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Abstract 

Objective. The growing number of recording sites of silicon-based probes means that an increasing 

amount of neural cell activities can be recorded simultaneously, facilitating the investigation of 

underlying complex neural dynamics. In order to overcome the challenges generated by the increasing 

number of channels, highly automated signal processing tools are needed. Our goal was to build a 

spike sorting model that can perform as well as offline solutions while maintaining high efficiency, 

enabling high-performance online sorting. 

Approach. In this paper we present ELVISort, a deep learning method that combines the detection 

and clustering of different action potentials in an end-to-end fashion. 

Main results. The performance of ELVISort is comparable with other spike sorting methods that use 

manual or semi-manual techniques, while exceeding the methods which use an automatic approach: 

ELVISort has been tested on three independent datasets and yielded average F1 scores of 0.96, 0.82 

and 0.81, which comparable with the results of state-of-the-art algorithms on the same data. We show 

that despite the good performance, ELVISort is capable to process data in real-time: the time it needs 

to execute the necessary computations for a sample of given length is only 1/15.71 of its actual 

duration (i.e. the sampling time multipled by the number of the sampling points). 

Significance. ELVISort, because of its end-to-end nature, can exploit the massively parallel 

processing capabilities of GPUs via deep learning frameworks by processing multiple batches in 

parallel, with the potential to be used on other cutting-edge AI-specific hardware such as TPUs, 
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enabling the development of integrated, portable and real-time spike sorting systems with similar 

performance to offline sorters. 

Keywords: spike sorting, deep learning, variational autoencoder 

 

1. Introduction 

The utilization of high-density neural microelectrode arrays (MEA) with recording sites in the order of 

hundreds and thousands increases rapidly (1–3). This trend creates a need for fast, reliable and highly 

automated data processing algorithms. Using extracellularly implanted MEAs, raw data is typically 

recorded at a high sampling rate (20–30 kHz) in order to capture temporal features of individual action 

potentials of nearby neurons (single-unit activities, spikes). To replace the slow and time-inefficient 

human evaluation of these data, spike detecting and sorting algorithms have emerged to automate the 

process. Although the fine spatial resolution and the high number of recording channels of modern 

MEAs can make the detection and sorting of spikes more precise, the utilization of conventional 

methods for these tasks become more difficult and time consuming. Many approaches that work well 

on few-channel MEAs cannot be applied with such efficiency to MEAs with a larger number of 

channels (4). As will be discussed later, among the several methods which were implemented for this 

problem, the ones which are based on the rapidly emerging deep learning techniques are still 

underrepresented. This cannot be stated for other areas of electrophysiology, like motor imaginary task 

classification based on EEG, where a plethora of deep learning techniques was applied (5). One of the 

main reasons might be the demand for supervised learning for high-quality labeled data. Recently 

several unsupervised deep learning methods were revisited and promising results were produced in 

relation to different problems such as extracting visual concepts from images or image generation (6–

8). 

A further aspect to be considered in the development of spike detection and sorting algorithms is their 

applicability in systems that require real-time processing, for example, brain-computer interfaces 

(BCIs). It will be shown that the solution presented in this paper allows the detection and sorting of 

single unit activities 15 times faster than real time on a regular computer equipped with an NVIDIA 

GeForce 2080Ti GPU. Modern artificial intelligence accelerator application-specific integrated 

circuits (ASICs) such as tensor processing units (TPUs) (9) allow the inference of deep convolutional 

neural networks (CNNs) on wearable devices. To maximize the efficiency offered by these devices, an 

end-to-end solution is needed. 

Traditional spike sorting algorithms usually consist of three separate phases: detection, feature 

extraction, and clustering. Different approaches are combined in multiple ways, our aim for this 

section is not to give an exhaustive review on all of the possible systems, but to present the general 

methodology. 
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Action potential detection usually starts with filtering in the frequency domain in order to clean 

wideband data from local field potential signals, low and high-frequency noises. This is typically done 

between 300 and 3000 Hz (4,10). The following step implementing the actual detection is approached 

in different ways: in some researches (11) (12) (13) a simple threshold-based method was applied. 

This threshold is computed relatively to the estimated standard deviation of the noise in the particular 

data. Other approaches to spike detection include non-linear energy operator thresholding (14), Teager 

energy operator thresholding (15), and wavelet decomposition (16). Approaches similar to ours use 

deep learning methods, e.g. a single dense layer for spike detection (17) or LSTM layers to evaluate 

recordings per data point (18).  

Whilst a good detection module is necessary for a satisfactory spike sorting system, having a good 

feature extraction algorithm is not less important: having distinctive features extracted from the 

filtered data is essential to any clustering algorithm to operate well. The challenges to overcome 

during this phase include but are not limited to overlapping spike waveforms, bursts with changing 

amplitude, and electrode drift. To properly cluster spikes even in these cases, a robust feature extractor 

is needed. For this, several methods have been proposed, such as feature extraction based on principal 

component analysis (PCA) (19–21), wavelet coefficient (22), wavelet packet coefficient (16), and 

wavelet packet decomposition used with support vector machine (23). 

The third phase, i.e. the segmentation of extracted features, has a wide range of approaches as well. 

The most widely applied semiautomatic method is k-means clustering, which is featured in many 

research papers (11,20,24), combined with other methods. Other approaches such as Bayesian 

classification (10), superparamagnetic clustering (16), support vector machine classification (25), and 

independent component analysis (24) are also used in the segmentation phase of spike sorting. Deep 

learning-based solutions for this problem have also been applied lately, such as PCANet (26) which 

performs similarly to conventional methods. In another study, high precision classification with the 

utilization of convolutional neural networks (CNNs) (18) was achieved. However, this system relies 

on supervised learning.  

