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a b s t r a c t

The Turán number of a graph H , ex(n,H), is the maximum number of edges in a graph
on n vertices which does not have H as a subgraph. Let Pk be the path with k vertices,
the square P2

k of Pk is obtained by joining the pairs of vertices with distance one or two
in Pk. The powerful theorem of Erdős, Stone and Simonovits determines the asymptotic
behavior of ex(n, P2

k ). In the present paper, we determine the exact value of ex(n, P2
5 )

and ex(n, P2
6 ) and pose a conjecture for the exact value of ex(n, P2

k ).
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, all graphs considered are undirected, finite and contain neither loops nor multiple edges. Let G be such
graph, the vertex set of G is denoted by V (G), the edge set of G by E(G), and the number of edges in G by e(G). We

denote the degree of a vertex v by d(v), the minimum degree in graph G by δ(G), the neighborhood of v by N(v) and the
chromatic number of graph G by χ (G). Denote by mH the graph of the vertex-disjoint union of m copies of the graph H .
wo disjoint vertex sets U and W are completely joined in G if uw ∈ E(G) for all u ∈ U , w ∈ W . Given graphs G1 and
2, where G1 and G2 with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2). The union G = G1 ∪ G2 is
he graph with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). Denote by G1

⨂
G2 the graph obtained from G1 ∪ G2 by

adding all edges between V (G1) and V (G2).
The Turán number of a graph H , ex(n,H), is the maximum number of edges in a graph on n vertices which does not

ave H as a subgraph. The Erdős–Stone–Simonovits Theorem [4,5] asymptotically determines ex(n,H) for all non-bipartite
raphs H:

ex(n,H) = (1 −
1

χ (H) − 1
)
(
n
2

)
+ o(n2)

There are currently very few known exact results known. For example, Füredi and Gunderson [7] described all the graphs
having ex(n, C2k+1) edges (k ≥ 2) containing no C2k+1. Erdős, Füredi, Gould and Gunderson [2] determined the exact value
of ex(n, Fk) (k ≥ 1, n ≥ 50k2) for k-fan (a graph on 2k + 1 vertices consisting of k triangles which intersect in exact one
common vertex is called a k-fan and denoted by Fk).

The following graphs will be studied in the present paper. Let Pk be the path with k vertices, the square P2
k of Pk is

obtained by joining the pairs of vertices with distance one or two in Pk, see Fig. 1. Our goal in this paper is to study
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Fig. 1. Graph P2
k .

Fig. 2. Graph E i
n .

ex(n, P2
k ) and the extremal graphs for P2

k . Since χ (P2
k ) = 3, k ≥ 3, by Erdős–Stone–Simonovits Theorem, we have

ex(n, P2
k ) =

n2
4 + o(n2). Yet, it still remains interesting to determine the exact value of ex(n, P2

k ).
The very first result of extremal graph theory gave the value of ex(n, P2

3 ).

heorem 1 (Mantel [10]). The maximum number of edges in an n-vertex triangle-free graph is ⌊
n2
4 ⌋, that is ex(n, P2

3 ) = ⌊
n2
4 ⌋.

urthermore, the only triangle-free graph with ⌊
n2
4 ⌋ edges is the complete bipartite graph K⌊

n
2 ⌋,⌈ n

2 ⌉.

The case k = 4 was solved by Dirac in a more general context.

heorem 2 (Dirac [1]). The maximum number of edges in an n-vertex P2
4 -free graph is ⌊

n2
4 ⌋, that is ex(n, P2

4 ) = ⌊
n2
4 ⌋, (n ≥ 4).

urthermore, when n ≥ 5, the only extremal graph is the complete bipartite graph K⌊
n
2 ⌋,⌈ n

2 ⌉.

For k = 5, our results are given in the next two theorems, where we separate the result for the Turán number and the
extremal graphs for P2

5 .

Theorem 3. The maximum number of edges in an n-vertex P2
5 -free graph is ⌊

n2+n
4 ⌋, that is ex(n, P2

5 ) = ⌊
n2+n

4 ⌋, (n ≥ 5).

efinition 1. Let E i
n denote a graph obtained from a complete bipartite graph Ki,n−i plus a maximum matching in the

lass which has i vertices, see Fig. 2.

heorem 4. Let n be a natural number, when n = 5, the extremal graphs for P2
5 are E2

5 , E
3
5 and G0, where G0 is obtained

from a K4 plus a pendent edge. When n ≥ 6, if n ≡ 1, 2 (mod 4), the extremal graphs for P2
5 are E

⌈
n
2 ⌉

n and E
⌊
n
2 ⌋

n , otherwise,

the extremal graph for P2
5 is E

⌈
n
2 ⌉

n .

Definition 2. Let T denote the flattened tetrahedron, see T in Fig. 3.

Although the determination of ex(n, T ) is not within the main lines of our paper, we need the exact value of ex(n, T )
in order to determine ex(n, P2

6 ).

Theorem 5. The maximum number of edges in an n-vertex T-free graph (n ̸= 5) is,

ex(n, T ) =

⎧⎪⎪⎨⎪⎪⎩
⌊
n2

4

⌋
+

⌊n
2

⌋
, n ̸≡ 2 (mod 4),

n2

4
+

n
2

− 1, n ≡ 2 (mod 4).

Definition 3. Let T i
n denote a graph obtained from a complete bipartite graph Ki,n−i plus a maximum matching in the

class X which has i vertices and a maximum matching in the class Y which has n− i vertices, see T i
n in Fig. 3. Let S in denote

a graph obtained from Ki,n−i plus an i-vertex star in the class X , see S in in Fig. 3.
2
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Fig. 3. Graphs T , T i
n and S in .

Fig. 4. Graphs F i,j
n and H i

n ..

heorem 6. Let n (n ̸= 5, 6) be a natural number,
when n ≡ 0 (mod 4), the extremal graph for T is T

n
2
n ,

when n ≡ 1 (mod 4), the extremal graphs for T are T
⌈
n
2 ⌉

n and S
⌈
n
2 ⌉

n ,
when n ≡ 2 (mod 4), the extremal graphs for T are T

n
2
n , T

n
2 +1
n and S

n
2
n ,

when n ≡ 3 (mod 4), the extremal graphs for T are T
⌈
n
2 ⌉

n and S
⌈
n
2 ⌉

n .

These two results are known for sufficiently large n′s [9], here we are able to determine the value for small n′s.
Using Theorems 5 and 6, we are able to prove the next two results for P2

6 .

heorem 7. The maximum number of edges in an n-vertex P2
6 -free graph (n ̸= 5) is:

ex(n, P2
6 ) =

⎧⎪⎪⎨⎪⎪⎩
⌊
n2

4

⌋
+

⌊
n − 1
2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+

⌈n
2

⌉
, otherwise .

efinition 4. Suppose 3 ̸ | n, and 1 ≤ j ≤ i. Let F i,j
n be the graph obtained by adding vertex disjoint triangles (possibly 0)

and one star with j vertices in the class X of size i of Ki,n−i, see Fig. 4 (of course 3 | (i− j) is supposed). On the other hand
f 3 | i then add i

3 vertex disjoint triangles in the class X of size i. The so obtained graph is denoted by H i
n, see Fig. 4.

heorem 8. Let n ≥ 6 be a natural number. The extremal graphs for P2
6 are the following ones.

