which counts the number

of permutations of the set [n] := {1, . . . ,n} into k cycles.

2. CONGRUENCES ON BELL AND R-BELL POLYNOMIALS

In this section we give some properties of the differential operator and a new proof
of some known congruences on the Bell and r-Bell polynomials.

Lemma 1. Let D = d
dx be the differential operator and P = x+ xD and let f be a

polynomial. Then for any non-negative integers n,r there hold

(P)r Pn1 = Pnxr = xrBn,r (x) , (2.1)

(P)r f (P)1 = xr f (P+ r)1. (2.2)

In particular, we get

Bn (x) = Pn−mBm (x) , 0 ≤ m ≤ n, (2.3)

xr = (P)r 1, (2.4)
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where (x)r is the Pochhammer symbol defined above.

Proof. To prove the identity Pnxr = xrBn,r (x) we proceed by induction n ≥ 0. For
n = 0 or n = 1, we have

P0xr = xr and P1xr = (x+ xD)xr = xr+1 + rxr = xr (x+ r) = xrB1,r (x) .

Assume that Pkxr = xrBk,r (x) for all k ∈ {0,1, . . . ,n} . Then

Pn+1xr = P(Pnxr) = (x+ xD)xrBn,r (x) = (r+ x)xrBn,r (x)+ xr+1DBn,r (x) ,

and from (1.1) we obtain

xDBn,r (x) = Bn+1,r (x)− (r+ x)Bn,r (x) ,

hence

Pn+1xr = (r+ x)xrBn,r (x)+ xr (Bn+1,r (x)− (r+ x)Bn,r (x)) = xrBn+1,r (x) ,

which completes the step induction. We also have

(P)r Pn1 =
r

∑
k=0

(−1)r−k
[

r
k

]
Pn+k1 = Pn

r

∑
k=0

(−1)r−k
[

r
k

]
Bk (x) = Pnxr = xrBn,r (x) .

The identity (2.2) follows because

(P)r Pn1 = xrBn,r (x) = xr
n

∑
k=0

(
n
k

)
rn−kBk (x) = xr

n

∑
k=0

(
n
k

)
rn−kPk1 = xr (P+ r)n 1.

For the particular cases, by taking r = 0 in (2.1) we get Bn (x) = Pn1. This means that

Bn (x) = P
(
Pn−11

)
= PBn−1 (x) = · · ·= PmBn−m (x) ,

by taking n = 0 in (2.1) we get (P)r 1 = xr. □

Remark 1. Since Bn+m (x) = PnBm (x) = PmBn (x) , the following symmetric iden-
tity follows

Bn+m (x) =
m

∑
r=0

{
m
r

}
xrBn,r (x) =

n

∑
r=0

{
n
r

}
xrBm,r (x) .

Let r1, . . . ,rq,n ≥ 0 be integers such that r1 ≤ ·· · ≤ rq and let

rq = (r1, . . . ,rq) , |rq|= r1 + · · ·+ rq.

Recall the rq-Stirling numbers and the rq -Bell polynomials introduced and studied
by Maamra and Mihoubi [4, 5, 7], can be defined by

n+|rq−1|

∑
j=0

{
n+ |rq|
j+ rq

}
rq

(x) j = (x+ rq)r1 · · ·(x+ rq)rq−1(x+ rq)
n,

Bn(x;rq) =
n+|rq−1|

∑
j=0

{
n+ |rq|
j+ rq

}
rq

x j.
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Lemma 2. There holds

(P)r1 · · ·(P)rq−1Pnxrq = (P)r1 · · ·(P)rqPn1 = xrqBn(x;rq).

Proof. Setting (u)r1 · · ·(u)rq =
|rq|
∑

k=0
ak(rq)uk.

From Theorem 7 given in [4] and Lemma 1 we have

xrqBn(x;rq) =
|rq|

∑
k=0

ak(rq)Bn+k (x) =
|rq|

∑
k=0

ak(rq)Pn+k1 = Pn
|rq|

∑
k=0

ak(rq)Pk1

= (P)r1 · · ·(P)rq−1(P)rqPn1 = (P)r1 · · ·(P)rq−1Pnxrq .

□

Lemma 3. Let f be a polynomial in Z[x]. For any non negative integers n,s ≥ 1,
and for any prime p there holds

f (P)(Pps −P)1 ≡ (xp + xp2
+ · · ·+ xps

) f (P)1 (mod pZp [x]).