Modern solutions such as KiloSort (27), SpyKING CIRCUS (28), and MountainSort (29) aim to 

automate the process of spike sorting. Although the different phases of spike sorting are usually 

organized in an automatic pipeline, hyperparameter adjustments and manual curation are still required 

for KiloSort and SpyKING CIRCUS. MountainSort4 offers a solution without the need of 

hyperparameter fine-tuning, at the cost of performance (29). The ideal spike sorting algorithm is fully 

unsupervised. Autoencoders exploit the advantages of deep learning but are capable of fulfilling this 

condition (30). Supervised models outperform conventional approaches in many different areas, whilst 

unsupervised deep learning methods were not applied to problems with great success until recently. 

Several autoencoder variants were proposed in recent years, e.g. variational autoencoders (VAEs) 

(31), which offer a highly robust generalization capability while producing a modified and regulated 
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latent variable space. Autoencoder-based spike processing methods were also proposed recently: using 

a deep compressive autoencoder (32) managed to compress data of APs for a more efficient transfer; 

(33) used a VAE-based model to determine the position of the neurons in an extracellular recording. 

In this study, a β-VAE based deep learning architecture called ELVISort will be presented. The 

artificial neural network completes the detection, feature extraction and sorting phases, which could be 

advantageous in wearable and implantable closed-loop systems. ELVISort was trained by applying the 

supervised paradigm to the detection/clustering and the unsupervised paradigm to the reconstruction 

part of the model. 

2. Methods 

2.1 Autoencoders  

Autoencoder models are trained in an unsupervised way, aiming at the reproduction of the input data 

while having a feature reduction process in-between. Relevant features of the input data are extracted 

by a bottleneck (latent) layer in the network with (usually much) fewer nodes than the input. The idea 

of the autoencoders first appeared in publication in 1986 (30). 

Autoencoders can be defined using the pair of formulas below: 

𝒛 = 𝐸(𝒙),
𝒙′ = 𝐷(𝒛),

 (1) 

where encoder  𝐸 and decoder 𝐷 can be any differentiable function, any deep learning structure. Latent 

layer 𝒛 serves as a compressed representation of input snippet 𝒙. 𝒙′ is the result of the reconstruction. 

A general principle in building autoencoder architectures is that the decoder is a mirrored encoder. In 

this work, this principle will be followed less strictly, which will be discussed later. The autoencoder 

is trained so that reconstruction 𝒙′ should be as close to the original input 𝒙 as possible. The difference 

is called reconstruction error, which the model is trained to minimize. 

The reconstruction loss (𝐿) is given by the expression 

𝐿(𝒙, 𝒙′) = ∑‖𝑥𝑖 − 𝑥′𝑖‖2
2

𝑁

𝑖=0

= ∑‖𝑥𝑖 − 𝐷(𝐸(𝑥𝑖))‖
2

2
𝑁

𝑖=0

, (2) 

where 𝑵 is the length of the input 𝒙.  

 

2.2 Variational autoencoders 

Variational autoencoders (VAE) are generative models, taking a stochastic approach to data 

reconstruction. In paper (31) a variational model based on the probabilistic concept of Bayesian 

inference is described. The generative process starts at the level of latent layer 𝒛. The conditional 

probability of data 𝒙 given latent variable 𝒛, 𝑝(𝒙|𝒛) can be described as: 



5 

 

𝑝(𝒙|𝒛) =
𝑞(𝒛|𝒙)𝑝(𝒙)

𝑝(𝒛)
 . (3) 

Likelihood 𝑞(𝒛|𝒙) in VAE is approximated by the probabilistic encoder 𝑞, assuming that 𝑞(𝒛|𝒙) is a 

Gaussian distribution. The probabilistic encoder outputs the prediction of the mean and variance of 

normal distribution 𝑞(𝒛|𝒙): 𝑧𝑖 ∼ N(µ𝑖(𝒙), 𝜎𝑖(𝒙)).  

The VAE model is trained using a cost function composed of reconstruction and Kullback-Leibler 

divergence (KL) losses. The reconstruction loss guarantees that the autoencoder will be trained to 

reconstruct the input data, while the KL loss regularizes the latent space. In the VAE, 𝑝(𝒛) is 

considered to be a normal distribution. The KL loss guarantees that the latent distribution is kept as 

close to a normal distribution as possible. 

The loss function of the VAE (𝐿𝑉𝐴𝐸) is defined as 

𝐿𝑉𝐴𝐸(𝜃, 𝜑; 𝛽) = E𝑞𝜑(𝒛|𝒙)[log 𝑝𝜃 (𝒙|𝒛)] − DKL (𝑞𝜑(𝒛|𝒙) ||  𝑝(𝒛)) . (4) 

 

To make backpropagation applicable, the reparametrization trick is used (31). 

2.3 β -VAE 

β-VAE is an extended version of the original VAE model: it introduces a new hyperparameter 𝛽 to the 

original loss function acting as a weighting variable (34). 

The modified loss function of the β-VAE (𝐿𝛽−𝑉𝐴𝐸) is defined as 

𝐿𝛽−𝑉𝐴𝐸(𝜃, 𝜑; 𝛽) = E𝑞𝜑(𝒛|𝒙)[log 𝑝𝜃 (𝒙|𝒛)] − 𝛽DKL (𝑞𝜑(𝒛|𝒙) ||  𝑝(𝒛)) . (5) 

 

Having 𝛽 equal to 1, we get the standard VAE model. By increasing it, a more disentangled 

representation can be extracted from the input (at the bottleneck layer level), but the reconstruction 

capability of the network will be diminished (35). A loss function with a great 𝛽 causes the latent 

space being heavily centered around zero (which, as mentioned, facilitates the disentanglement of the 

latent space). This phenomenon along with the potentially high dimensionality of the data has a 

negative effect on the clustering capability of conventional unsupervised clustering algorithms, such as 

k-means. Throughout the datasets, a fixed β value of β = 15 was used in our model. 

