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Abstract. The paper sets out to offer an alternative to the function/argument
approach to the most essential aspects of natural language meanings. That is, we
question the assumption that semantic completeness (of, e.g., propositions) or in-
completeness (of, e.g., predicates) exactly replicate the corresponding grammatical
concepts (of, e.g., sentences and verbs, respectively). We argue that even if one gives
up this assumption, it is still possible to keep the compositionality of the semantic
interpretation of simple predicate/argument structures. In our opinion, composi-
tionality presupposes that we are able to compare arbitrary meanings in term of
information content. This is why our proposal relies on an ‘intrinsically’ type free
algebraic semantic theory. The basic entities in our models are neither individuals,
nor eventualities, nor their properties, but ‘pieces of evidence’ for believing in the
‘truth’ or ‘existence’ or ‘identity’ of any kind of phenomenon. Our formal language
contains a single binary non-associative constructor used for creating structured
complex terms representing arbitrary phenomena. We give a finite Hilbert-style
axiomatisation and a decision algorithm for the entailment problem of the suggested
system.

Keywords: completeness, compositionality, decision algorithm, finite axiomatis-
ability, finite entailment problem, function/argument metaphor, measurements, nat-
ural language semantics, pieces of evidence

1. Introduction

The cornerstones of the Fregean approach (Frege, 1984) to linguis-
tic and semantic structure are the distinction between ‘complete’ and
‘incomplete’ expressions and meanings, on the one hand, and the as-
sumption that these two are entirely parallel, on the other. Whatever
is linguistically complete (incomplete) is also semantically complete
(incomplete). The linguistic insight behind this distinction is age-long:
Predicates were always seen as ‘requiring’ subjects, transitive expres-
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2 Erdélyi-Szabó—Kálmán—Kurucz

sions ‘require’ objects, modifiers ‘require’ something to modify, and so
on. Because of the fully general and cross-linguistic character of such
‘requirements’, it has been assumed that they are an ingredient of our
‘language of thought’ rather than a superficial property of the natural
languages we speak.

The inadequacy of the treatment of natural-language predicates as
n-ary predicates (because of both their fixed arity and the fixed order
of arguments) has been extensively argued by (Davidson, 1967) and his
followers. If semantic ‘incompleteness’ only partially matches linguis-
tic incompleteness, then the alleged parallelism between syntactic and
semantic types (as assumed by, e.g., (Montague, 1974)) is difficult to
sustain. Puzzles related to this problem include the facts that

− many verbs (e.g., eat) can be used both transitively and intransi-
tively in the same meaning;

− nominalisations (e.g., investment) do not require the presence of
the obligatory arguments of the corresponding verbs (e.g., invest);

− even semantically empty expressions, such as pronouns, can make
an expression linguistically complete (e.g., #I borrowed vs. OKI
borrowed it), and that in many languages (in the so-called ‘pro-
drop’ languages) such devices are not required for linguistic com-
pleteness;

− some parameters that are always understood (e.g., the time and
place where an event takes place) are not obligatorily expressed
linguistically;

− in many cases there is a mismatch between the category of a word
and its possible uses, e.g., a noun like storm can be used as referring
to events, places, time intervals etc.

Our proposal is the following: Let linguistic analysis account for
linguistic incompleteness (this is motivated by its largely language spe-
cific character), and let semantic analysis not rely on the completeness/
incompleteness distinction. For example, let linguistic analysis explain
the linguistic behaviour of a verb like English eat, and let the semantics
assign it a meaning that explains how the meaning of a subject or
direct object argument (or a time/place adverbial), when present, can
combine with it.

This is in line with (Davidson, 1967), but our solution departs from
Davidsonian approaches in various ways. In a Davidsonian model, there
are entities corresponding to events (like, say, an eating event) and en-
tities corresponding to individuals (say, the eater and the thing eaten),
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Towards a Natural Language Semantics without Functors and Operands 3

plus relations between such entities (e.g., the eater stands in the agent

relation with the event, whereas the thing eaten stands in the theme

relation with it). According to our modelling, all these different entities
and relations are conceived of as a single type of entities, which we will
call phenomena. In the semantics, a phenomenon is modelled with
a set containing possible constellations (or ‘observations,’ or ‘mea-
surements’) indicating or justifying the presence of the phenomenon.
(Constellations play the same role with respect to phenomena as the
‘truthmakers’ of (Mulligan et al., 1984) with respect to propositions.
The existence of a ‘truthmaker’ for a proposition is a necessary and
sufficient condition for the proposition to be true; the existence of a
constellation for a phenomenon is a necessary and sufficient condition
for the phenomenon to exist.)

This way we obtain an essentially type free account of meanings: in
addition to the completeness/incompleteness distinction, we also dis-
pense with the strict parallelism between linguistic and semantic type
distinctions. For example, consider the example of storm mentioned
above. In a type free semantics, we do not have to decide whether
storms are individuals, regions of space, temporal intervals or even-
tualities: they are simply phenomena the existence of which can be
proven by constellations (for example, by a constellation containing
meteorological measurements or visual pieces of information). Below
we concentrate on the most essential aspects of meanings, such as
predicates and their arguments, and leave the treatment of further,
more complex features like adverbials, quantifiers etc. to a subsequent
paper.

The paper is structured as follows. First, in Section 2, we illustrate
the basics of our representation language and its intended semantics
by using some simple examples. Then, in Section 3, we present the
precise formalism, discuss the possible reasoning tasks, and give a
finite Hilbert-style axiomatisation and a decision algorithm for the
entailment problem of the suggested system. Finally, in Section 4, we
turn to theoretical implications. In particular, we discuss the problem
that abandoning the strict parallelism between linguistic and semantic
structure apparently contradicts the principle of compositionality.
We argue that, as a matter of fact, not only can compositionally be
maintained in our system, but it even takes a more severe form than
its usual interpretation. There are certain issues that any theory of
natural language semantics has to face sooner or later, but which are
not directly relevant to the ideas put forward here. We briefly discuss
our plans concerning such issues in the last subsection.
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4 Erdélyi-Szabó—Kálmán—Kurucz

2. Towards a non-Fregean natural-language semantics

2.1. ‘Predicates’ and ‘arguments’

As we have discussed in the Introduction, semantics may not be the
right place to account for the linguistically complete or incomplete
character of expressions. For example, the fact that English eat can
be used both transitively and intransitively may not be a fact about
semantics (although it may have to do with semantic properties). The
fact that eating involves an ‘eater’ and a ‘thing eaten’ need not be
captured in terms of the ‘incompleteness’ of the meaning of eat; it can
simply be considered as part of the complexity of that meaning, which
is usually reflected in natural languages, although not necessarily in
the same way in all of them.