When n ≡ 1 (mod 6) then F
⌈
n
2 ⌉,j

n and H
⌊
n
2 ⌋

n ,
when n ≡ 2 (mod 6) then F

n
2 ,j
n and F

n
2 +1,j
n ,

when n ≡ 3 (mod 6) then F
⌈
n
2 ⌉,j

n and H
⌈
n
2 ⌉+1

n ,
when n ≡ 0, 4, 5 (mod 6) then H

n
2
n , H

n
2 +1
n and H

⌈
n
2 ⌉

n , respectively. (j can have all the values satisfying the conditions j ≤ i
nd 3 | (i − j)).
3
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On the basis of these results let us pose a conjecture for the general case.

onjecture 1.

ex(n, P2
k ) ≤ max

{
i
(⌊ 2k

3

⌋
− 2

)
2

+ i(n − i)

}
.

If
⌊ 2k

3

⌋
− 1 divides i then the following graph gives equality here. Take a complete bipartite graph with parts of size i and

n − i, add vertex disjoint complete graphs on
⌊ 2k

3

⌋
− 1 vertices to the part with i elements.

Observe that Theorems 1, 2, 3 and 7 justify our conjecture for the cases when k = 3, 4, 5, 6. We will give some hints
n Section 3 how we arrived to this conjecture. A weaker form of this conjecture is the following one.

onjecture 2.

ex(n, P2
k ) =

n2

4
+

(⌊ k
3

⌋
− 1

)
n

2
+ Ok(1)

where Ok(1) depends only on k.

2. Proofs of the main results

2.1. The Turán number and the extremal graphs for P2
5

Proof of Theorem 3. The fact that ex(n, P2
5 ) ≥

⌊
n2+n

4

⌋
follows from the construction E⌈ n

2⌉
n .

We prove the inequality

ex(n, P2
5 ) ≤

⌊
n2

+ n
4

⌋
(n ≥ 5) (1)

by induction on n.
We check the base cases first. Since our induction step will go from n − 4 to n, we have to find a base case in each

esidue class mod 4.
Let G be an n-vertex P2

5 -free graph. When n ≤ 3, Kn is the graph with the most number of edges and does not contain
2
5 , e(Kn) ≤

⌊
n2+n

4

⌋
. This settles the cases n = 1, 2, 3. However, when n = 4, e(K4) = 6 > ⌊

42+4
4 ⌋, the statement is not true.

hen we show that the statement is true for n = 8. If P2
4 ⊈ G, e(G) ≤ ⌊

82
4 ⌋. If P2

4 ⊆ G and K4 ⊈ G, each vertex v ∈ V (G−P2
4 )

can be adjacent to at most 2 vertices of the copy of P2
4 , since e(G − P2

4 ) ≤ 5, we have e(G) ≤ 5 + 8 + 5 ≤ 18 = ⌊
82+8

4 ⌋. If
K4 ⊆ G, then each vertex v ∈ V (G − K4) can be adjacent to at most one vertex of the K4, since e(G − P2

4 ) ≤ 6, we have
e(G) ≤ 16.

Suppose (1) holds for all k ≤ n − 1, the proof is divided into 3 parts,
Case 1. If P2

4 ⊈ G, then by Theorem 2, e(G) ≤ ⌊
n2
4 ⌋.

Case 2. If P2
4 ⊆ G and K4 ⊈ G, then each vertex v ∈ V (G − P2

4 ) can be adjacent to at most 2 vertices of the copy of P2
4 ,

therwise, P2
5 ⊆ G. Since G − P2

4 is an (n − 4)-vertex P2
5 -free graph, we have

e(G) ≤ 5 + 2(n − 4) + e(G − P2
4 ) ≤ 2n − 3 + ex(n − 4, P2

5 ).

By the induction hypothesis, ex(n − 4, P2
5 ) ≤

⌊
(n−4)2+n−4

4

⌋
then

e(G) ≤ 2n − 3 + ex(n − 4, P2
5 ) ≤ 2n − 3 +

⌊
(n − 4)2 + n − 4

4

⌋
=

⌊
n2

+ n
4

⌋
(n ≥ 5). (2)

Case 3. If K4 ⊆ G, then each vertex v ∈ V (G − K4) can be adjacent to at most one vertex of the K4, otherwise, P2
5 ⊆ G.

Since G − K4 is an (n − 4)-vertex P2
5 -free graph, we have

e(G) ≤ 6 + (n − 4) + e(G − K4) ≤ n + 2 + ex(n − 4, P2
5 ).

By the induction hypothesis, ex(n − 4, P2
5 ) ≤

⌊
(n−4)2+n−4

4

⌋
, thus

e(G) ≤ n + 2 +

⌊
(n − 4)2 + n − 4

4

⌋
= 5 +

⌊
n2

− 3n
4

⌋
≤

⌊
n2

+ n
4

⌋
(n ≥ 5). □ (3)
4
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Proof of Theorem 4. We determine the extremal graphs for P2
5 by induction on n. Let G be an n-vertex P2

5 -free graph
satisfying (1) with equality. It is easy to check, when n = 5, the extremal graphs for P2

5 are G0, E2
5 and E3

5 . When n = 6, 7, 8,
the extremal graphs for P2

5 are E3
6 and E4

6 , E
4
7 , E

4
8 , respectively.

Suppose Theorem 4 is true for k ≤ n − 1, when n ≥ 9, the proof is divided into 3 parts.
Case 1. If P2

4 ⊈ G, the equality in (1) cannot hold, then we cannot find any extremal graph for P2
5 in this case.

Case 2. If P2
4 ⊆ G and K4 ⊈ G, the equality holds in inequality (2) if and only if each vertex v ∈ V (G− P2

4 ) is adjacent to
2 vertices of the P2

4 and G − P2
4 is an extremal graph on n − 4 vertices for P2

5 . Let a, b, c and d be four vertices of a copy
of P2

4 , dP24 (b) = dP24 (c) = 3. By the induction hypothesis, G − P2
4 is obtained from a complete bipartite graph Ki,n−4−i plus

a maximum matching in X ′, where X ′ is the class of G− P2
4 with size i. It is easy to check that every vertex v ∈ V (G− P2

4 )
can be adjacent to either a and d or b and c.

