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Abstract. In this paper, we consider a model of linear thermoelasticity for an elastic three-
dimensional body with high thermal conductivity covered by a thin layer on one of its faces.
We show that Ventcel’s boundary conditions may be obtained, as the thickness of the rigid body
goes to zero.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

It is well known that there are two main approaches for the study of problems
involving thin layers. We can consider directly the thin layers problems and use ad-
apted numerical methods (see, for example [2, 10, 15]), or we incorporate the thin
layer effect through an approximate boundary condition in an approximate way, see
for example [5, 8, 13] and the references therein. The second approach will be il-
lustrated in this work by the study of a three-dimensional thermoelasticity coupled
system for an elastic body covered on one of its faces by a thin layer or a thin shell
of thickness €.

More precisely, let us consider a three-dimensional elastic body with high thermal
conductivity and occupying the set Q, = [0,1] x [0, 1] x [0, 1]. The boundary of Q is
denoted by 0Q, =XUT,, where £ =10, 1[x]0, 1[x {0} . The body is clamped on the
portion I";_ of its boundary and reinforced by a thin shell Q¢ = [0, 1] x [0, 1] x [—€,0],
with € > 0 sufficiently small, on the other part £. The boundary of Qf is denoted
0Qf =YEUXUTE, where X8 =]0,1[ x ]0,1[ x {—€} and the whole domain is Qf =
Q, UQE UZL.

In what follows, the variables u = (u1,uz,u3) and 6 represent respectively, a dis-
placement vector field and the temperature. The functions f = (f1, f2, f3) and g are
the volume forces exerted on the body Qf. We also denote by w/,w” for the time
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derivatives of a function w. We then consider the following transmission system:

u' — Sdiv(pVu) +ave = f in Qf x (0,7)

0 — 1div(pVe) +adiv(u') =g in Q% (0,T) b
with Dirichlet conditions on the portion of the boundary I"y UT®
u=0, 6=0 on ([ UT*)x(0,7). (1.2)
The boundary conditions on the face X¢ are given by
—poyu=0, —pdy®+apy,(u)=0 onZXfx(0,T) (1.3)

where dy (respectively, v,) stands for the normal derivative (respectively, normal
trace) operator. Here, o > 0 is a coupling parameter and p is a discontinuous function

on X, defined by
_J 1 on .,
P=1 1/e onQE.

We define also the transmission conditions through ¥ by
W] =0, [6]=0, [—poyu]=0, [—pdy®+apy,(u')]=0,0onEx(0,T) (1.4)

where [.] denotes the skip function through the transmission surface X. We associate
with the system (1.1) the initial conditions

u0)=u", 0)=u", 06(0)=06" in Q° (1.5)

where u°, u' and 8° are respectively the initial states of the displacement vector, the
movement speed and the function of heat dissipation.

Recently, numerical modeling of thermoelasticity problems in a three dimensional
region have been studied in [27] and [28]. However, in our case and due to the small
thickness of the layer, these numerical computations can become cumbersome, espe-
cially for three-dimensional problems. So, our aim is to derive and justify approx-
imate boundary conditions which replace the effect of the thin layer at the junction
interface.

The analysis of such kind of problems in the two-dimensional case can be found in
[4,6,11,12,16,22-25]. Let us mention the works [1,3,7, 14] in the three-dimensional
case.

The paper is organized as follows. In Section 2, we show that Problem (1.1)—(1.5)
admits a weak solution (,0) in a sense that we will specify later on. In Section 3,
we construct an approximate problem depending on the thickness € of the thin layer
by scaling argument. In Section 4, we establish a priori estimates which allow us to
extract a weakly convergent subsequence. Finally, in Section 5 we show that the weak
limit of the obtained approximate problem is a solution to a problem with Ventcel’s
boundary conditions.
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2. RESOLUTION OF PROBLEM (1.1)—(1.5)

In this section, we will show that under some assumptions, Problem (1.1)—(1.5)
admits a solution in a weak sense that will be specified later on. So, we will need
some Sobolev spaces, which we recall in the following definitions:

W(QY) ={ve H'(Q%)|v=00onT, UT"}

with
HY(QF) = {ve L2(QF) | 9w € LH(QF), dyv € LH(QF), d,v € LF(QF)}
where
L2(QF) = {v = (vi,v2,v3) /vi € L*(QF) | i=1,2,3}
and
W(Q) ={peH" (Q%)|¢=00nT,UI"}
with

H'(QF) ={oeL*(Q°) | ¢' € L*(Q%)}.
Lemma 1. W(QFf) and W (QF) are Hilbert spaces.