Instead of going through the various arguments against the strict
arity of natural-language predicates by Davidson and his followers, let
us turn immediately to the analysis we propose. We will follow the
Davidsonian tradition in that we conceive of eventualities as properties
of spatio-temporal locations. So we think of the meaning of ‘eat’ (or
‘eating’) as a set of (possibly very different) constellations, namely,
those in which there is evidence that eating takes place. In contrast
to the standard view, however, we claim that this kind of semantics
can be extended to other types of expression, those that do not refer to
eventualities. For example, individuals can be seen as contiguous spatio-
temporal regions, therefore, they can be modelled with the same type
of constellation sets as eventualities. Properties and abstract entities
have much more complex semantics, but the principle can be extended
to them. Clearly, one needs some kind of evidence for admitting the
presence of a property or an abstract entity, and there may be very
different types of evidence for it, say an ‘observation’ or some kind of
‘measurement:’ each such piece of evidence can be conceived of as a
constellation.

According to this general perspective, we propose that the mean-
ingful entities of natural-language expressions like Joe is eating or Joe
is eating bread should all be considered of the same type, phenomena,
and interpreted as sets of constellations. Let us assume that the mean-
ingful entities in question are Joe, eat, agent, bread and theme.

(Following the usual practice, we leave out certain details, such as the
fine points of treating proper names, the progressive etc.) The point
is that Joe corresponds to the various possible ways of verifying Joe’s
presence/identity, eat to the eventualities that can be characterized as
eating, bread to constellations in which some bread can be detected,
agent to constellations proving that some animate entity performs an
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Towards a Natural Language Semantics without Functors and Operands 5

activity on purpose, and theme to constellations in which an entity
undergoes some change of state or location.

As we want to leave open the exact ontological status of constel-
lations, we would like to assume only a minimal structure on them.
A possible choice is to compare constellations according to their in-
formation content, say, a picture of a corner of a room is clearly
less informative than a picture showing a larger part of the same
room. Similarly, a picture can be more informative than another by
virtue of its better resolution. It is natural to assume that this kind of
informativeness relation is a partial order.

Though we propose every meaning to be a set of constellations,
we do not think that every such set is appropriate as the meaning of
some phenomenon. Clearly, if a constellation is sufficient for proving the
presence of a phenomenon, then all more informative constellations are
also sufficient for proving it. So a sensible choice would be to consider
only upward-closed sets of constellations as meanings. Another possi-
bility (which is equivalent, at least in well-founded partial orders) is to
collect the minimal constellations only from each such set. This would
correspond to the intuition that the meaning of a phenomenon contains
the necessary and sufficient proofs for its presence, etc.

Let us give another reason for why we would like to choose this
latter option. Since all the meaningful expressions are of the same
semantic type (sets of constellations), we cannot combine them in
the ways familiar from pre-Davidsonian or Davidsonian semantics. For
example, the fact that Joe is the agent of eating cannot be expressed
as agent(Joe,eat), because we do not interpret agent as a relation.
Instead, we must produce a set of constellations proving that ‘Joe is
the agent of eating’ from the constellations for Joe, agent and eat.

Let A ◦B stand for the combination of A and B; we suggest that, in
order to produce a meaning for such a combination, we must look at the
overlapping constellations in the meaning |A| of A and the meaning
|B| of B. For example, let j ∈ |Joe| be a constellation proving Joe’s
presence, and a ∈ |agent| be a constellation proving the presence
of an agent. Then, by saying that j and a overlap, we would like to
mean that there exists a common lower bound x of j and a according
to their information content. This constellation x should show that
our evidence to the effect of Joe’s presence is not independent of our
evidence for agenthood. This must be because Joe is the intentional
agent in question. Now suppose that, say, j shows the picture of a
room where both Joe and Pam are in, and j is not minimal in |Joe|
(as we also have there a smaller picture of the same room showing
only the part where Joe is). Suppose also that a is an observation that
is related to Pam, who is performing a purposeful activity. Then the
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6 Erdélyi-Szabó—Kálmán—Kurucz

overlap of j and a does not have much to do with Joe being our agent,
but rather it is some constellation related to Pam.

Now let us return to the problem of producing constellations prov-
ing both Joe’s presence and his agenthood. We would like to collect
those constellations that are more informative than some overlapping
pairs of constellations proving Joe’s presence, on the one hand, and his
agenthood, on the other. Further, to comply with the uniformity of all
meanings, we should only keep the minimal ones among such constella-
tions. In terms of the above, we propose the following translations for
Joe is eating and Joe is eating bread:

Joe is eating ; (Joe ◦ agent) ◦ (agent ◦ eat);
Joe is eating bread ;

((Joe ◦ agent) ◦ (agent ◦ eat)) ◦
((bread ◦ theme) ◦ (theme ◦ eat)).

In these translations, the order in which the terms are combined is
irrelevant: Joe ◦ agent is the same as agent ◦ Joe. So “◦” denotes
a commutative operation; however, it is important that it should
be non-associative since, for example, in the second translation it
is crucial that ‘Joe’ is the agent and ‘bread’ is the theme rather
than the other way round. It is easy to infer from what we said about
combinations of meanings that “◦” is an idempotent operation.

To sum up, we can translate eating, Joe is eating and Joe is eating
bread in a uniform manner, without considering any of these expressions
‘incomplete’. In addition, the fact that Joe is eating means, roughly,
‘Joe is eating something’, comes for free: this is exactly what our
translation expresses.