Since |V (G − P2
4 )| ≥ 5, we have |V (X ′)| ≥ 2. The endpoints of an edge in G − P2

4 cannot be both adjacent to b and c ,
otherwise, they form a K4. Also, the endpoints of an edge in G − P2

4 which have one end vertex as a matched vertex in
X ′ and one end vertex in Y ′ can be both adjacent to none of {a, b, c} and d, otherwise, these would create a P2

5 . If there
exists a matched vertex v ∈ X ′ which is adjacent to b and c , then all vertices w ∈ N(v) should be adjacent to a and d,
these form a P2

5 . Hence, it is only possible that all matched vertices in X ′ are adjacent to both a and d, all vertices in Y ′

are adjacent to b and c. When there exists an unmatched vertex v0 ∈ X ′, since N(v0) = Y ′, if v0 is adjacent to b and c ,
we have P2

5 ⊆ G. Thus G is obtained from a complete bipartite graph Ki+2,n−i−2 plus a maximum matching in X , where

X = X ′
∪ {b, c} and Y = Y ′

∪ a ∪ d. Therefore, if G − P2
4 is E

⌈
n−4
2 ⌉

n−4 then G is E
⌈
n
2 ⌉

n , if E
⌊
n−4
2 ⌋

n−4 then G is E
⌊
n
2 ⌋

n .
Case 3. If K4 ⊆ G, the inequality in (3) can be equality only when n = 5 and the vertex v ∈ V (G − K4) is adjacent to

ne vertex of the K4, that is G0. □

.2. The Turán number and the extremal graphs for T

To prove Theorem 5, we need the following lemmas.

emma 9. Let G be an n-vertex T-free nonempty graph such that for each edge {x, y} ∈ E(G), d(x)+ d(y) ≥ n+ 2 holds, then
e have K4 ⊆ G.

roof. From the condition we know that each edge belongs to at least two triangles. Let abc and bcd be two triangles, if a
s adjacent to d then a, b, c and d induce a K4, if not, since edge {b, d} is contained in at least two triangles, there exists at
east one vertex e such that bde is a triangle. Similarly, edge {c, d} is also contained in at least two triangles, then, either
here exists a vertex f which is adjacent to c and d, this implies that vertices a, b, c, d, e and f induce a T , or c is adjacent
o e, this implies that vertices b, c, d and e induce a K4. □

Lemma 10. Let G be an n-vertex (n ≥ 7) T-free graph and K4 ⊆ G, then e(G) ≤ 2n−2+ ex(n−4, T ). For n ≥ 8, the equality
might hold only if each vertex v ∈ V (G − K4) is adjacent to 2 vertices of the K4.

Proof. If there exists vertex v ∈ V (G − K4), such that v is adjacent to at least 3 vertices of the K4, it is simple to
check that every other vertex u ∈ V (G − K4) can be adjacent to at most one vertex of the K4, otherwise T ⊆ G, then
e(G) ≤ 6 + 4 + (n − 5) + e(G − K4) ≤ n + 5 + ex(n − 4, T ). If not, each vertex in G − K4 is adjacent to at most 2 vertices
of the K4, then e(G) ≤ 6 + 2(n − 4) + e(G − K4) ≤ 2n − 2 + ex(n − 4, T ). When n ≥ 8, e(G) ≤ 2n − 2 + ex(n − 4, T ), the
equality holds only if each vertex v ∈ V (G − K4) is adjacent to 2 vertices of the K4. □

Proof of Theorem 5. Let

fT (n) =

⎧⎪⎪⎨⎪⎪⎩
⌊
n2

4

⌋
+

⌊n
2

⌋
, n ̸≡ 2 (mod 4),

n2

4
+

n
2

− 1, n ≡ 2 (mod 4).

The fact that ex(n, T ) ≥ fT (n) follows from the construction T⌈ n
2⌉

n . Next, we show the inequality

ex(n, T ) ≤ fT (n) (4)

by induction on n.
Let G be an n-vertex T -free graph. first, we show the induction steps, in the end we will show the base cases which

are needed to complete the induction.
Suppose (4) holds for all l ≤ n− 1, in the following cases, we will assume that k ≥ 2, the proof is divided into 4 cases.
Case 1. When n = 4k, we divide the proof of ex(4k, T ) ≤ fT (4k) = 4k2 +2k into 2 subcases. Let G be a 4k-vertex T -free

graph.
5
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(i) If δ(G) ≤ 2k+ 1, after removing a vertex of minimum degree and by the induction hypothesis ex(4k− 1, T ) = 4k2 − 1,
e get

e(G) ≤ ex(4k − 1, T ) + 2k + 1 ≤ 4k2 − 1 + 2k + 1 = fT (4k). (5)

(ii) If δ(G) ≥ 2k + 2, then for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 4. By Lemmas 9 and 10 and the induction
hypothesis ex(4k − 4, T ) = 4(k − 1)2 + 2(k − 1), we get

e(G) ≤ 2n − 2 + ex(4k − 4, T ) = 8k − 2 + 4(k − 1)2 + 2(k − 1) = fT (4k). (6)

Therefore, ex(4k, T ) ≤ fT (4k).
Case 2. When n = 4k + 1, we divide the proof of ex(4k + 1, T ) ≤ fT (4k + 1) = 4k2 + 4k into 3 subcases. Let G be a

4k + 1)-vertex T -free graph.
i) If δ(G) ≤ 2k, after removing a vertex of minimum degree and by the induction hypothesis ex(4k, T ) = 4k2 + 2k, we
ave

e(G) ≤ ex(4k, T ) + 2k ≤ fT (4k + 1). (7)

Now, we assume that in the following two cases δ(G) ≥ 2k + 1. Then for any pair of vertices {u, v} ∈ E(G), d(u) + d(v) ≥

4k + 2 holds.
(ii) Suppose that there exists an edge {u, v} ∈ E(G), such that d(u)+ d(v) = 4k+ 2. This implies that u and v have at least
ne common neighbor. Deleting {u, v} we can use the induction hypothesis ex(4k − 1, T ) = 4k2 − 1. Then

e(G) ≤ 4k + 1 + ex(4k − 1, T ) = fT (4k + 1). (8)

iii) For each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 3 holds. By Lemmas 9 and 10 and the induction hypothesis
x(4k − 3, T ) = 4(k − 1)2 + 4(k − 1) we get

e(G) ≤ 2n − 2 + ex(4k − 3, T ) = 8k + 4(k − 1)2 + 4(k − 1) = fT (4k + 1). (9)

herefore, ex(4k + 1, T ) ≤ fT (4k + 1).
Case 3. When n = 4k + 2, we divide the proof of ex(4k + 2, T ) ≤ fT (4k + 2) = 4k2 + 6k + 1 into 2 subcases. Let G be

(4k + 2)-vertex T -free graph.
i) If δ(G) ≤ 2k+1, after removing a vertex of minimum degree and by the induction hypothesis ex(4k+1, T ) = 4k2 +4k,
e get

e(G) ≤ ex(4k + 1, T ) + 2k + 1 ≤ 4k2 + 6k + 1 = fT (4k + 2). (10)

ii) If δ(G) ≥ 2k + 2, then for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 4. By Lemmas 9 and 10 and the induction
ypothesis ex(4k − 2, T ) = 4(k − 1)2 + 6(k − 1) + 1, we get

e(G) ≤ 2n − 2 + ex(4k − 2, T ) = 8k + 2 + 4(k − 1)2 + 6(k − 1) + 1 = fT (4k + 2). (11)

herefore, ex(4k + 2, T ) ≤ fT (4k + 2).
Case 4. When n = 4k + 3, we divide the proof of ex(4k + 3, T ) ≤ fT (4k + 3) = 4k2 + 8k + 3 into 2 subcases. Let G be

(4k + 3)-vertex T -free graph.
i) If δ(G) ≤ 2k+2, after removing a vertex of minimum degree and by the induction hypothesis ex(4k+2, T ) = 4k2+6k+1,
we get

e(G) ≤ ex(4k + 2, T ) + 2k + 2 ≤ 4k2 + 8k + 3 = fT (4k + 3). (12)

