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Abstract In this paper, the dynamical similarity of

multi-block catenary arches and columns is discussed,

which can be used for the simplified design of rocking

arches. The basic hypothesis is that the dynamic

response of multi-block arches and columns is similar

when the shape of the arch follows the thrust line, i.e. it

is a catenary arch. It is validated numerically that the

responses of slender catenary arches are safe and

reliable approximations of those of not slender arches

and then that the overturning acceleration (response)

spectra of rigid, slender monolithic blocks can be

directly applied for catenary arches. The similarity is

based on two parameters, on the limit peak ground

acceleration (under which the structure will not move

at all) and on the frequency parameter (defined by

Housner for rigid blocks).

Keywords Multi-block arch �Rocking �Rigid body �
Overturning spectra � Catenary

1 Introduction

Static analysis of masonry and stone arches is usually

based on the classical thrust line analysis [1, 2] by

calculating the limit horizontal self-weight multiplier

of these structures. The horizontal limit load can be

considered as an acceleration that would transform the

arch to a mechanism [3–5].

Oppenheim [6] formulated the exact, nonlinear

equations of motion for circular arches subjected to

base excitation assuming four hinges. He also inves-

tigated the response of a circular arch for a step

impulse, and the overturning of a planar arch during

the first half cycle of the excitation. De Lorenzis et al.

[7] extended Oppenheim’s analysis by introducing an

impact model, based on Housner’s model [8] for single

rocking blocks. It was assumed that the arch moves as

a four-hinge mechanism, and the location of the cracks

does not change during one half cycle of the motion.

Using a new analytical model, De Lorenzis et al. found

that for similar arches (obtained by linear scaling) the

larger the arch the higher the safety against overturn-

ing. They showed that the overturning impulse is

proportional to the square root of the arch radii [7].

This model has been extended for rocking frames,

pointed arches and arches with geometrical irregular-

ities [9–11]. Kollár and Ther [12] presented a new

numerical model for planar multi-block arches sub-

jected to horizontal excitation. Using the newmodel, it

was found that circular arches move as a four-hinge
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mechanism typically only at the beginning of excita-

tion, and several cracks split open during motion;

furthermore, that modelling a multi-block circular

arch by an SDOF four-hinge mechanism may signif-

icantly overestimate its collapse load.

DeJong and Dimitrakopoulos [13] investigated the

dynamical equivalency of SDOF mechanisms sub-

jected to gravity load and horizontal ground excita-

tion, ag; tð Þ. For gravity load, the structure is in

(unstable) equilibrium at d ¼ u, were u is the

generalized displacement. Three examples are shown

in Fig. 1. It was proved [13] that for slender structures

(i.e. d � 1) and small displacements (u � 1) the

response of the structure depends on three parameters

p, d and ap;min:

– p is the frequency parameter, defined for rigid

blocks by Housner [8],

– d is the angle of the neutral position (Fig. 1b),

– ap;min is the horizontal acceleration, which equili-

brates the SDOF mechanism subjected to the

vertical gravity load at u ¼ 0 (Fig. 1c).

For the rigid block, these parameters are given by

Housner [8]:

p ¼
ffiffiffiffiffiffi

3g

4R

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ B2
p

s

; d ¼ tan�1 B

H
; ap;min

¼ g
B

H
: ð1Þ

The normalized displacement u=d depends on two

parameters only p and ap;min. The frequency param-

eter, p, can be interpreted (at least for slender

structures) in the following way: p2 is equal to the

(normalized) acceleration of the mechanism at u ¼ 0

subjected to gravity load only (Fig. 1a, p2 ¼ � €u=d).
The three parameters can be unambiguously calcu-

lated for SDOF mechanisms [13]. (For an arch, first

the location of the four opening interfaces is

Fig. 1 Three examples of SDOFmechanisms: monolithic block

(top), rocking frame (middle) and an arch as a four-hinge

mechanism (bottom); the SDOF mechanisms (a), their neutral

position for gravity load (b), illustration of the horizontal

acceleration, ap,min, which equilibrates the gravity load at u = 0

(c)
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determined, and then they are assumed to be

unchanged during motion.)