2.2. ‘Metonymical’ interpretation

The case of argument-taking verbs is not the only one in which we find a
mismatch between the semantic character and the syntactic behaviour
of natural-language expressions. Take the English word storm. Since its
grammatical category is ‘noun’, the type of its denotation is tradition-
ally a predicate, namely, the one true for all and only the individual
storms in a model of the world. To what extent one can consider a
storm an individual is an interesting ontological question which will
play some role in what follows, but it is not our main concern here.
What is more intriguing is that storm, together with a legion of other
nouns (mainly, nominalisations), can refer to places, time intervals and
eventualities just as easily as ‘individuals’. For example, in addition to
the storm moved West (in which the storm is seen as an individual),
we can say in the storm (location), after the storm (time interval) or
because of the storm (eventuality).
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Towards a Natural Language Semantics without Functors and Operands 7

The usual explanation of such systematic ambiguities relies on some
concept of ‘metonymy’, i.e., on conceiving of such expressions as some-
how elliptical. In particular, under this view, in the storm would ‘stand
for’ in [the place where] the storm [was], whereas after the storm should
be interpreted as after [the time interval of the existence of] the storm,
and because of the storm as because of [the event of] the storm [taking
place].

This may well be a legitimate treatment, but it does not explain why
just words denoting ‘individuals’ like storms can function in these ways.
A treatment not relying on a metonymy mechanism, but accounting for
the behaviour of, say, storm on the basis of its meaning alone would be
clearly preferable. We believe a type free treatment can do this job.

Take The storm moved West first. The meaning of this sentence can
be produced in a way similar to that of Joe is eating (setting aside
the entirely independent problem of how we treat definite articles),
except that the grammatical subject here is the theme argument (the
storm is not a purposeful agent, but an individual undergoing change
of location):

The storm moved West ;

(the-storm ◦ theme) ◦ (theme ◦moved-West).

In this case, the storm is conceived of as an individual (assuming that,
if we do not consider figurative meanings, only individuals can undergo
change of location). That is, only those constellations in |the-storm|
will overlap with constellations in |theme| which serve as evidence for
storms as individuals, in the sense of contiguous time-space regions,
i.e., entities which come into existence and then die, and which are
delimited by more or less clear boundaries throughout their lifetime.
Clearly, there must be ways of seeing storms in this way, and there will
be constellations supporting such a view.

The other uses of storm can be explained in an analogous manner.
For example, in the storm can be translated as

in the storm ;

(in ◦ ground-area) ◦ (ground-area ◦ the-storm).

Note that in has a relational meaning, so we treat it analogously to eat
above. Namely, it means that a (somehow delimited) spatial area, the
so-called figure, is compared to (namely, is included in) another delim-
ited area, the so-called ground. In this case, ‘the storm’ plays the role
of ground (ground-area). The translation above will be meaningful
(i.e., it will not denote the empty set) only if some constellations in
|the-storm| have a non-empty overlap with |ground-area|, i.e., if
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8 Erdélyi-Szabó—Kálmán—Kurucz

they make reference to the spatial area occupied by the storm. That is,
instead of recurring to metonymy, we assume that storm is inherently
capable of being conceived of as a delimited area; at the same time,
we make it explicit what it means for something to be seen as some-
thing else. The assumption that storm can refer to an area is not a
stipulation: it involves the substantive claim that some (minimal) sets
of observations proving the presence of a storm make reference to the
its spatial boundaries.

3. Formalism

In this section, we give the precise definitions of the syntax and se-
mantics of the suggested formalism. As in this paper we intend to take
only the first steps of a rather unorthodox approach, we have chosen a
‘very basic’| formal representation language. Our terms (representing•
phenomena) are built up (freely) from (phenomenon) variables with
the help of the binary connective ◦:

t = p | t1 ◦ t2 .

Our formulas represent the questions we want to ask about such phe-
nomena. We introduce the simplest possible formulas only, expressing
the equality of two phenomena:

ϕ = t1 ≡ t2 .

Our formal expressions are evaluated in models. Each model con-
sists of a set of constellations, and can be considered as the current
‘snapshot of the world,’ or the ‘aspects’ we are interested in. We assume
only a minimal structure on the constellations: they are ‘arranged’
according to their informativeness: x ≤ x′ intends to mean that
x′ is at least as informative as x. So it is natural to assume that ≤ is
(at least) a partial order. (In this paper we do not make any further
assumptions, but we intend to investigate other possibilities in future
work.) In addition, a model should represent the information we could
collect about the simplest phenomena we are talking about at a given
moment, that is, a valuation for the variables.

We define a model to be a triple M = 〈U,≤, I〉, where

− U is a non-empty set,

− ≤ is a partial order on U , and

− I is a function from the set of variables to the powerset of U
such that for every variable p, I(p) is an antichain (i.e., for all
x, x′ ∈ I(p), if x ≤ x′ then x = x′).
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Towards a Natural Language Semantics without Functors and Operands 9

Given a model M = 〈U,≤, I〉, we define the meaning |t|M for each
term t as follows:

|p|M = I(p)

|t1 ◦ t2|
M = min({u ∈ U : ∃u1 ∈ |t1|

M, ∃u2 ∈ |t2|
M such that

u1 and u2 have a common ≤-lower bound,
and u is a common ≤-upper bound of
u1 and u2})

(Here min(X) = {x ∈ X : for all x′ ∈ X, if x′ ≤ x then x = x′}.) Note
that this way |t|M is always an antichain, for each term t. In what
follows, we will omit the superscript from |t|M and use simply |t| when
M is clear from the context.

Next, for each formula ϕ, we define the relation M |= ϕ (ϕ is true
in M) as follows:

M |= t1 ≡ t2 iff |t1|
M = |t2|

M .

Remark 1. Another possible simple way of comparing concepts is
more permissive than equality. We might want to say something similar
to material implication: A formula of the form t1 → t2 would mean,
roughly, that one’s evidence for t2 adds nothing to one’s evidence for t1,
it is already included in it. In terms of information content, this means
that t1 is a phenomenon that is either the same as, or a refinement
of, t2. The following can be a corresponding truth relation:

M |= t1 → t2 iff ∀u1 ∈ |t1|
M ∃u2 ∈ |t2|

M u2 ≤ u1 .

However, it is not hard to see that → can be defined with the help of
◦ and ≡:

M |= t1 → t2 iff M |= (t1 ◦ t2) ≡ t1 .