(ii). If δ(G) ≥ 2k + 3, then for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 6. By Lemmas 9 and 10 and the induction
ypothesis ex(4k − 1, T ) = 4(k − 1)2 + 8(k − 1) + 3, we get

e(G) ≤ 2n − 2 + ex(4k − 1, T ) = 8k + 4 + 4(k − 1)2 + 8(k − 1) + 3 = fT (4k + 3). (13)

herefore, ex(4k + 3, T ) ≤ fT (4k + 3).
Now we show the base cases which are needed to complete the induction steps. Since our induction steps will go from

− 1 to n, n − 2 to n and n − 4 to n, we will require to show the statement is true for cases when n = 3, 4, 6 and 9.
When n ≤ 4, Kn is the graph with the most number of edges, and e(Kn) = fT (n).
When n = 5, e(K5) = 10 > fT (5), the statement is not true, but we will see that the statement is true for n = 9.
When n = 6, let v be a vertex with minimum degree. If δ(G) = 1, since e(G − v) ≤ 10, we get e(G) ≤ 11. If δ(G) = 2

nd e(G) = 12, then the only possibility is that G − v is K5, but then T ⊆ G, and we have e(G) ≤ 11. Suppose now
(G) ≥ 3. If K4 ⊆ G and there exists a vertex u ∈ V (G− K4) which is adjacent to at least 3 vertices of the copy of K4, then
∈ V (G − K4 − u) can be adjacent to at most one vertex of the K4, otherwise, T ⊆ G. This contradicts δ(G) ≥ 3. Then in

his case it is only possible that {u, w} ∈ E(G) and both u and w are adjacent to 2 vertices of the K4 which implies that
(G) ≤ 11. If K4 ⊈ G, then by Turán’s Theorem, we have e(G) ≤ 12 and the Turán graph T (6, 3) is the unique K4-free graph

hich has 12 edges, however, T ⊆ T (6, 3), then e(G) ≤ 11 = fT (6). Summarizing: e(G) ≤ 11 ≤ fT (6).

6
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When n = 9, suppose first that there exists a pair of vertices {u, v} ∈ E(G), such that d(u) + d(v) ≤ 10. Deleting {u, v}

nd using ex(7, T ) = 15, we get e(G) ≤ 9 + 15 = 24 = fT (9). If for each pair of vertices {u, v} ∈ E(G), d(u) + d(v) ≥ 11
olds, by Lemma 9, we obtain K4 ⊆ G. Let G′ denote the graph G−K4. If e(G′) ≤ 8, since the number of edges between K4
nd G′ is at most 10, we have e(G) ≤ 6+ 10+ 8 = 24. If e(G′) ≥ 9, then K4 ⊆ G′ and the vertex w ∈ G′

−K4 is adjacent to
t least 3 vertices of the copy of K4 in G′. This implies that each vertex from G − G′ can be adjacent to at most 1 vertex
f G′

− w, then the number of edges between G − G′ and G′ is at most 8, we can conclude that, e(G) ≤ 6 + 8 + 10 = 24,
(G) ≤ 24 = fT (9).
It is easy to see that the case n = 7 can be proved using n = 3 and n = 6 (Case 4). Similarly, the case n = 8 follows

y n = 7 and n = 4 (Case 1). Hence the cases n = 6, 7, 8, 9 are settled forming a good bases for the induction. □

Now, we determine the extremal graphs for T .

Proof of Theorem 6. Similarly to the proof of Theorem 5, first, we show the induction steps, in the end we will show
the base cases which are needed to complete the induction.

Suppose that the extremal graphs for T are as shown in Theorem 5 for l ≤ n−1. In the following cases, we will assume
that k ≥ 2.

Let G be an n-vertex T -free graph with e(G) = fT (n). The proof is divided into 4 cases following the steps of the proof
of Theorem 5.
Case 1. When n = 4k, fT (n) = 4k2 + 2k.

(i) If δ(G) ≤ 2k + 1, the equality in (5) holds only when there exists a v ∈ V (G), such that d(v) = δ(G) = 2k + 1 and
G − v is an extremal graph for T on 4k − 1 vertices. By the induction hypothesis, G − v can be either T 2k

4k−1 or S2k4k−1. Let
X ′ and Y ′ be the classes in G − v with size 2k and 2k − 1, respectively.

When G − v is T 2k
4k−1, it can be easily checked that v cannot be adjacent to the two endpoints of an edge which have

two matched vertices located in different classes, otherwise, T ⊆ G, see Fig. 5. Let w be the unmatched vertex in Y ′.
Since d(v) = 2k + 1, N(v) must contain the unmatched vertex w ∈ Y ′, then the only way to avoid T ⊆ G is choosing
N(v) = w ∪ X ′. Consequently, G = T 2k

4k holds.
When G− v is S2k4k−1, let x1 denote the center of the star in X ′. If v is adjacent to the two endpoints of the edge {xi, yj}

(xi ∈ X ′, yi ∈ Y ′, 2 ≤ i ≤ 2k, 1 ≤ j ≤ 2k − 1), then T ⊆ G (see Fig. 6). We obtained a contradiction. But d(v) = 2k + 1
implies that this is always the case.

(ii) If δ(G) ≥ 2k+2, this implies that e(G) ≥ 2k(2k+2) = 4k2+4k, which contradicts the fact that ex(4k, T ) = 4k2+2k.
That is, G can only be T

n
2
n .

ase 2. When n = 4k + 1, fT (n) = 4k2 + 4k.
(i) If δ(G) ≤ 2k, the equality in (7) holds only if there exists v ∈ V (G), such that d(v) = δ(G) = 2k and G − v is an

xtremal graph for T on 4k vertices. By the induction hypothesis, G− v is T 2k
4k . All neighbors of v should be located in the

ame class, otherwise, T ⊆ G, we get that G is T 2k+1, that is T
⌈
n
2 ⌉

.
4k+1 n

7
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If δ(G) ≥ 2k + 1, then for any pair of vertices {u, v} ∈ V (G), d(u) + d(v) ≥ 4k + 2. Here we distinguish two subcases.
(ii) Suppose that there exists an edge {u, v} ∈ E(G) such that d(u) + d(v) = 4k + 2. The equality in (8) holds only if

hen d(u) = d(v) = 2k + 1 and G − u − v is an extremal graph for T on 4k − 1 vertices. By the induction hypothesis,
− u − v can be either T 2k

4k−1 or S2k4k−1. Let X
′ and Y ′ be the classes in G − u − v with size 2k and 2k − 1, respectively.

When G − u − v is T 2k
4k−1, as in the previous case, neither u nor v can be adjacent to the two endpoints of an edge

hich have two matched vertices located in different classes, see Fig. 5. If N(u) − v ̸= X ′, then u is adjacent to the
nmatched vertex w in Y ′ and the other 2k − 1 neighbors of u are all located in X ′, say, N(u) − v − w = {x1, . . . , x2k−1}

and {x2k−1, x2k} ∈ E(X ′), otherwise, T ⊆ G. Since |X ′
| ≥ 4, in this case, v cannot be adjacent to xi (1 ≤ i ≤ 2k − 2),

therwise, T ⊆ G, see Fig. 7. Now v should choose 2k neighbors among the rest 2k+1 vertices in V (G−u−v −
⋃2k−2

i=1 xi),
which implies that v is adjacent to the two endpoints of an edge which have two matched vertices located in different
classes as endpoints, then T ⊆ G. Hence, N(u) − v = X ′, similarly, N(v) − u = X ′. Thus, G is T 2k+1

4k+1 = T 2k
4k+1, that is T

⌈
n
2 ⌉

n .