2.4 The architecture of ELVISort 

The input of ELVISort is a 2D matrix of electrophysiological signals, where rows correspond to 

channels and columns correspond to sampling points in time. A subsidiary goal was to train the 

network to effectively reconstruct the different input patterns from their compressed representations, 

which are coded by the different states of the latent space of the autoencoder. A proper representation 

offers the possibility of distinguishing spikes originating from different sources. To achieve this, 
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multiple branches are used while training the autoencoder to ensure the emergence of a well-balanced 

latent space which is useful for classification and sorting as well. 

In spike analysis, time-domain feature extraction is as important as the inspection of space-domain-

specific inter-channel relations. To exploit this concept, the main elements of ELVISort are long short-

term memory (LSTM) (40), bidirectional LSTM (Bi-LSTM) (41) and 2D convolutional layers. 

(42,43). 

During model development, several architecture combinations were tested, including purely 2D or 

3D convolutional networks. To create a latent space with satisfactory generalization capability, good 

reconstruction capability is needed. As a metric to rank the performance of architecture types, the 

reconstruction loss was used; the architecture described here (depicted in Figure 1) proved to be the 

best among all. In our experience, LSTM layers were superior to convolution layers in terms of 

reconstruction when they were used alone; however, when combined, they outperformed the single-

type architecture models. 

To prevent the model to overfit the training data, two regularization methods were used. The method 

of early stopping was used in conjunction with several dropout layers probability of 0.5.  

Figure 1. The architecture of ELVISort. 

The input of the model consists of a 2-dimensional snippet. The encoder (a) contains two branches of different architecture 

types: BiLSTM and Conv2D. The results of these two branches are concatenated and fed to a series of dense layers, the final 

dense layer outputs the mean and standard deviation of each latent variable. In contrast to the encoder, the reconstruction 

branch is using only LSTM and transformation architecture. The output of ELVISort consists of a classification vector (b), a 

reconstruction of the input (c) and a soft layer assignment vector (d). These are produced by the supervised classifier branch 

containing dense layers (b)(yellow building blocks), the unsupervised reconstruction (c) and clustering branches (d) (green 

building blocks) respectively. 
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The encoder consists of two different branches: the LSTM-based branch processes data in the time 

domain, having a 2-dimensional matrix as input while the 2D CNN branch extracts spatiotemporal 

features from a 3-dimensional input. Note that in image processing, the third axis of the input for the 

first Conv2D layer usually corresponds to the color channels (e.g. R/G/B), in contrast to our model, 

where samples are lined up along the third axis. For the convolution branch 4 building blocks from 

GoogLeNet (44) were included beside dropout and convolutional layers. The outputs of the LSTM and 

CNN branches are concatenated and combined non-linearly using fully connected layers. The last 

layer outputs the mean and variance of the latent inference. 

In the reconstruction branch, only LSTM elements were used: in our experience, a CNN branch in the 

reconstruction branch does not ameliorate the overall performance. An improvement in the 

generalization capability of the model was experienced upon the insertion of attention layers between 

LSTM layers (45). A custom layer was implemented to handle the inference of the latent variables 

based on their mean and variance approximated by the encoder. The latent space was constricted in 

order to improve clustering, finally a size of 32 was chosen. To further compress information, a 

hierarchical latent layout was used (8), moreover fully connected layers were applied to the latent 

variables to further decrease the size of the latent space: the higher latent layer had a total of 

8 dimensions, making a total of 40 latent variables. The latent space was visualized using t-distributed 

Stochastic Neighbor Embedding (t-SNE) (46) and depicted in Figure 2. ELVISort clustering software 

is publically available at: www.github.com/rokaijano/elvisort. 

http://www.github.com/rokaijano/elvisort
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Figure 2. Latent spaces of train and test data for different datasets. 

The natural clustering capability of ELVISort can be observed on the latent spaces of the training (on the left) and test (on the 

right) data for the Hybrid Janelia (a), Fiath (b) and Kampff (c) datasets. Points with different colors represent different 

clusters: in cases (a) and (c) the available ground truth labels (74 and 2 clusters respectively), while in case (b) the manually 

curated labels provided by KiloSort were used for color coding (42 clusters). To visualize the 40-dimensional latent space, t-

SNE was applied.  The figures show high spatial separation although they were generated without tuning t-SNE training 

parameters excessively. ELVISort generates latent variables with high spatial separation between true clusters on training 

data (left column) and maintains the high separability on never seen data as well (test data - right column). 
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Figure 3. Reconstruction performance of ELVISort. 

Snippet pairs are from Hybrid Janelia (a), Fiath (b) and Kampff (c) test datasets. Each row corresponds to an individual 

snippet with the original instance on the left and the reconstructed on the right. The horizontal and vertical axes represent 

channels (there are 128 of them for all the datasets), and snippet timespan (64 for (b) and (c) and 32 for (a)), respectively. 

Despite the use of a high β value (β = 15), which according to studies makes reconstruction more challenging, vital 

information is preserved accurately while a fine noise reduction on the reconstructed snippets can be observed. All the 

snippets are normalized individually prior to processing and batch-wise using a batch normalization layer embedded in the 

model (due to this, color ranges of different pairs may differ). 
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To fine-tune the training according to our needs, regularizing branches have been included in the 

network. One of them was a classifier branch which consisted of several dense layers having softmax 

output activation during training on the Fiath and Kampff datasets and sigmoid for Hybrid Janelia 

signal snippets. The output of this branch was a vector of size 2 for spike detection, while for spike 

sorting the size was determined by the number of clusters in the processed dataset. For testing the 

combined detection and clustering capability of the model, the size of the output vector was 

determined by the number of clusters with an additional element included to represent the non-spike 

cluster. This branch was the only supervised part of the model. For the clustering branch, the approach 

suggested by Junyuan Xie (47) was followed, using Student’s t-distribution (48) for assigning soft 

labels during training and k-means (49) for cluster center initialization. In our experience, the use of 

the clustering branch improved the overall performance of the model, however, increasing its loss 

weight above a certain value was not beneficial therefore it was kept relatively low. During training 

and architecture selection, reconstruction capability was considered a high priority (Figure 3). 