Indeed, suppose first M |= t1 → t2. Take some x ∈ |t1 ◦ t2|. Then there
is y ≤ x with y ∈ |t1|, so there is z ≤ y with z ∈ |t2|. So y is a common
≤-upper bound of y and z. Then y = x follows, since x ∈ |t1 ◦ t2|. So
we have |t1 ◦ t2| ⊆ |t1|. Conversely, take some x ∈ |t1|. Then there is
y ≤ x with y ∈ |t2|. So x is a common ≤-upper bound of x and y.
Now x ∈ |t1 ◦ t2| follows because |t1| is an antichain. Now suppose that
|t1 ◦ t2| = |t1|. Take some x ∈ |t1|. Then x ∈ |t1 ◦ t2|, so there is y ≤ x
with y ∈ |t2|.

Note that the relation ⊑M defined on term-meanings by

|t1|
M ⊑M |t2|

M iff M |= t1 → t2

is always a partial order, so → is indeed similar to material implication.

eszkk.tex; 8/02/2007; 22:00; p.9



10 Erdélyi-Szabó—Kálmán—Kurucz

3.1. Reasoning tasks

What kind of reasoning tasks should we investigate about the suggested
formal system? The satisfiability or consistency problem would be
a natural candidate:

− Given a (finite or infinite) set Σ of formulas (i.e., equalities), is
there a model where every formula in Σ is true?

It is easy to see that our formalism is not strong enough to meaningfully
address this question, as every set of formulas in satisfiable in some
(probably intuitively weird) model. What is sensible in our context is
the dual validity problem:

− Given a set Σ of formulas, is it the case that every formula in Σ is
true in every model?

This doesn’t really sound as a particularly interesting question in con-
nection to phenomenon-equalities. However, it is a special case of the
more relevant entailment problem:

− Given a set Σ of formulas and a formula ϕ, is ϕ true in all those
models where every formula of Σ is true (in symbols: Σ |= ϕ)?

Below we show that the entailment problem is finitely axioma-
tisable, and the entailment problem is decidable and has the finite
model property, whenever the set Σ of ‘assumptions’ is finite. (see
Theorems 9 and 10 below.)

3.2. Hilbert-style calculus

p ≡ p (1)

given p ≡ q, derive q ≡ p, (2)

given p ≡ q and q ≡ r, derive p ≡ r, (3)

given p ≡ p′ and q ≡ q′, derive p ◦ q ≡ p′ ◦ q′, (4)

p ◦ q ≡ q ◦ p, (5)

p ◦ p ≡ p, (6)

(p ◦ (q ◦ r)) ◦ r ≡ p ◦ (q ◦ r). (7)

We say that
Σ ⊢ s ≡ t

if there is a finite sequence of formulas ending with s ≡ t and such that
each formula in the sequence is either a substitution instance of an
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axiom above, or in Σ, or obtained from earlier formulas in the sequence
by applying a substitution instance of one of the rules above.

Observe that (1)–(4) just say that ≡ obeys the axioms and rules of
the equational calculus. While (5) and (6) express that ◦ is a commu-
tative and idempotent operation, one can regard (7) as some kind of
‘weak associativity’ (as an associative and idempotent ◦ clearly would
have this property).

Interesting consequences of (1)–(7) are:

(p ◦ q) ◦ p ≡ p ◦ q, (8)

given p ◦ q ≡ p and q ◦ r ≡ q, derive p ◦ r ≡ p. (9)

Indeed, for (8):

(p ◦ q) ◦ p
(5)
≡ (q ◦ p) ◦ p

(6)
≡ (q ◦ (p ◦ p)) ◦ p

(7)
≡ q ◦ (p ◦ p)

(6)
≡ q ◦ p

(5)
≡ p ◦ q.

For (9): Suppose we have p ◦ q ≡ p and q ◦ r ≡ q. Then

p ◦ (q ◦ r) ≡ p ◦ q ≡ p,

and so

p ◦ r ≡ (p ◦ (q ◦ r)) ◦ r
(7)
≡ p ◦ (q ◦ r) ≡ p.

Note| that in fact the calculus defined by (1)–(6), (8) and (9) is •
equivalent to the above one, as (7) can be derived in it. Note also that
using → instead of ≡ (cf. Remark 1), (6) and (8) are equivalent to
p → p and (p ◦ q) → p, respectively, while (9) is equivalent to the rule

given p → q and q → r, derive p → r.

The proof of the following lemma is straightforward:

Lemma 2. (Soundness.)
For all Σ, s, t, if Σ ⊢ s ≡ t then Σ |= s ≡ t.

3.3. Normal forms

Fix some linear order on the terms. Then say that a term t is in pre-
normal form if, whenever t1 ◦ t2 is a subterm of t, then t1 is not
later in the order than t2. Clearly, every term t can be turned into
an equivalent term t̃ in pre-normal form (by equivalent we mean both
|= t ≡ t̃ and ⊢ t ≡ t̃). Moreover, we can use the following algorithm:
we start ‘inside out’ (that is, bottom up in the parsing tree), and when
we find a ◦-term in the wrong order, swap the components. In what
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follows we don’t bother with pre-normal forms, that is, with a slight
abuse of notation, when we write s ◦ t, we might mean t ◦ s.

Now, given a term t in pre-normal form, we define inductively the
normal form t̄ of t by taking

p̄ = p for variables p;

t ◦ s =







t̄ if s̄ is a subterm of t̄;
s̄ if t̄ is a subterm of s̄;
t̄ ◦ s̄ otherwise.

Clearly, this definition is also an algorithm: again we start ‘inside out’.

Claim 3. (i) For each term t, we have ¯̄t = t̄.

(ii) For all terms t, s, if s is a subterm of t then ⊢ t ◦ s ≡ t.

(iii) For each term t, we have ⊢ t ≡ t̄.

Proof. Each statement follows by induction on the ◦-rank (the number
of nested ◦s) of t. We give some details on the proof of (ii) and (iii).