Proof. Ty UT® is a piece of the boundary dQF of nonzero measure, the two spaces
W(QF) and W (Q°) respectively with norms [|Vv[| 12(qe) and [[VQl|;2(qe) are Hilbert
spaces, see ([20], Chapter 1, paragraph 1.8). O

2.1. Weak formulation
By a formal calculation and assuming that the Green formula

(div(u),9) e = — (1, VO) g + (Yu (1), Y0(9)) g

holds, we obtain a weak formulation (P*) of the problem in the form

d d
27 (POt V) ge) +(pVu, Vvge + - (P8, @) e

dt (2.1)
+ <pV97V(p>QS + o <pvevv>£2€ - (x<patua V(p>£25 = <pf7 v>£25 + <pg7(p>Q8
with
<pl/£(0, ‘)7V>Q£ - <pMO,V>QS (22)
d
7 (Pv)ee (0,.) = (pul v)ge (2.3)
(P8, 9)q: (0,.) = (18", 9) ¢ (2.4)

for all (v, @) € W(QF) x W(QF).
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2.2. Existence and uniqueness of a weak solution
Proposition 1. Let us assume that
fEeL*0,T; L2(QF),  geL*(0,T;L*(Q°),
WewQd), uer?Qf), 'cw(Qd),
then the weak problem (2.1)—(2.4) admits a unique solution (u,0) satisfying
ue L=(0,T; W(QF)), o € L=(0,T; L2(QF)),
0 € L=(0,T;L*(Q°)) NL*(0,T; W (QF)).

Proof. We will demonstrate the above proposition in three steps. First, we estab-
lish a priori estimates which will allow us at second time through the Faedo—Galerkin
method to construct convergent sequences to a solution of our problem in the weak
sense and finally we establish uniqueness.

Step 1: A priori estimate

Let us now consider the energy function, see the definition e.g. in [17,19,21] and
references therein. Then, we denote by E(¢) the energy of the system for ¢t # 0

1

1
2 2 2 2 2 2
E(t)=7 <||3ru|g+ +o [9rullge +[[Vullg, + = [Vullge +118(g, + ||9ng>
then we set

1

1 1
2 € €
112 1 1 2
£ = 5 (I +4 ' ).

It suffices then to take in the weak problem (2.1) — (2.4) v = d,u and @ = 6 to obtain
the so-called energy equality

2 2 1 2 2 1
ar HIVE g, + o [[Velfge +[16%[g, + - [16°]

! 1
2 2
£+ [ (901, + L1v0lR ) ds =

E(0) +/0t (<f7atu>g+ +(f,0u) e +(8,0)q, + <g79>QE> ds.

In virtue of Cauchy—Schwarz inequality, we establish an estimate of the energy in
function of the initial conditions and data of the problem

b0 <c(bO+ [ (IMf+leli)as)  weon @9

where c is a positive constant. Therefore, thanks to the assumptions of the proposi-
tion, the energy of the system is bounded in time

E@t)<c Vte(0,T) (2.6)
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where c is another positive constant which depends only on the data. This also gives
an a priori estimate of 0 in L*(0, T; W (Q¥)). Indeed, we have

T 1
[ (19015 + 2ivelR )as<e )

where c is another positive constant which depends only on the data.

Step 2: Existence - Faedo—Galerkin method.