2.5 Fiath dataset 

The Fiath dataset contains 9 different recordings produced using 128-channel high-density silicon 

MEAs (the square-shaped recording sites form a 32 × 4 sensor array) with data recorded at 20 kHz. 

The data is recorded from different necortical areas like somatosensory cortex, parietal association 

cortex, motor cortex or the cingulate cortex. For each recording, spike labels were generated using 

KiloSort (36). After sorting the neural activity a manual revision was made on the clusters, with Phy 

and custom-written MATLAB scripts. During manual revision, the initial results of the Kilosort 

algorithm were corrected by applying different methods, such as: cluster merging, cluster separation 

based on FeatureView. Additionally clusters containing less than 100 elements were discarded and 

considered as noise. Clusters were considered as of good quality if their inter-unit waveform 

variability was low and they had a clear refractory period (in their autocorrelogram). Additional 

custom scripts were applied to filter the results further, eliminating low-amplitude waveforms 

identified as units (< 60 μV peak-to-peak amplitude). For further technical details, regarding the used 

MEAs, please refer to the paper (1). Note that because spikes were labeled using another automatic 

algorithm, results based on the Fiath dataset reflect the performance of ELVISort relatively to the 

performance of the KiloSort. In the absence of a genuine ground truth, other datasets are to be 

evaluated to get a more objective picture on the performance of ELVISort. 

2.6 Kampff dataset 

Dataset provided by the Kampff Lab (37) was produced using two probes, an extracellular silicon 

MEA and a glass micro-pipette monitoring the potential inside the cell body of a singular neuron, at 

the same location, at a range of inter-probe distances, 800 to 1800 µm deep in cortex. Measurements 

were taken at 30 kHz from the cortex of anesthetized rats. Juxtacellular signals were analyzed by us 



11 

 

using a custom script based on thresholding and, as a result, a binary label was generated for every 

128-channel recording of the dataset.  

2.7 Hybrid Janelia dataset 

Since ground truth data is not available for clustering real-world data, the performance assessment of 

different methods is an ambiguous task. To alleviate this problem, the SpikeForest platform features a 

collection of the most popular spike sorting methods along with openly available datasets and offers a 

standardized interface to access them (38).  To test the performance of ELVISort on recordings with a 

high number of channels, the Hybrid Janelia dataset was chosen with simulated probe drifting 

generated using 2D interpolation, where the waveform templates were recorded at 30 kHz using 5 µm-

spaced electrodes as part of Kampff’s Ultra Dense Extracellular Survey and based on that a hybrid 

recording was generated using Kilosort2 with added noise and drift. From the hybrid_drift_siprobe 

study, two recordings: REC_64C_600S_11 and REC_64C_600S_12 were used. The first one was used 

as a train and validation dataset while the latter was used as test data for the trained model. To keep the 

input feasible for a better inter-dataset comparison, the 64 channels were padded to match the channel 

number (128) of the other datasets. 

2.8 Preprocessing 

Having multiple datasets with different electrode alignments, general data characteristics and data 

encodings, we made use of the object-oriented features of Python, implementing the preprocessing as 

a base object and introducing polymorphism to the system only in relation to data and label loading, 

thus ensuring that every dataset is processed in a similar fashion. 

In the preprocessing phase, data is filtered between 300 and 3000 Hz (4)(10) using a Butterworth filter 

(39) of order 5. After this, a threshold is computed from the median and standard deviation of each 

channel, according to the formula below (having 𝜃 as a multiplier constant for fine-tuning the 

positive/negative label ratio (PNR) of the generated data). 

 𝑇𝑐 =
median(𝐷𝑐)

0.6745
+ 𝜃 ∙ std(𝐷𝑐), (6) 

where 𝐷 is the filtered data, 𝐶 is the channel number and 𝑇 is the threshold. Different, although similar 

θ values were used for the datasets ( Fiath dataset: θ = 3, Hybrid Janelia dataset: θ = 2.5, Kampff 

dataset: θ = 2 ) to obtain the best PNR. The following algorithm was performed to generate snippets 

for the artificial neural network: 
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Algorithm 1 Sample generation from preprocessed and filtered data 

Require:  𝑐 ∈ {0,1, … , 𝐶} : channel index 

Require:  𝑡 ∈ {0,1, … , 𝑇} : timestamp 

Require: 𝐷𝑡
𝑐: preprocessed data-point 

Require: 𝑇𝑟𝑐: threshold for the specific channel 

Require: 𝐹𝑡: filter mask, where 𝐹𝑡 = {
1,   𝑖𝑓 ∑ 𝑎𝑏𝑠(𝐷𝑡

𝑖) − 𝑇𝑟𝑖𝐶
𝑖=0 > 0

0,   𝑖𝑓 ∑ 𝑎𝑏𝑠(𝐷𝑡
𝑖) − 𝑇𝑟𝑖𝐶

𝑖=0 ≤ 0
 

Require: 𝑠𝑡: Snippet timespan in sample 

1: 𝐷𝑡
′ ← max(𝑎𝑏𝑠(𝐷𝑡)) ∙ 𝐹𝑡 

2: 𝑡 ← 0 

3: while t <  T do: 

4: if 𝐷𝑡
′ > 0 then 

5:  𝑐 ← 𝑎𝑟𝑔𝑚𝑎𝑥([𝐷𝑡−𝑠𝑡/2
′ , 𝐷𝑡+𝑠𝑡/2

′ ]) 