Proof. It suffices to take f (x) = xn and proceed by induction on s. Indeed, for
s = 1, use the Touchard’s congruence for polynomials

Bn+p(x)≡ Bn+1(x)+ xpBn(x) (mod pZp [x])

to get

Pn(Pp −P)1 = Pn+p1−Pn+11 = Bn+p(x)−Bn+1(x)

≡ xpBn(x) = xpPn1 (mod pZp [x]).

Assume it is true for s. Then

Pn(Pps+1 −P)1 = ((Pps −P+P)p −P)Pn1

≡ ((Pps −P)p +Pp −P)Pn1

= (Pps −P)pPn1+(Pp −P)Pn1

≡ (xp + xp2
+ · · ·+ xps

)(Pps −P)p−1Pn1+ xpPn1
...

≡ (xp + xp2
+ · · ·+ xps

)pPn1+ xpPn1

≡ (xp2
+ xp3

+ · · ·+ xps+1
)Pn1+ xpPn1

= (xp + xp2
+ · · ·+ xps+1

)Pn1 (mod pZp [x])

hence, the proof is completed. □

Now we give new proof for a congruence concerning Bn(x;rq).
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Proposition 1. Let n,r,rq ≥ ·· · ≥ r1 ≥ 0 and s ≥ 1 be non-negative integers. For
any prime p there holds

Bn+ps(x;rq)≡ (xp + · · ·+ xps
)Bn(x;rq)+Bn+1(x;rq) (mod pZp [x]). (2.5)

In particular, for s = q = 1, rq = r and or r = 0 we get

Bn+p,r(x)≡ xpBn,r(x)+Bn+1,r(x) (mod pZp [x]),

Bn+p(x)≡ xpBn(x)+Bn+1(x) (mod pZp [x]).

Proof. For (2.5), by Lemma 2 and Lemma 3 we have

xrqBn+ps(x;rq) = xrq(Bn+ps(x;rq)−Bn+1(x;rq))+ xrqBn+1(x;rq)

= (P)r1 · · ·(P)rqPn(Pps −P)1+ xrqBn+1(x;rq)

≡ (xp + xp2
+ · · ·+ xps

)(P)r1 · · ·(P)rqPn1+ xrqBn+1(x;rq)

= xrq(xp + · · ·+ xps
)Bn(x;rq)+ xrqBn+1(x;rq) (mod pZp [x]).

This completes the proof. □

3. CONGRUENCES ON THE R-LAH POLYNOMIALS AND THE DERANGEMENT
POLYNOMIALS

In this section, we give some general congruences on the r-Lah polynomials and
the derangement polynomials.To start, let us give a short introduction to these polyno-
mials. Recall that the (n,k)-th r-Lah number Lr (n,k) counts the number of partitions
of the set [n+ r] into k+ r ordered list, such that the numbers of set [r] are in distinct
lists, see also [8], and the r-Lah polynomials associated to r-Lah number are defined
by

Ln,r (x) =
n

∑
k=0

Lr (n,k)xk,

with exponential generating function
n

∑
i=0

Ln,r (x)
tn

n!
=

1

(1− t)2r exp
(

t
1− t

x
)
.

The derangement polynomials are defined by

Dn (x) =
n

∑
k=0

(
n
k

)
Dn−kxk =

n

∑
k=0

(
n
k

)
k!(x−1)n−k ,

where Dn (0) := Dn is the number of derangements of n elements, see [10].

Lemma 4. For any non-negative integer n,r there hold

Ln,r (x) = ⟨P+2r⟩n 1, (3.1)

Dn (1− x) = (−1)n (P−1)n 1. (3.2)



576 ABDELKADER BENYATTOU AND MILOUD MIHOUBI

Proof. Since ⟨x⟩n := (x+n−1)n and the property

⟨x⟩n+m = ⟨x⟩n ⟨x+n⟩m ,

then, from the known identity [8] ⟨x+2r⟩n = ∑
n
k=0 Lr (n,k)xk, and by the relation

(2.4) the r-Lah polynomials can be written as

Ln,r (x) =
n

∑
k=0

Lr (n,k)xk =
n

∑
k=0

Lr (n,k)(P)k 1 = ⟨P+2r⟩n 1. (3.3)

We also have by the relation (2.4)

(P−1)n 1 =
n

∑
k=0

(
n
k

)
(−1)k (P)n−k 1 =

n

∑
k=0

(
n
k

)
(−1)k xn−k = (−1)n Dn (1− x) .

□

Proposition 2. For any prime number p and any integers n,m,r ≥ 0, there holds

Ln+mp,r(x)≡ xmpLn,r(x) (mod pZp [x]).