Let us now consider the case when G − u − v is S2k4k−1. Let x1 denote the center of the star in X ′. If u is adjacent to the
wo endpoints of the edge {xi, yj} (2 ≤ i ≤ 2k, 1 ≤ j ≤ 2k − 1), then T ⊆ G. Thus, there are only two possibilities for
T ⊈ G: N(u) − v = X ′ or N(u) − v = Y ′

∪ x1. The same holds for v and it is easy to check that if N(u) − v = N(v) − u,
then T ⊆ G. From the above, the only possibility for T ⊈ G is that when N(u) − v = X ′ and N(v) − u = Y ′

∪ x1 or in the
another way around, which implies that G is S2k+1

4k+1 , that is S
⌈
n
2 ⌉

n .
(iii) Suppose that for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 3 holds. Let d(v) = δ(G), then either d(v) = 2k + 1

or d(v) ≥ 2k + 2, but in both cases, each neighbor of v has degree at least 2k + 2. Then all 4k + 1 vertices have degree
t least 2k + 1, but 2k + 1 of them, which are the neighbors of v, have degree at least one larger. This implies that
(G) ≥

(4k+1)(2k+1)+2k+1
2 = 4k2 + 4k + 1, which contradicts the fact that ex(4k + 1, T ) = 4k2 + 4k.

That is, G can be either T
⌈
n
2 ⌉

n or S
⌈
n
2 ⌉

n .
ase 3. When n = 4k + 2 we have fT (n) = 4k2 + 6k + 1.
(i) If δ(G) ≤ 2k + 1, the equality holds in (10) only if there exists v ∈ V (G), such that d(v) = δ(G) = 2k + 1 and G − v

s an extremal graph for T on 4k + 1 vertices. By the induction hypothesis, G − v can be either T 2k+1
4k+1 or S2k+1

4k+1 .
Suppose first that G − v is T 2k+1

4k+1 . Let X
′ any Y ′ be the classes in G − v with size 2k + 1 and 2k, w be the unmatched

ertex in X ′. The vertex v cannot be adjacent to the two endpoints of an edge which have two matched vertices located
n different classes. Since d(v) = 2k+1, there are two possibilities to avoid T : N(v) = X ′ or N(v) = Y ′

∪w, which implies
hat G is either T 2k+1

4k+2 or T 2k+2
4k+2 , that is T

n
2
n or T

n
2 +1
n .

When G−v is S2k+1
4k+1 . Let X

′ be the class in G−v which contains a star and Y ′ be the other class of the G−v. Also, let x1
enote the center of the star in X ′. Since, d(v) = 2k+ 1 and v cannot be adjacent to the two endpoints of an edge which
s not incident with x1, we get either N(v) = Y ′

∪ x1 or N(v) = X ′. If N(v) = X ′, G is S2k+1
4k+2 , that is S

n
2
n . If N(v) = Y ′

∪ x1, G

s S2k+2
4k+2 , that is S

n
2 +1
n . It is easy to see that S

n
2 +1
n is isomorphic to S

n
2
n .

(ii) If δ(G) ≥ 2k+2, then e(G) ≥ (k+1)(4k+2) = 4k2+6k+2, which contradicts the fact that ex(4k+2, T ) = 4k2+6k+1.
Therefore, G can be T

n
2
n , T

n
2 +1
n or S

n
2
n .

Case 4. When n = 4k + 3 we have fT (n) = 4k2 + 8k + 3.
(i) If δ(G) ≤ 2k + 2, the equality holds in (12) only if there exists v ∈ V (G), such that d(v) = δ(G) = 2k + 2 and G − v

is an extremal graph for T on 4k + 2 vertices. By the induction hypothesis, G − v can be T 2k+1
4k+2 , T

2k+2
4k+2 or S2k+1

4k+2 .

When G − v is T 2k+1
4k+2 or T 2k+2

4k+2 , similarly to Case 1 (i), G can only be T 2k+2
4k+3 , that is T⌈ n

2⌉
n .

When G − v is S2k+1
4k+2 , similarly to Case 2 (ii), G can only be S2k+2

4k+3 , that is S⌈
n
2⌉

n .
(ii) If δ(G) ≥ 2k + 3, then e(G) ≥

(2k+3)(4k+3)
2 > 4k2 + 9k + 4 > 4k2 + 8k + 3, which contradicts the fact that

ex(4k + 3, T ) = 4k2 + 8k + 3.
Therefore, in this case, G is either T⌈ n

2⌉
n or S⌈

n
2⌉

n .
Now we check the base cases which are needed to complete the induction.
8
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Fig. 8. Extremal graphs for T when n = 6.

Fig. 9. Extremal graphs for T when n = 7.

When n = 4, ex(4, T ) = 6, K4 is the extremal graph which has the maximum number of edges on 4 vertices that does
not contain T as a subgraph.

Although the Theorem does not hold for n = 6, we determine the extremal graphs in this case because it will help us
to determine them for some other n’s.

When n = 6, ex(6, T ) = 11. It follows from the proof of Theorem 5, when δ(G) = 1, the only extremal graph for T
is as shown in Fig. 8(a). When δ(G) = 2, the only extremal graph for T is as shown in Fig. 8(b). Since δ(G) ≥ 4 implies
e(G) ≥ 12, this is not possible. The only remaining case is δ(G) = 3. When δ(G) = 3 and K4 ⊆ G, by case analysis we obtain
that the extremal graphs for T can be Fig. 8(c) and (d), which are T 3

6 and T 4
6 . Suppose now that δ(G) = 3 and K4 ⊈ G. Let

d(v) = δ(G) = 3, then e(G − v) = 8, the only possibility is that G − v is T (5, 3). It is easy to check that G can only be S36 ,
see Fig. 8(e).

Suppose now that n = 7, ex(7, T ) = 15. It is not possible that δ(G) ≤ 3, otherwise, e(G) ≤ 3 + ex(6, T ) = 14. Also, it is
not possible that δ(G) ≥ 5, otherwise, e(G) > 17. Both contradict with e(G) = 15. Let d(v) = δ(G), the only possibility is
that δ(G) = 4 and G − v is a 6-vertex T -free graph. Since d(v) = 4, we have δ(G − v) ≥ 3, which implies that structures
a) and (b) in Fig. 8 are not possible. If G − v is T 3

6 or T 4
6 , then G can only be (a) in Fig. 9, that is T 4

7 . If G − v is S36 , then G
an only be (b) in Fig. 9, that is S47 .
Because case n = 8 needs only the case n = 7 (Case 1), case n = 9 needs cases n = 7 and n = 8 (Case 2). These base

ases complete the proof. □

We will need the following statement later. It expresses that the ‘‘second best’’ graphs can be also well described if
|n.

roposition 11. Let n (n ≥ 8) be a natural number such that 4|n and G be an n-vertex T-free graph with n2
4 +

n
2 − 1 edges,

hen G can only be T
n
2
n minus an edge, S

n
2
n or S

n
2 +1
n .