6:  if 𝑠𝑡 − 𝑐 > 𝑠𝑡/2 then 

7:   𝑡 ← 𝑡 + 𝑐 − 𝑠𝑡/2 

8:  end if  

9:  𝑆𝑎𝑚𝑝𝑙𝑒 ← [𝐷𝑡−𝑠𝑡/2, 𝐷𝑡+𝑠𝑡/2] 

10: end if 

11:  𝑡 ← 𝑡 + 1 

12: end for 

The above algorithm generates a filter mask (𝐹𝑡) for each channel, in which, for each above-threshold 

data-point the number 1 will be assigned, while for data-points with values not reaching the threshold 

value, the number 0 is assigned. The whole dataset is filtered with the aforementioned mask, so only 

the relevant values are kept. For every non-zero data-point, a snippet of length 𝑠𝑡 is generated. If 

multiple non-zero values are encountered within a snippet length, the one with the largest value will be 

considered as the center for the particular snippet (ln. 5). Important that every snippet is built from the 

non-filtered data-points, thus maintaining every information for the sorting algorithm.   

As snippet timespan, 64 samples for the Fiath and Kampff datasets and 32 samples for the Hybrid 

Janelia were chosen. 

Each recording from the Fiath and Kampff datasets were split into two major parts: training and test 

data, with the former consisting of the first 70% of the recording and the latter composed of the 

remaining 30%. The training split was further divided into training and validation splits, using 75% of 

the data for training and 25% for validation.  

In order to obtain a balanced dataset, two counter-measures were taken against the low PNR in the 

training data: the negative instances were downsampled (only a small random subset of the negative 

instances were used) and a weighting variable was introduced in the classifier branch loss that 

penalizes false negatives more than false positives. This weighting variable’s value was determined 

empirically and was found that false negatives needed to be penalized in the Kampff dataset by 3 times 

more than false positives. 
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2.9 Evaluation Metrics 

To assess the performance of ELVISort, several metrics were applied. For detection, 𝐹1 weighted 

score was used to take label imbalance into account. This score is calculated from the recall (𝑅) and 

precision (𝑃) performance metrics, which are based on the number of true positives (𝑇𝑃), false 

positives (𝐹𝑃) and false negatives (𝐹𝑁):     

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,    𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,    𝐹1 = 2 ∙

𝑅 ∙ 𝑃

𝑅 + 𝑃
. (7) 

For multi-categorical problems, 𝐹1 score can be calculated multiple ways: 

a) 𝐹1 micro score (𝐹1
𝑚) takes 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 globally across categories (𝐶):  

𝑅𝑚 =
∑ 𝑇𝑃𝑗

𝐶
𝑗=1

∑ (𝑇𝑃𝑗 + 𝐹𝑁𝑗)𝐶
𝑗=1

,      𝑃𝑚 =
∑ 𝑇𝑃𝑗

𝐶
𝑗=1

∑ (𝑇𝑃𝑗 + 𝐹𝑃𝑗)𝐶
𝑗=1

,      𝐹1
𝑚 = 2 ∙

𝑅𝑚 ∙ 𝑃𝑚

𝑅𝑚 + 𝑃𝑚
 .  (8) 

b) 𝐹1 macro score (𝐹1
𝑀) takes the score for each category and an unweighted mean is calculated 

from these values: 

𝐹1
𝑀 =

1

𝐶
∑ 𝐹1𝑗

𝐶
𝑗=1 . (9)   

c) 𝐹1 weighted score (𝐹1
𝑊) takes category imbalance into consideration. During averaging the 

category score is weighted relative to the number of snippets (𝑛) in the respective category: 

𝐹1
𝑊 =

∑ 𝑛𝑗 ∙ 𝐹1𝑗

𝐶
𝑗=1

∑ 𝑛𝑗
𝐶
𝑗=1

  . (10) 

To consider label imbalance, weighted 𝐹1 score was used to evaluate the results for the Kampff and 

Fiath datasets while for the Hybrid Janelia dataset, micro 𝐹1 score was calculated to compare the 

performance of ELVISort to other methods available at the SpikeForest platform. In order to make 

further comparisons, the accuracy (𝐴) of the model was calculated according to SpikeForest: 

𝐴 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 . (11) 

 

3. Results 

3.1 Training and testing on three different datasets 

Throughout this paper, we will refer to data obtained from a single measurement as a “recording”, and 

the collection of similar recordings as a “dataset”. Three different datasets have been utilized: the 

Kampff (37), the Fiath (36) and the Hybrid Janelia (38); 128-channel recordings were used from the 

Kampff and Fiath datasets and 64-channel recordings (with simulated electrode drift) from the Hybrid 

Janelia (See Methods for further details). 

In the preprocessing phase, data were filtered between 300 and 3000 Hz (4,10) with a Butterworth 

filter (39) of order 5. The recordings were sliced into snippets of the same sizes and basic thresholding 
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was applied to generate spike candidate snippets (See Methods for details). This procedure resulted in 

a significant number of non-spikes within the spike candidate snippets, which allowed us to perform 

detection, classification and their combination on the same dataset.  

Our aim was to build a model where the different spike sorting phases are merged and performed in an 

end-to-end fashion, but at the same time, we were interested in how the combination of the phases 

affects the initial performance of a particular phase. Therefore, ELVISort was tested on separate 

phases first. 

Firstly, the spike detection capability of ELVISort was inspected having only a spike and a non-spike 

cluster, where the classification branch had to regularize the latent space to maximize the separation 

between the latent variables of spike and non-spike snippets. At this point, the clustering branch was 

not used.  

Then, input data consisting of snippets containing spikes only was fed into ELVISort, thus its ability to 

form natural clusters and recognize them using its classification branch could be tested adequately. 

From this point, only Fiath and Hybrid Janelia datasets were used due to the nature of the Kampff 

dataset where the spiking events of only the patched neuron are known. 