(ii): If t = p then s = p should hold and p ◦ p ≡ p is (a substitution
instance of) axiom (6). Suppose that t = t1 ◦ t2 and s is a subterm
of, say, t1. Then by the induction hypothesis, we have ⊢ t1 ◦ s ≡ t1.
On the other hand, (t1 ◦ t2) ◦ t1 ≡ t1 ◦ t2 is a substitution instance of
(8), so we also have ⊢ (t1 ◦ t2) ◦ t1 ≡ t1 ◦ t2. Now by (9) we obtain
⊢ (t1 ◦ t2) ◦ s ≡ t1 ◦ t2.

(iii): If t = p then the statement is an instance of axiom (1). Suppose
that t = t1 ◦ t2 and we know that ⊢ t1 ≡ t̄1 and ⊢ t2 ≡ t̄2. By rule (4),
we have ⊢ t ≡ t̄1 ◦ t̄2. So only the first two cases in the definition of

t1 ◦ t2 are problematic. Suppose, say, that t̄2 is a subterm of t̄1, that is,

t1 ◦ t2 = t̄1. But then we have ⊢ t̄1 ◦ t̄2 ≡ t̄1 by (ii).

It follows from Claim 3 and rule (3) that if t and s are the same
then ⊢ t ≡ s. As we shall see (cf. Corollary 11), the converse statement
also holds. In other words, normal forms are suitable tools for dealing
with (unconditional) term-equalities.

3.4. Decision algorithm

Given a set Σ of formulas and a formula ϕ, we will define an infinite
sequence T0 ⊆ T1 ⊆ . . . ⊆ Tn ⊆ . . . of sets of normal form terms, and
an infinite sequence ∼0⊆∼1⊆ . . . ⊆∼n⊆ . . . of equivalence relations (∼i

will be an equivalence relation on Ti) as follows. Let

T0 = {t̄ | t is a subterm of some term in Σ or ϕ},
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and for all s, t ∈ T0, let

s ∼0 t ⇔ s = t or
∃u, v (s = ū, t = v̄ and either (u ≡ v) ∈ Σ or (v ≡ u) ∈ Σ).

Observe that T0 is closed under taking subterms, and it is finite if Σ is
finite.

Now suppose that Tn and ∼n have already been defined (such that
Tn is closed under taking subterms). Let Tn+1 be the smallest set
containing Tn and ∼n+1 the smallest equivalence relation containing
∼n such that

(∗) for all s, t, s ◦ u ∈ Tn: if s ∼n t and s ◦ u 6∼n s,

then t ◦ u ∈ Tn+1 and t ◦ u ∼n+1 s ◦ u.

In other words, we obtain Tn+1 by closing Tn under applications of ‘rule
(∗)’ above.

Note that Tn+1 is closed under taking subterms: if v is a proper

subterm of t ◦ u then it is a subterm of either t̄ or ū. Since u is a
subterm of an element of Tn, it is also in Tn and so, since t̄ = t and
ū = u by Claim 3(i), v is in Tn ⊆ Tn+1.

Observe that each application of this rule either

(R1) adds a new element to an (existing) equivalence class (if t ◦ u /∈ Tn,

and so t ◦ u = t ◦ u), or

(R2) unites two equivalence classes (if t ◦ u ∈ Tn, and t ◦ u 6∼n s ◦ u),
or

(R3) just has no effect (if t ◦ u ∈ Tn, and t ◦ u ∼n s ◦ u).

In particular, the number of equivalence classes does not increase as n
grows. Note that if Σ is finite then each Tn (n < ω) is finite as well.

Example 4. Σ = {x ≡ (y ◦ z) ◦ (v ◦ z), y ≡ x ◦ w} ϕ = x ≡ y.
∼0 classes:

{x, (y ◦ z) ◦ (v ◦ z)}, {y, x ◦ w}, {y ◦ z}, {v ◦ z}, {v}, {w}, {z}

∼1 classes:
{x, (y ◦ z) ◦ (v ◦ z)}, {y, x ◦ w, ((y ◦ z) ◦ (v ◦ z)) ◦ w},
{y ◦ z, (x ◦ w) ◦ z}, {v ◦ z}, {v}, {w}, {z}

∼2 classes:
{x, (y ◦ z) ◦ (v ◦ z), ((x ◦ w) ◦ z) ◦ (v ◦ z)},
{y, x ◦ w, ((y ◦ z) ◦ (v ◦ z)) ◦ w, y ◦ z, (x ◦ w) ◦ z},
{v ◦ z}, {v}, {w}, {z}

∼n classes, for n ≥ 3:
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14 Erdélyi-Szabó—Kálmán—Kurucz

{x, (y ◦ z) ◦ (v ◦ z), ((x ◦ w) ◦ z) ◦ (v ◦ z), (x ◦ w) ◦ (v ◦ z),
y ◦ (v ◦ z), y, ((x ◦ w) ◦ z) ◦ (v ◦ z), x ◦ w, ((y ◦ z) ◦ (v ◦ z)) ◦ w,
y ◦ z, (x ◦ w) ◦ z},

{v ◦ z}, {v}, {w}, {z}

Lemma 5. If Σ is finite then the ‘algorithm always stops:’ Given Σ
and ϕ, there is a number NΣ,ϕ such that for all m ≥ NΣ,ϕ, we have
Tm = TNΣ,ϕ

and ∼m=∼NΣ,ϕ
.

Proof. For every n and s ∈ Tn, we denote the ∼n-class of s by [s]n.
We define two relations ≺−

n and �n on ∼n-classes by taking, for all
s, t ∈ Tn,

[s]n ≺−
n [t]n ⇔ ∃s′∼n s:∃u ∈ Tn: (s′ ◦ u = s′ ◦ u and s′ ◦ u ∼n t);

�n = the reflexive and transitive closure of ≺−
n .

Then the relation �n is ‘non-decreasing’ as n grows: if s, t ∈ Tn and
[s]n �n [t]n, then [s]m �m [t]m as well, for all m ≥ n.

Claim 6. If [s]n �n [t]n and s 6∼n t, then there exist m ≥ n and t′ ∈ Tm

such that t′ ∼m t and s is a subterm of t′.