Proof. We can suppose that δ(G) ≤
n
2 , otherwise, e(G) ≥

n2
4 +

n
2 . Let v ∈ V (G) and d(v) = δ(G), then e(G) ≤

(v) + ex(n − 1, T ) ≤
n2
4 +

n
2 − 1, the equality holds only if d(v) =

n
2 and G − v is either T

⌈
n−1
2

⌉
n−1 or S

⌈
n−1
2

⌉
n−1 . When

G − v is T

⌈
n−1
2

⌉
n−1 , let w be the unmatched vertex in Y ′ and X ′

= {x1, . . . , x⌈
n−1
2

⌉}, X ′ and Y ′ be the classes of G − v with

size
⌈ n−1

2

⌉
and

⌊ n−1
2

⌋
, respectively. Since d(v) =

n
2 and v cannot be adjacent to the two endpoints of an edge which have

wo matched vertices located in different classes, no matter N(v) = X ′ or N(v) = X ′
− xi ∪ w (1 ≤ i ≤

⌈ n−1
2

⌉
), G is

T
n
2
n minus an edge in both cases. When G − v is S

⌈
n−1
2

⌉
n−1 , let x1 be the center of the star in X ′, X ′

= {x1, . . . , x⌈
n−1

⌉} and

2

9
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Y ′
= {y1, . . . , y⌊

n−1
2

⌋} be the classes of G − v with size
⌈ n−1

2

⌉
and

⌊ n−1
2

⌋
, respectively. Since v cannot be adjacent to the

two endpoints of the edge {xi, yi} (2 ≤ i ≤
⌈ n−1

2

⌉
, 1 ≤ j ≤

⌊ n−1
2

⌋
) and d(v) =

n
2 , which implies that N(v) = x1 ∪ Y ′ or

N(v) = X ′. Therefore, G can be either S
n
2
n or S

n
2 +1
n . □

2.3. The Turán number and the extremal graphs for P2
6

Proof of Theorem 7. Let

fP26 (n) =

⎧⎪⎪⎨⎪⎪⎩
⌊
n2

4

⌋
+

⌊
n − 1
2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+

⌈n
2

⌉
, otherwise.

The fact that ex(n, P2
6 ) ≥

⌊
n2
4

⌋
+

⌈ n
2

⌉
, when n ≡ 0, 4, 5 (mod 6), follows from the constructions H

n
2
n , H

n
2 +1
n and H

⌈
n
2 ⌉

n ,

respectively. The fact that ex(n, P2
6 ) ≥

⌊
n2
4

⌋
+

⌊ n−1
2

⌋
, when n ≡ 1, 2, 3 (mod 6), follows from the constructions F

⌈
n
2 ⌉,j

n .
It remains to show the inequality

ex(n, P2
6 ) ≤ fP26 (n) (14)

by induction on n.
Let G be an n-vertex P2

6 -free graph. Since our induction step will go from n − 6 to n, we have to find a base case in
each residue class mod 6.

When n ≤ 4, Kn is the graph with the most number of edges and e(Kn) = fP26 (n).

When n = 6, if P2
5 ⊈ G, by Theorem 3, e(G) ≤

⌊
52+5

4

⌋
= 7 < fP26 (6). If P

2
5 ⊆ G, K5 ⊈ G and e(G) ≥ 13, it can be checked

that the vertex v ∈ V (G − P2
5 ) can be adjacent to at most 3 vertices of the copy of P2

5 , otherwise P2
6 ⊆ G, in this case,

d(v) ≥ 13−9 = 4 then P2
6 ⊆ G. If K5 ⊆ G, the vertex v ∈ V (G−K5) is adjacent to at most one vertex of the K5, otherwise,

P2
6 ⊆ G. Therefore, e(G) ≤ 11 < fP26 (6).
When n = 5, since e(K5) = 10 > fP26 (5), the statement is not true, then we show that the statement is true for n = 11.

If P2
5 ⊈ G, by Theorem 3, e(G) ≤

⌊
112+11

4

⌋
< fP26 (11). If P

2
5 ⊆ G, first suppose that the graph spanned by the vertices of

the copy of P2
5 has at most 8 edges. It can be checked that every triangle can be adjacent to at most 7 edges of the P2

5 ,
therwise, P2

6 ⊆ G. When there exists a triangle as subgraph in G−V (P2
5 ), we get e(G) ≤ 8+7+9+ex(6, P2

6 ) = 36 = fP26 (6).
f not, e(G) ≤ 8 + 18 + 9 = 35 < fP26 (6). If K

−

5 ⊆ G (K5 minus an edge) then each vertex v ∈ V (G − K−

5 ) is adjacent to
t most 2 vertices of K−

5 . We get e(G) ≤ 9 + 12 + ex(6, P2
6 ) = 33 < fP26 (6). If K5 ⊆ G then each vertex v ∈ V (G − P2

5 )
is adjacent to at most one vertex of K5. Altogether we have at most 10 + 6 + ex(6, P2

6 ) = 28 edges. From the above,
e(G) ≤ 36 = fP26 (11).

Suppose (14) holds for all l ≤ n − 1 (l ̸= 5), the following proof is divided into 2 parts.
Case 1. If T ⊆ G, then each vertex v ∈ V (G − T ) is adjacent to at most 3 vertices of the copy of T , otherwise, P2

6 ⊆ G. The
graph spanned by the vertices of the copy of T cannot have more than ex(6, P2

6 ) = 12 edges. Since G−T is an (n−6)-vertex
P2
6 -free graph and ex(6, T ) = 12, we have

e(G) ≤ 12 + 3(n − 6) + e(G − T ) ≤ 3n − 6 + ex(n − 6, P2
6 ). (15)

By the induction hypothesis,

ex(n − 6, P2
6 ) ≤ fP26 (n − 6) =

⎧⎪⎪⎨⎪⎪⎩
⌊
(n − 6)2

4

⌋
+

⌊
n − 7
2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

(n − 6)2

4

⌋
+

⌈
n − 6
2

⌉
, otherwise.

e get

ex(n, P2
6 ) ≤

⎧⎪⎪⎨⎪⎪⎩
3n − 6 +

⌊
(n − 6)2

4

⌋
+

⌊
n − 7
2

⌋
=

⌊
n2

4

⌋
+

⌊
n − 1
2

⌋
, n ≡ 1, 2, 3 (mod 6),

3n − 6 +

⌊
(n − 6)2

⌋
+

⌈
n − 6

⌉
=

⌊
n2 ⌋

+

⌈n⌉
, otherwise.
4 2 4 2
10
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Case 2. If T ⊈ G, by Theorem 5, e(G) ≤ ex(n, T ) ≤ fP26 (n) holds unless n ≡ 8 (mod 12). When n ≡ 8 (mod 12), then

(G) ≤ ex(n, T ) = fP26 (n) + 1, however, by Theorem 6, the equality holds only if G is T
n
2
n , but P2

6 ⊆ T
n
2
n (n ≥ 8), which

mplies that e(G) ≤ ex(n, T ) − 1 = fP26 (n).
Summarizing, we obtain

ex(n, P2
6 ) = fP26 (n) =

⎧⎪⎪⎨⎪⎪⎩
⌊
n2

4

⌋
+

⌊
n − 1
2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+

⌈n
2

⌉
, otherwise .