Finally, detection and clustering were combined. This time the input dataset contained both spike and 

non-spike snippets, maintaining the distinction between spike clusters. 
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3.2 Results from the Kampff dataset 

ELVISort was trained and tested on the Kampff dataset (2015_09_03_Cell.9.0), but similarly to state-

of-the-art spike detectors and sorters, it managed to produce good results from one recording only. 

This is due to the low signal-to-noise ratio (SNR) of the majority of the recordings: spikes of the 

patched neurons have an average peak-to-peak (P2P) amplitude smaller than 30.8 μV for the majority 

of the recordings because ground truth neurons are mostly located quite distantly from the MEA. 

It is worthwhile to note that the description of other spike sorting algorithms featuring the same dataset 

only report the one recording for which ELVISort gave good results. ELVISort identified the ground 

truth spikes from the Kampff recording 2015_09_03_Cell.9.0 with an F1 score of 0.964 and an 

accuracy of 95% (for details, see Table 1). 

 

 Recall Precision F1 score 

HerdingSpikes2 1.00 0.95 0.97 

IronClust 1.00 0.95 0.97 

JRClust 0.97 0.99 0.98 

KiloSort 1.00 0.96 0.98 

KiloSort2 0.95 0.94 0.94 

MountainSort4 0.55 0.93 0.69 

SpykingCircus 1.00 0.95 0.97 

Tridesclous 0.61 0.99 0.75 

ELVISort 0.95 0.98 0.96 

 

Table 1. Results of different algorithms from the SpikeForest website for recording 2015_09_03_Cell.9.0 of the 

Kampff dataset.  

Recall and precision parameters are available on the SpikeForest website, F1 score for each algorithm was calculated by us. 
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3.3 Results from the Fiath dataset 

In order to test the detection performance on the Fiath dataset, the clusters were repartitioned (all the 

spikes were put in one group). ELVISort yielded results comparable to the ones given by the existing 

supervised learning methods. Having trained it separately on every recording, an average F1 score of 

85.55% was produced for the validation and 82.42% for the test set (see Figure 4a). 

To test classification capability, the non-spike cluster was excluded and ELVISort was trained on each 

recording separately. It performed very well in general, providing an average F1 score of 0.77 across 

the datasets (see Figure 4b). Only one of the 9 recordings yielded poor results (0.51 F1 score). 

Finally, ELVISort was trained to perform the combined task (i.e. the detection and classification at the 

same time). It performed well, maintaining the peak performance of the previous “clustering only” 

phase (weighted F1 score: 0.96) while producing better results for the recording that had yielded poor 

performance previously (weighted F1 score: 0.87). The average score has also improved providing an 

average of 0.84 F1 score over the different recordings (see Figure 4c; the classification performance of 

the system for a representative recording is illustrated in Figure 5). 

  

Figure 4. Results from the Fiath dataset. 

Performance (F1 score) of ELVISort for the different Fiath recordings (1–9) aiming spike detection (a), classification (b) and 

both (c). For the supervised part, labels generated by KiloSort followed by manual correction were used. In the cases where 

classification is applied (subfigure b and c) a higher value of F1 weighted score can be observed for the test datasets relative 

to the validation datasets. This seeming contradiction is overcome when one understands that the test datasets were longer 

recordings compared to validation. This latter fact means that frequent clusters outweigh those lower frequency clusters for 

which the model has a lower F1 score (possibly also due to their relatively low representation in the training data).  
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Figure 5. Comparison of the classification results of ELVISort and KiloSort. 

The comparison was made using a representative recording from the Fiath dataset. Non-spike clusters were excluded for 

getting a more straightforward comparison. Each row corresponds to a cluster determined by the Kilosort algorithm, while 

the columns present the clusters determined by ELVISort. The cluster identifiers are shown at the very left and bottom of the 

table. The numbers in the matrix correspond to the number of matching events. The last column represents the number of 

spikes assigned to each cluster by KiloSort but not by ELVISort. The numbers in the second last row correspond to the events 

assigned to each cluster by ELVISort, but not by KiloSort. Our algorithm performs similar to KiloSort, sorting spikes in 

similar clusters as the compared algorithm.  Cluster nr. 33 was not identified by our algorithm, possibly due to the small 

number of occurrences (n=10, shown in the last column). 
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3.4 Results from the Hybrid Janelia dataset 

The same combined (detector and sorter) model architecture that had been developed for the Fiath dataset was trained and 

tested on the Hybrid Janelia dataset. The performance was assessed with and without the non-spike cluster and no major 

differences were observed (see Table 2). The performance per cluster was also inspected, with respect to matched (true 

positives, TP) versus falsely matched (false positives + false negatives, FP+FN) snippets (Figure 6a)). The performance of 

ELVISort in relation to maximum peak values of the different clusters has also been evaluated (Figure 6b). 

 

 F1 score Accuracy 

HerdingSpikes2 0.62 0.44 

IronClust 0.83 0.71 

JRClust 0.63 0.46 

KiloSort 0.81 0.66 

KiloSort2 0.83 0.74 

MountainSort4 0.67 0.49 

SpykingCircus 0.83 0.70 

Tridesclous 0.74 0.59 

ELVISort (S) 0.81 0.67 

ELVISort (D+S) 0.81 0.67 

 

 

Table 2. Results of ELVISort for the Hybrid Janelia dataset. 

The results were the same for the model performing sorting only (S) and the model performing detection and sorting 

simultaneously (D+S). Values are calculated according to the methods described on the SpikeForest website (i.e. F1 score is 

determined without weighting cluster scores by cluster size). 
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Figure 6. The performance of ELVISort on the Hybrid Janelia dataset. 

(a) Detailed results per cluster. Cluster no. 1 represents the non-spike snippets. # – Cluster number, TP – True Positive, FP –

 False Positive, FN – False Negative.  

(b) Accuracies for different clusters plotted against the peak amplitude. 