Proof. As [s]n �n [t]n and s 6∼n t, there exist k > 0 and u0, . . . , uk,
a0, . . . , ak−1 ∈ Tn such that

s ∼n u0, uk ∼n t,

ui 6∼n ui+1 for i < k,

ui ◦ ai = ui ◦ ai, for i < k,

ui+1 ∼n ui ◦ ai, for i < k.

Now we will apply rule (∗) several times. With a slight abuse of nota-
tion, we use ∼ to denote the obtained extensions of ∼n.

First, as s ∼ u0 6∼ u1 ∼ (u0 ◦ a0), an application of rule (∗) yields

s ◦ a0 ∼ u1. Then, either u1 ∼ u2 or u1 6∼ u2 at this point. In the latter

case, another application of rule (∗) yields (s ◦ a0) ◦ a1 ∼ u2. And so
on, finally we obtain a term t′ ∼ t of the form

t′ = (. . . ((s ◦ a0) ◦ ai1) ◦ . . .) ◦ aic , (10)

where 1 ≤ i1 ≤ . . . ≤ ic < k are such that ui ∼ ui+1 whenever i ∈
{1, . . . , k − 1} − {i1, . . . , ic}.
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Claim 7. �n is ‘eventually antisymmetric:’ If [s]n �n [t]n and [t]n �n

[s]n, then there is an m ≥ n such that s ∼m t.

Proof. Suppose [s]n �n [t]n and [t]n �n [s]n. If s ∼n t, then m = n is a
good choice.

So suppose s 6∼n t. Throughout, we will use the terms u0, . . . , uk,
a0, . . . , ak−1 and the ∼-notation, as introduced in the proof of Claim 6.
As [s]n �n [t]n, after some applications of rule (∗), we obtain a term
t′ ∼ t of the form (10). Now either t′ ∼ s at this point or, by [t]n �n [s]n
and Claim 6, t′ is a subterm of some s′ ∼ s. Next, either s′ ∼ t at this
point and we are ready, or let i + 1 ≤ k be the smallest number such
that s′ 6∼ ui+1, that is,

s ∼ s′ ∼ u0 ∼ . . . ∼ ui 6∼ ui+1.

Then, by (10), ai is a subterm of t′, and so it is a subterm of s′ as well.
Therefore, an application of rule (∗) yields

s′ = s′ ◦ ai ∼ (ui ◦ ai) ∼ ui+1.

And so on, finally uniting the classes of s and t, as required.

Since the number of ∼0-classes is finite, and the number of equiva-
lence classes does not increase as n grows, there is a smallest number K
such that the number of ∼m-classes remains the same, for all m ≥ K.
If the number cK of ∼K-classes is 1, then rule (∗) cannot be applied
any more to extend TK and ∼K , so we can choose NΣ,ϕ to be K.

So suppose that cK > 1. Since the number of equivalence classes does
not change after step K, by Claim 7 we obtain that �K is antisymmet-
ric, so it is a partial order. Moreover, since ‘�n is non-decreasing as n
grows’, there is a smallest M ≥ K such that �M=�m for all m ≥ M (in
the sense that for all s, t ∈ TM , [s]M �M [t]M iff [s]m �m [t]m). With
a slight abuse of notation, we will denote this ‘stable’ partial order on
(possibly growing in size) equivalence classes by �.

By the choice of K, we know that after step K each application of
rule (∗) is either an (R1) or an (R3). It remains to show that there are
only finitely many (R1)s after step M . In other words, we need to show
that after step M each class can be extended only by finitely many new
terms. To this end, we claim that each time we extend the class of a
term s ◦ u by an application of rule (R1) at a step n ≥ M , we need
to have a term t such that [t]n � [s ◦ u]n. This is because, on the one
hand, it is a precondition of rule (∗) that [t]n 6= [s ◦ u]n. And, on the
other hand, as a result of applying (R1), [t]n+1 � [s ◦ u]n+1 (since t ◦ u
gets into [s ◦ u]n+1), and � doesn’t grow after step M , so in fact we
should already have had [t]n � [s ◦ u]n.
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16 Erdélyi-Szabó—Kálmán—Kurucz

In particular, after step M , �-minimal classes cannot be extended.
Classes of ‘�-degree’ 1 can be extended only by terms having a ‘t-
component’ from a �-minimal class. Further, the ‘u-component’ of a
new term is always such that [u]n � [s◦u]n. So (at first sight), for each
t-component, there can be an infinite supply of u-components (out of
the newly added terms) as the class grows. But we cannot use a t as
t-component if it is already a subterm of the u-component (otherwise
it is not an (R1)-type application). So a t-component cannot be reused
with a u-component created using the t-component in question, thus
classes of ‘�-degree’ 1 can be extended only with finitely many new
terms. Then we extend classes of ‘�-degree’ 2, and so on. Clearly, this
way each class can be extended only with finitely many new terms,
completing the proof of Lemma 5.

Remark 8. If Σ = ∅, that is, we want to decide whether a formula ϕ is
valid, then all the ∼0-classes are singletons by definition. Therefore, all
applications of rule (∗) are of type (R3), that is, we can always choose
N∅,ϕ to be 0.

3.5. Main results

Given a set Σ of formulas and a formula ϕ, take the infinite sequences
Tn and ∼n (n < ω) defined above, and let

T =
⋃

n<ω

Tn and ∼ =
⋃

n<ω

∼n .

It is easy to see that ∼ is an equivalence relation on T . We call a pair
(Σ, ϕ) (where ϕ is s ≡ t) a YES-instance iff s̄ ∼ t̄ holds.

Theorem 9. Let Σ be a set of formulas and ϕ a formula. Then the
following are equivalent:

(1) Σ ⊢ ϕ

(2) Σ |= ϕ

(3) (Σ, ϕ) is a YES-instance.

Theorem 10. The finite entailment problem is decidable and has the
finite model property.

Corollary 11. The validity problem is decidable. In particular,

|= s ≡ t iff s and t are the same.
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Proof. If s and t are the same then |= s ≡ t follows by Claim 3 and
Lemma 2. Conversely, if |= s ≡ t then, by Theorem 9, (∅, s ≡ t) is a
YES-instance. By Remark 8, the decision algorithm stops in step 0,
meaning that s and t are the same.