W(QF) and W(QF?) are separable Hilbert spaces. Let (v;); (respectively, (¢;),) a
basis of W (QF) (respectively, W (QF)). We introduce then the approximate solution
(t4(1),0(2)) defined by

m m
un(t) =Y hin(t)v; and 8, (1)
Py =1

which has to satisfy the approximate problem

I
ng/
Ea
3
=
S

d d
E (<patum7vj>gs) + <pvum7vvj>ge + E <pem7(Pj>Qs + <pvem7V(pj>Qe (28)
+a<pvem7vj>g —05<Pazum7V(Pj>Qs = <pf7vj>ge + <pg7(Pj>Qe
with
un(0) = 4" = ¥ hj(O)v, dyun(0) =ul™ = ¥ W, (0},
I = (2.9)

0,,(0) = 6 = Zlkjm (0)o;,

J=
forall j=1,...,m. The coefficients /,(0) and k;,(0) will be chosen such that
u" — u® in W(QF), u™ — u'in £2(QF) and 8% — ° in W (QF).
For each j =1,...,m, the system (2.8) is a system of ordinary differential equations
with initial Cauchy conditions (2.9). So, the system (2.8)—(2.9) of the unknowns

hjm(t) and kju,(¢) has a unique solution, see for example [26]. Note that Estimates
(2.6) and (2.7) remain valid for the approximate solutions, then

1 1
Jnlld, + - [0l < c. [Vl + - Vi <

and

1 r 1
2 2 2 2
Jonls + g lonlie <c. [ (198l + 5 V0l Jas <c
where ¢ denotes various constants independent of m. This means that

(Um,8,,) is bounded in L*(0, T; W(QF)) x L*(0,T; W (QF)).

So, we can extract a subsequence from (u,,,6,,) (that we continue to denote (ut,,,0,,))
such that,
Uy — u weakly in L*(0,T; W(QF)) (2.10)
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and

0,, — 0 weakly in L*(0,7;W(QF)). Q.11)
As inequality (2.5) is still valid for the new subsequence u,,, then 9;u,, is bounded in
L?(0,T; L2(QF)). So, it is possible to extract a subsequence denoted again u,, such
that d;u,, converges weakly to some y in L2(0,T; L?(QF)). We deduce that } = d,u
almost everywhere because the equality holds in the distributional sense. Then,

ity — d;u weakly in L? (0,T; L2 (QF)). (2.12)

It remains to show that (u,0) thus constructed is the unique solution of Problem
(2.1)~(2.4). For this purpose, we multiply the equation (2.10) by a test function
y € D(0,T), the space of infinitely differentiable functions with compact support in
(0,T), and then we integrate with respect to the time variable and we obtain

T 4 T T 4
/O E (< atumvvj>gs)“r’ds+/0 <pvum,vv]>gswds+/0 E<pem,q’]>gswds
T T T
—|—/0 <pV6m,V(pj>QEI|Ids—|—Oc/O <pV9m,v.,->Q£\|Ids—Oc/0 <palum,V(pj>Q€lVds

T T
:/0 <Pf,Vj>Qs‘I/dS+/O <P8a(Pj>Qs\|’dS

for all j =1,...,m. Integrating by parts with respect to the time variable, we obtain
T ) T T ,
/0 <pu,n,Vj>stdS+A <pvumvvvj>gewds_/0 <p9m7(Pj>stds
T T T /
+/0 <pV9m,V(pj>Q£\|Ids+OC/O <pvem,Vj>Q£\|de+a/0 (Pm, VO;) e Vs

T T
:/0 <pf7vj>gswds+/0 <Pga(Pj>QerS

for all j = 1,...,m. Summing over j, and making the passage to the limit, the pre-
vious equality remains true for all v € W(QF) and for all ¢ € W(Qf). By density
arguments, the previous equality remains true for all v € L*(0,T; W(Qf)) and for
all € L*(0,T;W(QF)), see for example[ 1 3]. Passing to the limit and using (2.10),
(2.11) and (2.12), (u,0) is a weak solution of the Problem (2.1)—(2.4).

Step 3: Uniqueness

For uniqueness, we set

f=g=u"=u"=0, and 8°=0
in Problem (2.1)—(2.4). Thanks to inequality (2.5), we obtain
E(r)=0  Vte(0,7).

This implies that
0=0o0onQ, and 6=0 on Q°
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and in virtue of the transmission condition (1.4), it follows that
6 =0 on Q°.
Similarly, we can show that
Vu=0onQ, and Vu=0 on Q°.
As ||Vul| is an equivalent norm to the norm of W(Q¥), it follows that
u=0onQ, and u=0 on QF.
Finally, thanks to the transmission condition (1.4), we have

u=0 on Q&.