Peak amplitude was computed averaging the maximum absolute spike amplitude from snippets where no other spike was 

present.  
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3.5 Assessment of Sorting Efficiency 

All the training and test were run on a Windows PC with i9-7920X with 64 GB RAM and a GeForce 

RTX 2080 Ti GPU. We relied on the fast implementations of basic layers and arithmetics from the 

Numpy, Scipy and Tensorflow2 libraries. 

ELVISort was tested with respect to computational speed as well. During the test, the decoder module 

was removed (which was only necessary for the training phase). In order to avoid falsely optimistic 

results, data caching was disabled. Since CPU to GPU and GPU to CPU data transfers are one of the 

most time-consuming stages of GPU data processing, caching (i.e. storing data in GPU memory for 

further use) can make algorithms run faster. In real-time processing scenarios, however, caching is not 

an option.  

As test data, one of the recordings from the Hybrid Janelia (REC_64C_600S_12) was used with 64 

channels. For other algorithms Docker containers were used, provided by the Spikeforest framework.   

Efficiency tests were dispatched on a Windows PC with i9-7920X with 64 GB RAM and an NVIDIA 

GeForce RTX 2080 Ti GPU. The batch of data, that can be processed depends heavily on the GPU 

memory capacity, a larger memory enabling a larger batch size of instances (batch size x instances) to 

be sorted. ELVISort could evaluate the 600 s long recording in 38.17 s. This corresponds to an 

execution speed which is 15.71 times faster than required to perform real-time operation, surpassing 

other solutions (see Table 3.) ELVISort was measured in a way where every single incoming instance 

was evaluated, this can be reduced significantly with simple yet efficient online filtering methods, thus 

further reducing the sorting time of the whole measurement. In spite real-time data comes at the 

sampling rate, for future real-time multiple simultaneous measurement evaluation, faster-than-

sampling-rate algorithms are needed. A faster-than-sampling-rate algorithm also has the potential to be 

run on smaller devices, where the performance is more limited, thus efficiency becomes a key aspect.  

To assess the computational efficiency of the model, the number of floating-point operations (FLOP) 

were determined. In order to process input data in real-time, a minimum computational performance of 

~259 GFLOP/sec is needed. 

In Figure 7, we illustrate that ELVISort is the most efficient compared to other state-of-art methods, 

having a shorter runtime, while maintaining similar sorting performance.  

We define xSpeed as the factor by which the sorting speed is faster compared to the actual recording:  

 

𝑥𝑆𝑝𝑒𝑒𝑑 =
𝑅𝑒𝑐𝑜𝑟𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑜𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
. (12) 
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 Sorting time xSpeed 

Herdinspikes2 192.97 3.10 

IronClust 84.38 7.11 

JRClust 153.51 3.90 

KiloSort2 86.41 6.94 

MountainSort4 299.49 2.00 

SpykingCircus 2521.78 0.23 

ELVISort 38.17 15.71 

 

Table 3. Performance comparison of different spike sorting algorithms. 

The duration of evaluation of different algorithms based on the Hybrid Janelia recording: REC_64C_600S_12. Sorting time 

is represented in seconds, while xSpeed is described in eq.12. Despite ELVISort treats the 64 channel recording as a 128 

channel recording by padding it, it has the least running duration among the compared. All but ELVISort were run from 

Docker containers obtained from the Spikeforest framework. To evaluate the speed compared to real-time, the duration of the 

recording (600 seconds) was divided by the sorting time of each algorithm. ELVISort was able to run 15.71 times faster than 

real-time on the Hybrid Janelia dataset, achieving the fastest speed among the compared algorithms.  
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Figure 7. Sorting efficiency of different solutions regarding F1 score and xSpeed. 

The X-axis represents the F1 scores, which are listed in Table 2, while the Y-axis represents the xSpeed of each solution 

(Table 3). xSpeed is a factor without upper boundary, while the F1 score is a normalized score between 0 and 1. The upper-

right corner represents the ideal spike sorting solution: having a fast algorithm while maintaining a perfect F1 score (=1). 

Based on the examined algorithms, ELVISort proves to be the most efficient: compromising minimal sorting performance, 

yet achieving an xSpeed higher than any other compared algorithm.     
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4. Discussion 

Despite multiple deep-learning based spike classification and/or sorting algorithms are present in the 

literature, to our knowledge, ELVISort is the first system that unifies spike detection and sorting with 

unsupervised deep learning architecture (i.e. β-VAE), and proved to be successful in performing the 

addressed tasks.  

It was demonstrated that a method that applies both supervised and unsupervised learning paradigms 

performs well compared to commonly used state-of-the-art methods. It surpasses many conventional 

spike sorting systems that are featured on the SpikeForest platform.  

The main objectives during training were the amelioration of the reconstruction capability of 

ELVISort and the disentanglement of its latent space; these two having a negative influence on each 

other meant that the effects of the parameter changes on these factors constantly had to be monitored. 

The reconstruction capability of ELVISort was kept very strong, despite the value of β was increased 

to 15 (the original and reconstructed snippets can be compared using Figure 3). The latter 

phenomenon was investigated previously and it was demonstrated, that β-VAE models with higher β 

value are significantly more robust to adversarial attacks and noisy data, compared to models with 

lower β value or Vanilla VAE. (50)  

During the training of an unsupervised clustering autoencoder the so-called “feature randomness” can 

occur, which is resulting from the usage of pseudo-labels during training. Pseudo-labels are based on 

hypothetical similarities and in the process of generating these pseudo-labels, a significant portion of 

true labels are substituted by random ones, producing latent spaces that underfit the semanticity of 

natural datasets. (51) In order to alleviate the impact of this phenomenon, another branch was used to 

regularize the latent space (the supervised/detector branch), especially in the early training phases, 

where feature randomness can have a bigger impact on the performance of the trained model.   