Proof. From (3.1) we have

Ln+mp,r(x) = ⟨P+2r⟩n+mp1 = ⟨P+2r⟩p ⟨P+2r+ p⟩n+(m−1)p 1

≡ (P+2r+ p−1)p ⟨P+2r⟩n+(m−1)p 1

= ⟨P+2r⟩n+(m−1)p

p

∑
k=0

(
p
k

)
(2r+ p−1)p−k (P)k 1

≡ ⟨P+2r⟩n+(m−1)P

(
(2r+ p−1)p +(P)p

)
1

= p!
(

2r+ p−1
p

)
⟨P+2r⟩n+(m−1)p 1+(P)p ⟨P+2r⟩n+(m−1)p 1

≡ xp ⟨P+2r+ p⟩n+(m−1)p 1 ≡ xpLn+(m−1)p,r(x) (mod pZp [x]).

So, we get successively

Ln+mp,r(x)≡ xpLn+(m−1)p,r(x)≡ . . .

≡ x(m−1)pLn+p,r(x)≡ xmpLn,r(x) (mod pZp [x]).

□

Proposition 3. Let p be a prime number and m,n be non-negative numbers. There
holds

Dn+mp (1− x)≡ (−x)mp Dn (1− x) (mod pZp [x]).

For x = 1, we obtain
Dn+mp ≡ (−1)mp Dn (mod p).
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Proof. By (3.2), the identity (x)n+m = (x)n(x−n)m and the congruence(
p
j

)
≡ 0 (mod p), 1 ≤ j ≤ p−1,

we obtain

Dn+p (1− x) = (−1)n+p (P−1)n+p 1 = (−1)n+p(P−1)p(P−1− p)n1

= (−1)n+p
p

∑
j=0

(
p
j

)
(−1)p− j(P) j(P−1− p)n1

≡ (−1)n+p(−1)p(P−1)n +(−1)n+p(P)p(P−1)n1

≡ (−1)n+pxp(P+ p−1)n1 ≡ (−1)n+pxp(P−1)n1

= (−x)pDn(1− x) (mod pZp [x])

and one can proceed easily by induction on m ≥ 0 to complete the proof.
□

Proposition 4. For any non-negative integers n,r and for any prime number p,
there holds

n

∑
k=0

(
n
k

)
(−1)k (2r+n)n−k Dk(1− x) = Ln,r (x) . (3.4)

In particular for n = p−1 we get
p−1

∑
k=0

(2r+ p−1)p−1−k Dk(1− x)≡ Lp−1,r (x) (mod pZp [x]), (3.5)

for n = p−1, r = 0 we get
p−1

∑
k=0

Dk(1− x)
k!

≡−Lp−1 (x) (mod pZp [x]). (3.6)

Proof. For (3.4) we have

Ln,r (x) = ⟨P+2r⟩n 1 = (P+2r+n−1)n 1

=
n

∑
k=0

(
n
k

)
(2r+n)n−k (P−1)k 1

=
n

∑
k=0

(
n
k

)
(−1)k (2r+n)n−k Dk(1− x).

For (3.5) and (3.6) take n = p−1 or n = p−1, r = 0 and use the congruences(
p−1

k

)
≡ (−1)k (mod p), k!(p−1)p−1−k ≡−1 (mod p) 0 ≤ k ≤ p−1.

□
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Proposition 5. For any non-negative integers n and for any prime number p, there
holds

n

∑
k=0

(
n
k

)
(−1)k Bn−k(x) =

n

∑
k=0

{
n
k

}
(−1)k Dk (1− x) . (3.7)

In particular for n = p−1 or n = p we obtain
p−1

∑
k=0

Bp−1−k(x)≡
p−1

∑
k=0

{
p−1

k

}
(−1)k Dk (1− x) (mod pZp [x]), (3.8)

Dp(1− x)≡−xp (mod pZp [x]). (3.9)

Proof. For (3.7) we have

(P−1)n 1 =
n

∑
k=0

{
n
k

}
(P−1)k 1.

Then
n

∑
k=0

(
n
k

)
(−1)k Pn−k1 =

n

∑
k=0

(
n
k

)
(−1)k Bn−k(x) =

n

∑
k=0

{
n
k

}
(−1)k Dk (1− x) .

For (3.8) and (3.9) take n = p−1 or n = p and use the congruences(
p−1

k

)
≡ (−1)k (mod p),

{
p
k

}
≡ 0 (mod p) 1 < k < p.

□
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