3. SCALED PROBLEM
3.1. Scaling

In order to study the asymptotic behavior of the solution of Problem (2.1)—(2.4)
as € — 0, and since QFf vary with €, we first transform the body QF into a fixed body
(independent of €) by means of a change of scaling. Then, the displacement field u
and the heat propagation 6 can be expressed in function of €. So, let us consider the
following change of variable 7 : R? — R? defined by

| (eyynz) ifz>0
Te(x,y,z) - { (X,y,EZ) le < O (31)

which is a similarity operating on the z variable and it makes stiff (independent of €)
the open domain Qf. We note then

Q=T10% =]0.1% x]-1,1][,
Q=T 1(Q4), Q =17,1(Q%) =101 x]-1,0],
=T (%), =T () =101 x {~1},
L, =7"(Ty), ro=7'I%).

The transformation 7¢ permits also to define the scaling of the state variables as fol-
lows: to the scalar function @, we associate the function

O =00T; (3.2)
and to the vector field v, we associate the field

V¥ =T.ovoT. (3.3)
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This allows us to express the Sobolev spaces on the open set Q by defining W¢(Q)
and W&(Q) as follows:

W Q) ={. e H'(Qs)| [v]=0 onZandv=00onT, UT_}
WeQ)={peH" (Q)|[¢p)=00onZandp=00nT, Ul }.
We naturally endow 7¢(Q) and W#(Q) by the standard norms [|Vv|| 2o, and

VOl 2(qe) , respectively. It is obvious that 7*(Q) and W®(Q) are Hilbert spaces

for the simple reason that v¢ € W¢(Q) is equivalent to v € W(QF) and ¢f € W¥(Q)
is equivalent to ¢ € W(QF).

3.2. Weak formulation in the fixed open set

We will now set the variational problem (2.1)—(2.4) in the open set  and we asso-

ciate to the data f, g, u°, u' and 8° of Problem (2.1)—(2.4) new data defined on the set

Q and obtained by changing of variables and scale, which we denote f¢, g&, ut, u®!

and 0%, respectively.
Proposition 2. Under the assumptions of Proposition 1, (uf,0%) satisfies

ut € L2(0,T; W(Q)), o’ € L=(0,T; L*(Q)),

and 6% € L=(0,T;L*(Q))NL*(0,T;W(Q))
and it is the unique solution of Problem (P?) below

d

1
o (@ @uta) + @usos) + 5 Gusg) )

FVUE VY, 4 (9 0008) + By, a)_ + 812 (9,905

(@08, 905) + (. anE) 812 (9.5,3.95) + giz (D, BnS)

b P 008) g (08, 38)_ 5 ((65,0°). + (6, 6°).)

1 (VEE,VGE), + (9:65,0:6%) -+ (9,65,9,0%)_ + 812 (9.6°,9.0%)

L o(VOE, T, 0 (3,0%,18) +(3,6505) + glza<aze€,v§>,
(3,7, V%) . — 0 (B, 0,0%) — 0t (B, 0,0°)_ — Eiza<a,u§,az<p8>,

1
= (S V) + T+ (S _+ =2 (f5,v5) - +(g5,0%) | +(g5,¢°) _
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with initial conditions
L (0,05
&2 U3z V3 > -

1
= (), + (U’ 05) + (W 05) &2 (uf,v§)

(u(0), V%) + (5 (0), ) _ + (u5(0),v5) _ +

(0,14(0),1%) 4 + (9t (0),V5) _ + (9,45 (0),v5) _ + eiz (0,145(0),v5) -

1
= (u*! V), ST 05) + (8 gy + a2 (u§' v§)
(6°(0),9°), + (6°(0),9%) _ = (6%, ¢°) , +(6%,¢°)
Jor all (v¢,9%) € WE(Q) x WE(Q), where (.,.) ;. denotes (.,.)q, -
Proof. This is a direct consequence of Proposition 1 by changing variable and
scale. g

4. A PRIORI ESTIMATES AND THEIR CONSEQUENCES

Proposition 3. Under the following assumptions:

(i) E%(0) is bounded independently of €,
(ii) f¢ and g& are bounded independently of € in L*(Q.1) and L*(Q.;), respectively,

1
(i) f7., 5. c 1% and g° are bounded independently of € in L*(Q_),

we have the following a priori estimates:

2 2 2 1 2
IOy < e NoulZ <e, lduillZ <e, Sl <e, (1)
1
Ve <o P se Il <o GlRakE <o @2)
2 2 1 2
[0x5]1Z < c, [0y ||~ < e, o 19a]|= < ¢ (4.3)
Sloasl <e Ll <e bl <e
[ l6%]> <c
T 2 T 2
/0 IVeE|2 ds < c /0 19,6%|12 ds < c.
T 2 T 1 c2
| o as <. [ e as<c

where c denotes various constants independent of €.
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Proof. This is a direct consequence of the energy equality and the following in-
equality:

€ | e g €|12 €12 €12 1 £(12 e2 e2
EX0) < e BN+ | LIS+ UANZ+ R 10Z+ 151 + g0l +ls71% ) ds
established in the same way as in Proposition 1. U

From the a priori estimates of Proposition 3, there exists a subsequence of (u®, 6%)
which we denote again (1%, 6%), such that

u® converges weakly-* in L*(0,T; W(Q))

o,ut converges weakly-* in L=(0,T; L*(Q))

¢ converges weakly-* in L=(0,T;L*(Q)) and converges weakly in L*(0,T; W (Q)).
We define the following Hilbert spaces:

V(Q)={veH' (Q)|v=00nTy, v € Hy(X),v, € Hy(X) and v =0on X }
H Q) = {ve L2(Qy) | vy € L2(5)}

V(Q)={9eH (Q)|9=00nT,, 0|y € Hy(Z) }
H' Q) ={ocl’(Q)]| 9y €L’ (D)}
We will need the following lemma, see [9].

Lemma 2. Let I be a bounded interval of R, p € [1,+o0] and u € W'P(I). Then,
there exists u € C°(I) such that

b
u=1il, and @(b)—ila)= / W ()dt

foralla,bel.

Proposition 4. If (u,0) is the weak limit of (u®,6%), then
(i) uy € L(0,T;V(Q)), duy € L=(0,T; H'(Q,)) and

- =ui4+ly onQ_;
- =urly onQ_;
us_ =0 on .

(i) 04 € L=(0,T;H' (Q4))NL*(0,T;V(Q4)) and 6 = 04|y on Q_.

Proof.

(i) Thanks to (4.1),(4.2) and (4.3), we deduce by passing to the limit that u;_ and
uy_ depend only of x and y on Q_ and u3_ is independent of x , y and z on Q_.
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Since u(.,.,z) € W"2(] — 1,0[) and thanks to Lemma 2, there exists a con-
tinuous extension u of u to [—1,0]. In addition,

0
VZE[-1,0]:  i(yn0)—ii(.Z) = /azu(.,.,t)dt.
z
0
As [du(.,.,t)dt vanishes, it follows that
z

i(.,.,2) =l.,.,0)

which means that & on [—1,0] is determined by its value u(.,.,0) and then u is
also determined by its value at the boundary.
(i1) Similarly, we also establish the results on 0 and 6_.

5. PASSAGE TO THE LIMIT

In this section we will show that the asymptotic action (when € — 0) of the thin
shell Qf on the solid Q, is modelled by evolutionary boundary conditions on the
face X of the boundary of Q. Theses boundary conditions are of Ventcel type.

5.1. Weak formulation of the Ventcel’s problem

Under some conditions, the solution (1%, 6%) of the problem (P?) converges in the
weak sense to a limit (u,0), itself solution of a limit problem (P).