Another important phenomenon, the “feature drift” can deteriorate the performance of the final model 

as well. The feature drift occurs during model optimization when multiple loss functions are present 

and they strongly compete with each other, which can lead to an underperforming model. (51) In order 

to weight each loss component the most optimal way, 9-fold cross-validation on the Fiath dataset was 

performed using several different reconstruction/detection loss rates (Figure S1).  

The latent space was inspected during training. To compress information as much as possible, its 

disentanglement had to be facilitated. As previously noted, this was done by choosing a larger β value 

for the KL loss. 

As it had been anticipated, data mostly concentrated around the origin, although snippets belonging to 

different clusters formed separate distributions in the parameter space (see Figure 2 for details). Data 

were compressed without significant performance loss to a total of 40 latent variables, representing 

only 0.488% of the input. By being able to both reconstruct snippets previously unknown for 
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ELVISort and segment the spikes with high accuracy using the latent space, it can be concluded that 

the construction of an end-to-end deep learning model capable of extracting spike-relevant information 

from 64 × 128 = 8192-dimension inputs was successful. While in our model the unsupervised part had 

a good generalization capability, the supervised classifier branch showed a varying performance. We 

assume this is partly due to the great diversity of SNRs across the recordings. To test whether the 

performance of the classifier branch can be improved, the classifier of a pre-trained instance of 

ELVISort was fine-tuned (having its β-VAE part frozen) for a small number of epochs (n = 10) on a 

dataset unknown to the model. A great improvement in the F1 score was observed, from an initial 

50.03% to 83.92%. This leads us to assume that applying few-shot learning methods to the classifier 

(like Reptile or First Order Model Agnostic Meta Learning) would enable us to efficiently fine-tune 

classifiers in the future. In its current form, for unsupervised use on a dataset where the number of 

clusters is unknown, we propose the usage of the sigmoid activation function on the classifier branch 

to assign soft labels to snippets and use a traditional clustering algorithm on these soft labels. Because 

the unsupervised part of the model is robust we can use the same parameters for different recordings 

and only the supervised classification branch has to be fine-tuned. 

Other real-time spike sorting systems offer integrated solutions like (52) or (53), however their 

performance regarding multi-channel recordings, is unknown. While not fully unsupervised as the 

previously mentioned solutions, EVLISort offers similar sorting performance to offline algorithms 

while reducing runtime significantly. Integrating ELVISort into a TPU system would make runtime 

comparison to online sorting systems feasible.      

5. Conclusion 

In this paper, a deep learning model, ELVISort, was proposed for simultaneous spike detection and 

sorting. ELVISort utilizes variational autoencoder (i.e. β-VAE) architecture that compresses input data 

to less than half (0.488) percent of its original size making the clustering process memory and time-

efficient. 

The capabilities of ELVISort were demonstrated using three datasets; two of them (Kampff and 

Hybrid Janelia) were publicly available making the comparison of performance between ELVISort 

and other spike sorting methods feasible. We showed that our model can be a good choice in terms of 

both computational and runtime performances: ELVISort yielded F1 scores of 0.81 for Hybrid Janelia 

(being surpassed by three sorters out of 8) and 0.96 for Kampff (comparably to the performance of the 

other methods) and proved to be applicable for real-time applications, requiring 1/36 of the original 

data timespan for processing. For the third dataset (Fiath), ELVISort gave an average F1 score of 0.87 

across the nine recordings containing activities from 23–46 single units. 

The significance of our work is that we have shown that achieving a near state-of-the-art performance 

using deep learning architecture is possible, while we also demonstrated the efficiency of our model 
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regarding the processing speed. We assume that ELVISort, after further investigation and 

development, can provide a basis of memory and time efficient brain-computer interfaces in the future. 

Further investigations can be made in the future to replace the supervised, classification branch of the 

current model with an unsupervised one. We believe that the future of spike sorting models will tend 

towards end-to-end models, similar to ELVISort. End-to-end models enable different modern 

technologies (like TPUs) to be integrated into a real-time spike sorting system, providing precision 

comparable to offline sorters with high processing speeds, enabling a higher number of channels to be 

analyzed simultaneously. We believe, that the existence of end-to-end spike sorting models will give 

rise to small, integrated, portable spike sorting devices in the future.      
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Supplemental Information titles and legends 

Figure S1. The detailed architecture of the model. An overall look at the architecture of the model. 

Details of each layer can be found also in the repository. We split the model for a better overview. On 

subfigure a) the details of the encoder can be seen. In subfigure b) a modified inception module is 

presented called LenetLayer with 256 filters. On the c) subfigure the different branches can be 

observed. The last concatenation layer of the encoder on subfigure a) is equivalent with the first 

concatenation layer on subfigure (c).   
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Figure S2. The k-fold cross-validation hyperparameter tuning. Several (n=15) k-fold cross-

validations were evaluated on the recordings of the Fiath dataset with different reconstruction and 

detection loss ratios. The model was trained for a fixed number of epochs. For the parameters for each 

cross-validation see Table S1.  
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Table S1. The different reconstruction and detection loss ratios used in the k-fold cross-

validations. A series of combinations were tested to find the best performing hyperparameter-pair. 

The reconstruction loss was taken from a larger interval: from 0 to 4096, while the detection loss was 

considered between 0.1 and 1.3.  

ID Reconstruction loss Detection loss 

1 4096 0.1 

2 2048 0.2 

3 1024 0.3 

4 512 0.4 

5 256 0.5 

6 128 0.6 

7 64 0.7 

8 32 0.8 

9 16 0.9 

10 8 1 

11 4 1.1 

12 2 1.2 

13 1 1.3 

14 0 1 
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Figure S3. Training results on Fiath dataset. The performance of each model on its training data. 

For the three modes (detection, clustering, detection and clustering) a separate model was trained to 

compare the different approaches while also be able to inspect the performance drop of the model 

when it’s dealt with the combined detection and clustering problem. 

 

 