Proof of Theorem 9. (1) ⇒ (2): It is Lemma 2.
(2) ⇒ (3): Suppose that (Σ, ϕ) is not a YES-instance. Then we will

give a model M such that all formulas in Σ are true in M, but ϕ is
not.

To this end, we denote the ∼-class of a term s by [s]. We define a
relation � on ∼-classes by taking, for all s, t ∈ T ,

[s] � [t] iff ∃n < ω: ([s]n �n [t]n)

(cf. the proof of Lemma 5 for notation). By Claim 7, we have that

� is antisymmetric and so it is partial order. (11)

We will also use the following property of �:

Claim 12. For all terms s, t ∈ T , if [s] � [t] and s◦t ∈ T , then s◦t ∼ t.

Proof. If [t] = [s] but s ◦ t 6∼ t then, by rule (∗), s ◦ s = s belongs to
[s ◦ t], so s ◦ t ∼ t, a contradiction.

So suppose that [s] � [t], s 6∼ t and s ◦ t 6∼ t. Then, by Claim 6, s is

a subterm of some t′ ∈ [t]. So, by rule (∗), s ◦ t′ = t′ belongs to [s ◦ t],
a contradiction again.

Now we define a (non-empty) set U , a (irreflexive) binary relation
<− on U , and a labelling function ℓ : U → {[t] | t ∈ T}∪{∅} as follows:

(i) For each class C, put a fresh xC into U , and define ℓ(xC) = C.

(ii) Then, for every such xC and every s ◦ t ∈ C such that s, t ∈ C do
not hold:

• if s ∈ C, but t /∈ C, then put a new point y into U , and define
ℓ(y) = [t] and y <− xC ;

• if t ∈ C, but s /∈ C, then put a new point y into U , and define
ℓ(y) = [s] and y <− xC ;

• if s, t /∈ C (by Claim 12, s 6∼ t follows), then put three new
points y1, y2, y into U , and define ℓ(y1) = [s], ℓ(y2) = [t],
ℓ(y) = ∅ (we call such points dummy), and y1 <− xC , y2 <−

xC , y <− y1, y <− y2.
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(iii) Then continue ‘unfolding the terms’ in the labels of the newly
created points like in (ii). Then again, and so on.

Now let ≤ be the reflexive and transitive closure of <−. Since each
dummy point can be ≥ than itself only, it is straightforward to see
that, for all x, y ∈ U such that ℓ(x) 6= ∅, ℓ(y) 6= ∅,

if x ≤ y then ℓ(x) � ℓ(y). (12)

Now it follows from (11) that ≤ is antisymmetric, so it is a partial order
on U . Moreover,

if x ≤ y and x 6= y then ℓ(x) 6= ℓ(y). (13)

Now, for each propositional variable p, we let

I(p) = {x ∈ U | p ∈ ℓ(x)}.

Then I(p) is a ≤-antichain: take x, y ∈ I(p) with x ≤ y. Then p ∈
ℓ(x)∩ℓ(y), so ℓ(x) = ℓ(y). Now x = y follows by (13). So M = 〈U,≤, I〉
is a model.

Claim 13. For every t ∈ T , |t| = {x ∈ U | t ∈ ℓ(x)}.

Proof. It is by induction on the structure of term t. If t is a propositional
variable then the claim follows by the definition of I.

Suppose that the claim is true for terms s and t such that s ◦ t ∈ T .
Suppose first that x ∈ |s ◦ t|. There are four cases:

1 : x ∈ |s|, x ∈ |t|. By IH, s, t ∈ ℓ(x), so [t] � [s]. By Claim 12, we
have s ◦ t ∈ ℓ(x).

2: x ∈ |s|, x /∈ |t|. Then there is a y ∈ U such that y ≤ x, y 6= x and
y ∈ |t|. By IH, s ∈ ℓ(x) and t ∈ ℓ(y). So by (12), we have [t] � [s].
Again by Claim 12, we have s ◦ t ∈ ℓ(x).

3: x ∈ |t|, x /∈ |s|. This is similar to Case 2.

4: x /∈ |s|, x /∈ |t|. Then there are y, y1, y2 ∈ U , all different from
each other and from x such that y ≤ y1, y ≤ y2, y1 ≤ x, y2 ≤ x,
y1 ∈ |s|, y2 ∈ |t|. By the definition of U and ≤, this implies that
y <− y1, y <− y2, ℓ(y) = ∅, and there are z ∈ U and u1 ◦ u2 ∈ T
such that y1 <− z, y2 <− z, z ≤ x, u1 ∈ ℓ(y1), u2 ∈ ℓ(y2),
u1 ◦u2 ∈ ℓ(z). Since z is a ≤-upper bound for y1 and y2, x ∈ |s ◦ t|
implies that x ≤ z, and so x = z, from which x 6= y1 and x 6= y2

follow. By IH, we have s ∈ ℓ(y1) and t ∈ ℓ(y2). By (13), we have

ℓ(x) 6= ℓ(y1) and ℓ(x) 6= ℓ(y2). So, by rule (∗), s ◦ u2 ∈ ℓ(x), and

we also have s ◦ u2 6= s and s ◦ u2 6= u2. Then, again by rule (∗),

we obtain that s ◦ t = s ◦ t belongs to ℓ(x).

eszkk.tex; 8/02/2007; 22:00; p.18



Towards a Natural Language Semantics without Functors and Operands 19

Conversely, suppose s ◦ t ∈ ℓ(x). By the definition of U and ≤, x is
a ≤-upper bound of some y1, y2 such that y1 and y2 have a common
≤-lower bound, and s ∈ ℓ(y1), t ∈ ℓ(y2). By IH, y1 ∈ |s| and y2 ∈ |t|,
so x is a common ≤-upper bound as needed. Let z ≤ x be such that
z ∈ |s ◦ t|. By the direction already proven, s ◦ t ∈ ℓ(z) follows. So
ℓ(x) = ℓ(z). Then we have x = z by (13). This completes the proof of
Claim 13.

Now it follows from Claims 13, 3(iii) and Lemma 2 that all formulas
in Σ are true in M, but ϕ is not true in M.