The safety of a rocking block can be represented by

the overturning curve, introduced by Housner and

developed for different signals by several researchers:

Housner and Yim et al. plotted the overturning curve

for a single rectangular pulse and a half sine [8, 14],

Voyagaki et al. [15] investigated the effect of a range

of idealized single-lobe pulses, while others [16–22]

applied full-cycle pulses where impact plays an

important role. The overturning curve for harmonic

shaking [23, 24] and synthetic and real earthquake

records were also defined [14, 21, 25–28]. The

overturning curve has several possible representa-

tions, here, following [12, 28, 29] the overturning

acceleration (response) spectra (OAS) will be used,

where the frequency parameter is shown on the

horizontal axis, while ap /ap,min is on the vertical axis

(Fig. 2). ap is the maximum peak ground acceleration,

and ap;min is the limit acceleration, if ap\ ap,min the

block will not move at all.

The curve separates the safe and unsafe parameter

range, where overturning does or does not occur. For

any signal and any block slenderness, the OAS can be

calculated to check overturning; for a given block size,

the maximum acceleration (ap) can be determined for

which the block is safe.

The overturning acceleration (response) spectra

(OAS) of slender rigid, monolithic blocks can be

applied conservatively for multi-block columns [29],

because of the following reasons:

• OAS of slender blocks are close to each other

[13, 21, 28], and the OAS of a very slender block is,

in general, a safe approximation of that of not

slender blocks (Fig. 3a).

• Single monolithic blocks are mostly more vulner-

able for overturning than multi-block columns with

the same overall dimensions [29–31] (Fig. 3b).

The overturning acceleration (response) spectra

(OAS) can be calculated for any signal and any

column slenderness and any number of components,

nevertheless, for a conservative design it is sufficient

to consider the OAS of slender, monolithic blocks

only. As a consequence, if for a given location the

signal (or earthquake record) is given for which

overturning must be inspected, the corresponding

OAS of a slender, monolithic block can be used for the

design of any multi-block column. When there are

several site-specific earthquake records a characteris-

tic OAS should be used, which—according to

[28, 32]—can be reasonably well represented by two

parameters: the peak ground acceleration and the

replacement impulse duration.

The nonlinear dynamic response of masonry struc-

tures can also be investigated by numerical methods

which can take into account large displacements and

rotations of the blocks including the possibility of

complete detachment. Applying the discrete element

Fig. 2 The overturning

acceleration (response)

spectrum (OAS) of a rigid

block for a sine signal (a)
and for an earthquake record

(b). Acceleration and block

size which belong to a blue

dot represent an unsafe

structure. The half diameter

of the block is R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þ H2
p

=2 (Fig. 18 of

[29])
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method (DEM), Lemos [33] gives a brief overview of

the analyses, reviewing the former results of several

researchers. Essential assumptions are described and

the potential of the DEM for static and dynamic

analysis of masonry structures are presented for

various 2D and 3D structures. The potential of the

DEM is also illustrated by defining the possible

minimum thickness of skewed masonry arches [34]

and the effect of the backfill material at masonry arch

bridges [35]. Recently, complete masonry towers were

investigated numerically by applying the non-smooth

contact dynamics (NSCD) method [36, 37]. In their

model, the masonry was divided into rigid blocks,

simple contact laws were applied, and the damping

was neglected. The effect of the friction coefficient as

a main parameter was investigated thoroughly to

illustrate different collapse mechanisms, clearly illus-

trating the sensitivity of the results to the input

parameters.

2 Problem statement

Since there is a dynamical equivalency of SDOF

rocking structures [13], the question arises: can the

OAS of (slender, rigid) monolithic blocks be applied

also to multi-block arches?

Recently, a model was presented for multi-block

arches subjected to earthquakes, where several (more

than four) cracks may appear during motion [12]. It

was found that for circular arches considering a SDOF

four-hinge mechanism may significantly overestimate

the collapse load of multi-block arches (Fig. 4). It was

also found that while the overturning curves of single

blocks and arches with symmetrically located four

hinges are similar; for multi-block arches (where

several hinges may occur), they can be very different.

Hence, it seems that the answer to the above question

is no. As will be discussed below, under certain

circumstances, a positive answer can be given.

3 Catenary arch as a key to similarity: research

aim

Symmetrical catenary arches are considered, which

consist of rigid (brick or stone) blocks, and which are

subjected to arbitrary horizontal base excitation.

During motion, any interface may split open or close

and the crack pattern may change with time (Fig. 5).

Although there is no equivalency of multi-block

columns and arbitrary shape arches, our aim is to show

that catenary arches behave similarly as straight

columns. Furthermore, we wish to show that the

response of an MDOF catenary arch can be

Fig. 3 Comparison of the OAS of a slender monolithic block with those of less slender blocks (a) and with those of multi-block

columns (b) (based on Fig. 19 of [29])
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conservatively approximated by the response of a

monolithic rigid block; and the OAS of slender blocks

can be applied for the verification of overturning of

catenary arches.