Proposition 5. Suppose that
(1) (fi7f£)1ff('7‘7z)dz7f£)1 fz( -y 9% )dZ) Converges Weakly to (f+7f g )
in L2(0 T; L2(Q+)) x L2(Z )><L2( ),
(i1) (u+,f_1 u(.,.,z)dz, f?l us(.,.,z)dz) converges weakly to (u%.,ul, u3)
in }[l(m) xH'(Z)x H'(Z),
(iii) (u%! O u el(.,.,2)dz, 19 usl(.,.,z)dz) converges weakly to (ul ,ul,ul)
in Lz(m) x L2(X) x L*(X),
(iv) (gijfi)lgs(., .,2)dz) converges weakly to (g ,g) in L*>(0,T;L*(Q,)) x
(v) (850, [°,0%(., ., 2)dz) converges weakly to (89.,0") in L*(Q) x L*(Z),
then,

L*(2),

@) (&, [0 ut(.,.,2)dz, [° | u5(., .,2)dz) converges weakly-* to (uy,uy,uy)
in L2(0,T; H'(Q,)) x H'(Z) x H' (),

(b) (atui,fgl o5 (.,.,z)dz, f?l o5 (., .,z2)dz) converges weakly-* to
(0puy,0puy,0pun) in L2(0,T; L2(Q)) x L2(X) x L2(X),

(c) (ei,f?l 0%(.,.,z)dz) converges weakly-*to (8. ,0)in L=(0,T; H' (Q,)) x H' ().
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In addition, (u,0) is a weak solution of the following problem (P): to find
ueL=0,T;V(Q))): dueL=(0,T;H' (Q))

and © € L™(0,T;L*(Q4))NL*(0,T;V(Qy))
such that
4
dt
F @y, d0)y + @B, D)5+ e s+ 0 ((0,0). +(0.0)s)
+(V6,VO) , + (3:8,0:0)5 + (0,8,0,0); + 0. (VO,v) | +0.(3:0,v1)y
+ 0 (0y0,v2)5 — 0 (1, V@), — 0 (0;u1,0,9)y — 0L (d;12,0,9)
=(fv) +{fi,v)s+ (o, 2)s +(8,0), +(2,0)s

(<8,u,v)+ + (Qrur,v1)y + <atu2,V2>z) + <V”>VV>+ + (Oxu1,0xv1)y

with
((0),v); 4 (1(0),v1)y + (u2(0)
(01u(0),v) , + (du1(0),v1)5 + (du2(0),v2) 5
(6(0),9) , +(8(0), 9)5

forall (v,9) € V(Q) xV(Q).

Proof. Tt suffices to note that the weak formulation is as follows:

,V2> < 0 V>++<M(1),V1>Z+<M(2),V2>E
(u 1 ?>++<”{7V1>2+<ué"’2>2

(6%.9), +(6°.0);

d 1
» <<atusyve>+ - (Qu V) + Qs 15)+ (8m§,v§>>

1
(Vi YY)+ (0, 005+ Qi 005)_ + 5 Qe 0.05)

1 1
(0, 0008)_ + (0,15,0,08) + =5 (0.5, 05) _+ 5 (0w, 000%)

1 1 d
+ 87 <ayu§aay"§>_ + 874 <az’4§7az"§>— + E (<9£»(P£>+ + <e£,(Ps>7)
1
+ (V6*, V(Pg>+ + (0x6°%,0.9%) _ + <ay9£= ay(PEL + &2 (0:6°,0.0°) _
0L (VOE V), +au(,6505) +t(9,0508) + eiza<aze€,v§>,
— o (0,u®, Vo) | — 0 (d,uf,0,9%)  —ou(0su5,0y0%) _ — 8%00 (0,u5,0,9%) _

1
= (VA U+ e+ 5 (505) -+ (85 07) + (8%, 0%) .
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As we have (see, [9])

//Q/...dxdydzz_/f (/Z/...dxdy) ] | (/d) iy

then the weak formulation becomes:

0
7 ( (Qu®,v / (//B,u‘i‘vﬁdxdy) dz—l—/ (//a,ugvgdxdy) dz
x ~1 x
1 0
+?/ (//&u‘?‘,v%dxdy) dz) +<VMS,VV£>++/ (//axuﬁaxv?dxdy> dz
| > T 3
0 | 0
+/ (//ayu?ayvﬁdxdy) dz-l—?/ (//azuﬁazv?dxd)) dz
-1 b -1 z
0 0
—l—/ (//axugaxvgdxdy) dz+/ (//ayugayvgdxdy) dz
1
(//a u50, vzdxdy) dz+ — / (//8 u50yx v3dxdy) dz
(//ayug&yvgdxdy) dz+8i4/ (//azugazvgdxdy) dz
-1 x
0°,0%)., + / ( /] Gs(pgdxdy) dz) + (V6F,Vge) |
0
+/ //8 Gsax(pgdxdy) dz—i—/ (//ayegay(pedxdy> dz
-1 b>