(3) ⇒ (1): We show by induction on n that, for all terms s, t, if
s̄ ∼n t̄ then Σ ⊢ s ≡ t. First, let n = 0 and suppose s̄ ∼0 t̄. Then either
s̄ = t̄ and then Σ ⊢ s ≡ t by Claim 3(iii) and rule (3), or (s ≡ t) ∈ Σ
or (t ≡ s) ∈ Σ and then Σ ⊢ s ≡ t by rule (2).

Now suppose s̄ ∼n+1 t̄. If s̄ ∼n t̄ then we have Σ ⊢ s ≡ t by IH.
Otherwise, there are s′, t′, u ∈ Tn such that s′ ∼n t′, t̄ = t′ ◦ u and
s̄ = s′ ◦ u. By IH, we have Σ ⊢ s′ ≡ t′. So, by rules (4), (3) and
Claim 3(iii) we obtain Σ ⊢ s′ ◦ u ≡ t′ ◦ u, that is, Σ ⊢ s̄ ≡ t̄. Now
Σ ⊢ s ≡ t follows again by Claim 3(iii). 2

Proof of Theorem 10. By Lemma 5 and Theorem 9, the procedure de-
scribed in subsection 3.4 is a decision procedure for the finite entailment
problem.

As concerns the finite model property, we claim that if Σ is finite
then the model M = 〈U,≤, I〉 defined in the proof of the ‘(2) ⇒ (3)’
part of Theorem 9 is finite. Indeed, by definition, every point in U has
finitely many <−-predecessors, so the finiteness of U follows from (11),
(12) and (13). 2

Note that in an implementation of the decision algorithm we may
stop in a step n much smaller than NΣ,s≡t, in case we detect that s̄ and
t̄ have become ∼n-equivalent.

4. Conclusion

4.1. What about compositionality?

Under the view proposed in this paper, linguistic and semantic com-
pleteness/incompleteness need not be directly related. This seemingly
contradicts one of the most important methodological principles of
modern semantics, namely, the compositionality principle, which
emphasises the parallelism of semantic and linguistic structure:
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‘The meaning of a complex expression is a function of its structure
and the meanings of its constituents.’

In fact, in some of its formulations, e.g., Montague’s ((Montague, 1974)),
this principle requires a total parallelism between syntactic and se-
mantic types; more precisely, it posits a homomorphism between the
semantic (function application based) algebra and the syntactic (con-
stituency based) algebra. So the question naturally arises whether we
are willing to reject the compositionality principle itself.

To the contrary, we are convinced that compositionality does not
impose anything on us with respect to ‘completeness.’ In our view, the
principle of compositionality is indeed of utmost importance for natural
language semantics in that it carves out that aspect of natural language
use that can and is to be dealt with successfully by semantics at all.
Compositionality means that the only phenomena that legitimately can
be termed semantic must exhibit a systematic correspondence between
form and meaning. That is why, for example, the eventual motivated-
ness of more or less idiomatic expressions (e.g., of mouse ’computer
pointing device’), although discernible to the speakers to some extent,
falls outside the scope of compositionality, hence, of semantics in gen-
eral. Compositionality (fortunately) contains no stipulation to the effect
that all aspects of linguistic form must be explained by a parallelism
with meaning (e.g., one could hardly claim that stems with similar
phonological shapes are also semantically similar), therefore it allows
linguistic ‘completeness’ to be a phenomenon independent of or only
loosely related to meaning. (As a matter of course, the converse is
also true: compositionality also does not stipulate that all aspects of
meanings must be reflected by linguistic form.)

On the other hand, we think compositionality should be strength-
ened from another point of view. The principle says nothing on what
a ‘function’ can be. In general, there is nothing a ‘function’ cannot
do; therefore, under the traditional, weak definition of compositional-
ity one would expect very unusual ways of combining meanings. For
example, a function that combines two predicates and yields as a value
the one that has greater cardinality than the other would be a perfectly
compositional way of combination; or, in principle, a combination func-
tion would be allowed to behave in a wildly non-uniform manner, in
the sense of performing totally different operations depending on the
meanings of its operands. (Similar arguments were made by (Zadrozny,
1994; Kálmán, 1996).) Obviously, what one would expect from a com-
positional combination function is that it should be uniform in the
above sense, and that it should preserve the meanings that it combines
(i.e., it must not be destructive). These two requirements together
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suggest an essentially additive operation, in very much the same
vein as in traditional linguistics since the Antiquity, which thought of
combining meanings as ‘adding them together’. (Note that others, such
as (Vermeulen and Visser, 1996; Visser, 2003) have also proposed se-
mantic formalisms that, although with different motivations, share the
feature of additiveness.) Technically speaking, an additive combination
operation means that the value that it yields is

− is richer than either one of its operands in terms of information
content;

− contains only information originating from one of the operands.

This, in turn, presupposes that we are able to compare arbitrary mean-
ings (both the ones to be combined and the resulting value) in terms of
information content. A sufficient (and under certain reasonable assump-
tions, necessary) condition for this to be feasible is that semantics must
be type free, just like the semantics we have proposed in the present
paper.

4.2. Open issues

In this paper we have been concerned with the basic ingredients of
natural language semantics, without touching upon notorious problems
such as adjectival modification, modalities and intensionality, proposi-
tional attitudes, quantification, information structure, and so on. Some
of these problems obviously require the enrichment of the apparatus
described above, but we believe that the problems of such enrichments
can and should be separated from the essentials discussed here.

For example, on the one hand it would be easy to construct a first-
order (or even higher-order) language the atomic formulas of which are
exactly the formulas of our suggested language. But this would amount
to begging the question whether a type free approach to natural lan-
guage semantics can be pursued in general. On the other hand, natural
languages are able to express propositions involving collections and
second-order predicates (e.g., quantification). Clearly, such meanings
cannot be treated with a machinery that cannot express arithmetic.
But it is arguable whether arithmetic is indeed part of natural lan-
guage semantics. In a subsequent paper we are planning to complement
our framework with a quantificational component which can treat at
least certain restricted types of quantification. We also intend to in-
vestigate the possibilities of extending the stance that we have taken
above to some other features, such as modalities and various notions of
incompatibility among phenomena (which can lead to different kinds
of negation).
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