□

roof of Theorem 8. It is obvious that

ex(n, T ) ≤ ex(n, P2
6 ), except when n ≡ 8 (mod 12). (16)

ith strict inequality only when

n ≡ 5, 6, 7, or 11 (mod 12). (17)

e want to determine the graphs G containing no copy of P2
6 as a subgraph and satisfying e(G) = ex(n, P2

6 ). Therefore

suppose that G possesses these properties. We claim that G either contains a copy of T as a subgraph or it is either F
⌈
n
2 ⌉,⌈ n

2 ⌉

n

r F
n
2 +1, n2 +1
n . If n belongs to the set of integers given in (17) then this is obvious, since we have a strict inequality in (16).

On the other hand for the other values of n (except n ≡ 8 (mod 12)) we obtain ex(n, P2
6 ) = ex(n, T ) = e(G). Theorem 6

describes these graphs. However G cannot be T
⌈
n
2 ⌉

n or T
n
2 +1
n , because these graphs contain P2

6 as a subgraph if n ≥ 7. (In

the case of n = 6 we had strict inequality in (16).) The other possibility by Theorem 6 is that G = S
⌈
n
2 ⌉

n = F
⌈
n
2 ⌉,⌈ n

2 ⌉

n . In the
exceptional case we can use Proposition 11. According to this G could be T

n
2
n , S

n
2
n or S

n
2 +1
n . The first of them is excluded

since P2
6 ⊂ T

n
2
n the second and third ones can be written in the form F

n
2 , n2
n and F

n
2 +1, n2 +1
n .

From now on we suppose that e(G) = ex(n, P2
6 ), the graph G contains a copy of T and no copy of P2

6 and prove by
induction that G is a graph given in the theorem.

Let us list some graphs L (coming up in the forthcoming proofs) containing P2
6 as a subgraph:

(α) L is obtained by adding any edge to T different from {a, e}, {d, c} and {b, f } in Fig. 4.
(β) Add the edges {a, e}, {d, c}, {b, f } to T resulting in T ′. The graph L is obtained by adding a new vertex u to T ′ which

is adjacent to three vertices of T ′ different from the sets {b, c, e} and {a, d, f }.
(γ ) L is obtained by adding two new adjacent vertices u and v to T ′, which are both adjacent to b, c and e. Then e.g. the

square of the path {u, v, c, e, b, d} is in L.
(δ) L is obtained by adding 4 new vertices u, v, w, x, forming a complete graph, to T ′, all of them adjacent to a, d and

f . Then e.g. the square of the path {a, u, v, w, x, d} is in L.
(ϵ) L consists of a complete graph on 5 vertices and a 6th vertex adjacent to two of them.
(ζ ) The vertices of L are pi(1 ≤ i ≤ 4) and qj(1 ≤ j ≤ 2) where p1, p2, p3, p4 span a path and all pairs (pi, qj) are

adjacent. Then the square of the path {p1, q1, p2, p3, q2, p4} is L.
Let us start with the base cases. Let n = 6 and suppose T ⊂ G. By (α) only the edges {a, e}, {d, c} and {b, f } can be

added to T . To obtain ex(6, P2
6 ) = 12 edges all three of them should be added. The so obtained graph T ′ is really H3

6 .
Consider now the case n = 7. It is clear that (15) holds with equality only when the subgraph spanned by T contains

12 edges and the vertex u not in T is adjacent with exactly 3 vertices of T . Hence the subgraph spanned by T is really T ′.
By (β) u can be adjacent to either b, c, e or a, d, f . In the first case G = H3

7 , in the second one G = F 4,1
7 , as desired.

If n = 8, e(G) = ex(8, P2
6 ) = 19 and the equality in (15) implies, again, that T must span T ′ and the remaining two

vertices u and v are adjacent to exactly 3 vertices of T ′: either to the set {b, c, e} or to {a, d, f } and {u, v} is an edge. If
both u and v are adjacent to {b, c, e} then (γ ) leads to a contradiction. If one of u and v is adjacent to {b, c, e}, the other
one to {a, d, f }, then G = F 4,1

8 . Finally if both of them are adjacent to {a, d, f }, then G = F 5,2
8 .

Suppose now that n = 9, when e(G) = ex(9, P2
6 ) = 24 and (15) implies that the three vertices u, v, w not in T ′ form a

triangle and all three possess the properties mentioned in the previous case. If two of them are adjacent to {b, c, e} then
(γ ) gives the contradiction. If one of the them is adjacent to {b, c, e}, the two other ones are adjacent to {a, d, f }, then
G = F 5,2

9 . Finally if all three are adjacent to {a, d, f }, then G = H6
9 .

The case n = 10 and e(G) = ex(10, P2
6 ) = 30 is very similar to the previous ones. If one of the new vertices, u, v, w, x

is adjacent to {b, c, e} and the other 3 are adjacent to {a, d, f }, then G = H6
10. Here it cannot happen, by (δ), that all 4 are

adjacent to {a, d, f }.
Finally let n = 11 where e(G) = ex(11, P2

6 ) = 36. This case is different from the previous ones, since we cannot have
all the potential edges (12 in the graph spanned by T , 10 among the other 5 vertices u, v, w, x, y, and 15 between the
two parts) one is missing. We distinguish 3 cases according the place of the missing edge.

(i) T ′
⊂ G, {u, v, w, x, y} spans a copy of K5, but there are only 14 edges between the two parts. Then T ′ has one vertex
z ∈ {a, b, c, d, e, f } incident to at least two of the 14 edges. Then (ϵ) leads to a contradiction.

11
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(ii) T ′
⊂ G, {u, v, w, x, y} spans a copy of K5 minus one edge, say {x, y}, and all 15 edges between the two parts are

in G.
If two adjacent vertices from the set {u, v, w, x, y} are both adjacent to {b, c, e} then (γ ) gives the contradiction.

Therefore if x is adjacent to {b, c, e} then u, v and w must be adjacent to {a, d, f }. If y is also adjacent to {a, d, f } then we
have 4 vertices spanning a K4 and all adjacent to {a, d, f }. Then we obtain a contradiction by (δ). Otherwise y is adjacent
o {b, c, e} and G = H6

11.
Suppose now that x is adjacent to {a, d, f }. If u, v, w are all adjacent to {a, d, f } then (δ) leads to a contradiction. Hence

at least one of them, say u is adjacent to {b, c, e}. But (γ ) implies that two adjacent ones from the set {u, v, w, x, y} cannot
be adjacent to {b, c, e}. Hence v, w, x, y are all adjacent to {a, d, f } giving a contradiction again, by (δ).

(iii) T spans only 11 edges, {u, v, w, x, y} determines a K5 and all 15 edges are connecting the two parts. Then T must
have a vertex incident to two edges connecting T with {u, v, w, x, y}. Here (ϵ) gives a contradiction.