0
—l—lz/ (//a Gsaz(psdxdy) dz+ o (VO® V°) +oc/ (//a 0%y dxdy)
(x/ (//Byegv‘zdxdy) dz—l—gz/ (//azegvgdxdy) dz— o (0;u®, V§F)
—1 Y —1 z

L8
T

+
(‘OM‘ —
A L\o *\o

[¢2]
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—oc/lo (/E/atuﬁax(psdxdy) dz—oc/o (/Z/atugay(psdxdy) dz
e 0 (//atu R0) dxdy)
:<f8,v€>++/ (//ff’ dxdy) dz+/0 (// vzdxdy)
1 >
L 0 ( I/ f§‘V§dxdy> dt (g5,0%), + | ( I/ g%p%zxdy) dz.
el 5 | >

We take then v¢ and ¢° such that
VLeV(Q)={veH" (Qy)|v=00onTy v € Hy(X),v2 € Hy(X),v3=00nX }

V& as follows:
Vi =viyly onQ_;
Vi =]y onQ_;
V5. =0 on Q_;
05 €V(Q)={0cH (Q)|9=00nT,, @y € Hy(Z) }
and
¢ =%y on Q_.
Then, we obtain

0 0
% (<azu97v9>++// (/a,u?dz) v?_dxdy—}—// (/a,uﬁdz) v%dxdy)
T\ T\

0 0
+<Vu8,Vv8>+—|—// (/axu?dz) axv?dxdy+// (/ayu?dz) dyvidxdy
r \J T\l

0 0
—l—// /axugdz vagd)H—// (/axu?dz) dVidxdy
T\l
0
—i—// /ayuﬁdz yvldxdy—i-// (/axuzdz) dyv5dxdy
r \l
0
—l—// /ayugdz ayvzdxdy—i- ( ) —i—// (/6%&) 8dxdy)
T \C1
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0 0
—|—<V9‘Q’,V(p8>+—|—// /axeadz ax(psdxdy+// /ayegdz dy@tdxdy
v\l

0
o (VOE, v —|—(x// /8 0%dz | v dxdy—l—oc// /ayegdz vdxdy
r \1

— (9, V), —a / / / iz | .ptdxdy
r\01
0
—Oc// /atugdz dy@tdxdy
T\
0 0
:<f€,v€)++// /ffdz v?dxdy—i—// /ffa’z vidxdy+
T o\C1 T o\C1
0
(85,9%) + / / / g°dz | ¢dxdy
Eo\C1

and we deduce the result by passing to the limit.

5.2. Strong formulation of the Ventcel’s problem

Under the conditions of Proposition 5 and by using an integration by parts on the

boundary, the obtained weak problem can be expressed as follows:

lei — AM+ =+ (XV6+ = f+ on Q+ X (O, T) )
o, — A0 +odiv(,) =gy onQy x(0,T);

with Dirichlet conditions on the fixed portion of the boundary I";
up =0, 6,=0 onIly;x(0,7),

Ventcel type conditions on the side of junction X

—Eﬁzul 8)2141 0 U]+ +oc8 0= f on X X (O,T);
—Bizuz 9% 2ty — O ur + 00,0 = fo onXx (0,T);
uz =0 onXx (0,T);
6 —0%6— 8529 — 0,04 +00yu| +0dyu, =g onXx(0,T);

and Cauchy initial conditions
up(0)=ul, W (0)=ul, 0.(0)=0% 0nQ,

and

ui(0)=u), w(0)=uy, u;(0)=uj, u(0)=up 6(0)=86;onZ.
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CONCLUSION

The model thus constructed has, on the face covered with a thin shell, boundary
conditions involving tangential and time derivatives of the same order as that of the
interior differential operator. These conditions are called of Ventcel type.

This work allows also to have a reference in three-dimensional case for approxim-
ate boundary conditions as effect of a thin layer.
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