Now we are ready to start the inductional step. Suppose that the statement is true for n−6 where n ≥ 12. Prove it for
n. Let e(G) = ex(n, P2

6 ) and suppose that T ⊂ G. We have to prove that G is of the form described in the theorem. By (15)
we know that the equality implies that T must span the subgraph T ′ with 12 edges, every vertex of G′

= G−T ′ is adjacent
either to the vertices b, c, e or the vertices a, d, f and G′ is an extremal graph for n − 6. That is G′ is one the following

graphs: F
⌈
n−6
2 ⌉,j

n , F
n−6
2 +1,j

n ,H
⌊
n−6
2 ⌋

n ,H
⌈
n−6
2 ⌉

n ,H
⌈
n−6
2 ⌉+1

n . All these graphs have n− 6 vertices, their vertex sets are divided into
wo parts, X ′ and Y ′ where |X ′

| is either ⌊
n−6
2 ⌋ or ⌈

n−6
2 ⌉ or ⌈

n−6
2 ⌉ + 1, there is a bipartite graph between X ′ and Y ′ and

X ′ is covered by vertex-disjoint triangles and at most one star.
Color a vertex of G′ by red if it is adjacent to the vertices b, c, e and blue otherwise. By (γ ) two red vertices cannot

be adjacent. On the other hand 4 blue vertices cannot span a path by (ζ ). Suppose that there is a red vertex in X ′. Then
all vertices of Y ′ are colored blue. (It is easy to check that n ≥ 12 implies |Y ′

| ≥ 2.) If there are two blue vertices also in
X ′ then they span a path of length 4 that is a contradiction. We can have one blue vertex in X ′ only when it contains no
triangle and the center s of the star is blue, the other vertices are all red. This is called the first coloring. It is easy to see
that the choice X = {b, c, e, s} ∪ Y ′, Y = {a, d, f } ∪ (X ′

− {s}) defines a graph possessing the properties of the expected
extremal graphs: X and Y span a complete bipartite graph, there are no edges within Y , and X is covered by one triangle
and one star which are vertex disjoint.

The other case is when all vertices of X ′ are blue. In this case no vertex of Y ′ can be blue, otherwise this vertex and the
3 vertices of a triangle or the center of the star with two other vertices would span a path of length 4. That is all vertices
of Y ′ are red. This is the second coloring. Then the choice X = {b, c, e} ∪ X ′, Y = {a, d, f } ∪ Y ′ defines a graph possessing
the properties of the expected extremal graphs.

We have seen that G has the expected structure in both cases. We only have to check the parameters. If n ≡ 0, 4, 5
(mod 6) then X ′ contains no star, the first coloring cannot occur, in the case of the second coloring 3-3 vertices are added
to both parts, containing a triangle ({b, c, e}) in the X-part. The upper index increases by 3 in all cases when moving from
n − 6 to n.

Consider now the case n ≡ 1 (mod 6). If G′
= H

⌊
n−6
2 ⌋

n−6 then we can proceed like in the previous cases, and G = H
⌊
n
2 ⌋

n

is obtained. Suppose that G′
= F

⌈
n−6
2 ⌉,j

n−6 . If j < ⌈
n−6
2 ⌉ then, again, the second coloring applies and we obtain G = F

⌈
n
2 ⌉,j

n . If,

however, j = ⌈
n−6
2 ⌉ then both colorings result in G = F

⌈
n
2 ⌉,⌈ n

2 ⌉−3
n . Let us recall that G = F

⌈
n
2 ⌉,⌈ n

2 ⌉

n was obtained in the case
hen T ̸⊂ G.
The cases n ≡ 2, 3 (mod 6) can be checked similarly. □

. Open problems

The following paragraphs show why we think that Conjecture 1 is true.

emma 12. If the graph G is obtained by adding a path of r vertices to one of the classes of the complete bipartite graph
n,n(n ≥ r) then G contains the square of a path containing ⌊

3r
2 ⌋ + 1 vertices.

Proof. Suppose first that r = 2s is even. Let X and Y be the two parts, where |X | = |Y | = n all edges {x, y}(x ∈ X, y ∈ Y )
are in G. Moreover, X contains the path {x1, x2, . . . , x2s}. Then the square of the path {y1, x1, x2, y2, x3, x4, y3, . . . , x2s−1,

x2s, ys+1} is in G for an arbitrary set of distinct vertices y1, y2, . . . , ys+1 ∈ Y . The number of vertices of this path is really
3s + 1.

If k = 2s + 1 is an odd number then the desired path is {y1, x1, x2, y2, x3, x4, y3, . . . , x2s−1, x2s, ys+1, x2s+1} (see
Fig. 10). □

It is easy to see, on the basis of Lemma 12 that if this graph does not contain P2
k then X cannot contain a path of length

⌊
2k
3 ⌋. Now the obvious question is that at most how many edges can be chosen in X without having a path of given length.

As one of the earliest results in extremal Graph Theory Erdős and Gallai [3] proved the following result on the extremal
number of paths.
12
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Fig. 10.

Theorem 13 (Erdős and Gallai [3]). The maximum number of edges in an n-vertex Pl-free graph is n(l−2)
2 , that is ex(n, Pl) ≤

n(l−2)
2 with equality if and only if (l − 1)|n and the graph is a vertex disjoint union of n

l−1 complete graphs on l − 1 vertices.

Faudree and Schelp [6] and independently Kopylov [8] improved this result determining ex(n, Pl) for every n > l > 0
as well as the corresponding extremal graphs.

Theorem 14 (Faudree and Schelp [6] and independently Kopylov [8]). Let n ≡ r (mod l − 1), 0 ≤ r ≤ l − 1, l ≥ 2. Then

ex(n, Pl) =
1
2
(l − 2)n −

1
2
r(l − 1 − r).

Faudree and Schelp also described the extremal graphs which are either
(a) vertex disjoint union of m (n = m(l − 1) + r) complete graphs Kl−1 and a Kr or
(b) l is even and r =

l
2 or l

2 − 1 then another extremal graph can be obtained by taking a vertex disjoint union if t
opies of Kl−1 (0 ≤ t ≤ m) and a copy of K l

2 −1 + K n−(t+ 1
2 )(l−1)+ 1

2
. Where G denotes the edge complement of the graph G,

and G + H is defined as the graph obtained from the vertex disjoint union of G and H together with all edges between G
and H .

We believe that the extremal graph for ex(n, P2
k ) is a complete bipartite graph plus one of the constructions above in

the larger class. Check now the cases solved.
If k = 4, by Lemma 12 we cannot have a path of length 2 (that is an edge) in one side.
If k = 5 then l = 3, a path of length 3 is forbidden in one side. According to statements above we can have only vertex

disjoint edges.
If k = 6 then l = 4 and a path of length 4 is forbidden in one side. Now the extremal constructions for Pl are either

(a) triangles plus eventually one edge or (b) t triangles plus a star with n − 3t vertices.
These are in accordance with our results. Note that in the case of k = 7, the value l = 4 obtained again. The expected

maximum value is the same as in the case of k = 6, but the assumptions are weaker!

Remark (Added on September 23, 2021). Recently Yuan [12] announced the solutions of our Conjectures 1 and 2 in a more
general setting: for the pth power of a path rather than the second power. In the proof of Conjecture 2 he used the general
deep theorem of Simonovits [11].
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