According to the authors’ knowledge, the response

of multi-block catenary arches was not investigated

before and their key role in the possible modelling of

arches for overturning was not recognized.

Why are we considering catenary arches, why do

we expect similar behaviour of MDOF arches and

monolithic columns? The reason is that straight

columns and catenary arches have the important

common feature that their thrust line (i.e. the path of

the resultant normal force) for gravity load runs

through the centres of the cross sections. As a

consequence, even for very slender structures there

is a limit ground acceleration, under which the

structure will not move. On the contrary, for not

catenary arches, as well as for not straight columns the

thrust line differs from the axis and there is a minimal

thickness (minimal slenderness), where an arbitrarily

small horizontal acceleration results in the develop-

ment of a mechanism, and if the thickness is smaller

than the minimal one, the structure collapses under

gravity loads. This is illustrated in Fig. 6.

The expressions of the main characteristics of a

rigid block are given by Eq. (1). When the block is

slender (B � H), these expressions become

p �
ffiffiffiffiffiffiffi

3g

2H

r

; d � B

H
; ap;min ¼ g

B

H
; ð2Þ

where H is the height, B is the width (thickness) of the

block and g is the acceleration of gravity. Similarity

can be expected only if in the limit (for slender arches)

size and thickness affect the parameters of an arch

analogously to Eq. (2).

For SDOF systems, e.g. for four-hinge mechanisms

of arches the similarity was already proved, but real

arches may behave in a more complex manner. First

ap;min of a symmetric, slender arch is investigated.

When the thickness of the arch is small compared to

its size, it can be treated as a curved bar given by the

Fig. 4 Comparison of the

results (a) of a four-hinge
mechanism (SDOF) and the

results of the multiple crack

model (MDOF) for a

circular arch (b) (Fig. 19 of

[12])

Fig. 5 Multi-block catenary arch (a) and two of the possible mechanisms (b, c)
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axis and the cross-sectional properties. Let the func-

tion of the axis be proportional to the size.

For gravity load, the bending moment and the

normal force in the arch can be calculated as

Mg ¼ f1dl
2g;Ng ¼ f2dlg; ð3Þ

where l is the span, d is the thickness, f1 and f2 are

functions which belong to an arch of unit length. The

eccentricity is

e ¼ Mg

Ng
¼ f1

f2
l ð4Þ

which is independent of d.

The arch is statically indeterminate and hence the

internal forces cannot be determined unambiguously

from the equilibrium equations. For symmetrical

loading, they contain two parameters, one due to

uniform bending, the other one due to equal and

opposite horizontal reaction forces [2]. When these

parameters can be chosen in such a way that f1 � 0, the

arch is called catenary and the eccentricity is zero

everywhere. If f1 � 0 does not hold, then, for a small d,

the eccentricity may exceed the half thickness, thus the

arch cannot carry its self-weight and ap;min does not

exist. A slender arch can carry its self-weight only if

f1 � 0, i.e. when it is a weighted catenary arch.

For horizontal earthquake excitation, the bending

moment and the normal force in the arch can be given

as

Ma ¼ f3dl
2ap;Na ¼ f4dlap; ð5Þ

where f3 and f4 are again functions which belong to an

arch of unit length and ap is the acceleration of the

ground motion. For small d, the arch can resist only a

small acceleration, and as a consequence Na � Ng.

When both loads act, for a slender catenary arch we

obtain

e ¼ Ma

Ng
¼ f3dl

2ap
f2dlg

¼ f3
f2

ap
g
l: ð6Þ

Ma is antisymmetric and Ng is symmetric, and hence e

Fig. 6 Thrust limes (dashed lines) for columns and arches

subjected to gravity loads. For straight columns and catenary

arches (a), the slenderness may tend to zero, while for curved

columns and circular arches (b), there is a minimum thickness

where the thrust line touches the contour of the cross sections

Fig. 7 Eccentricity of a catenary arch considering horizontal

excitation (a) and the corresponding four-hinge mechanisms (b)
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is antisymmetric as well (see Fig. 7a). The values of

maximum eccentricities are obtained by evaluating

Eq. (6) at their locations:

e ¼ f 3
f 2

ap
g
l; e ¼ � f 3

f 2

ap
g
l: ð7Þ

Again, since the arch is statically indeterminate the

internal forces cannot be determined unambiguously

from the equilibrium equations. For antisymmetric

bending moment, they contain one parameter, which

corresponds to a linearly varying bending moment [2].

To reach the collapse load, this parameter is chosen in

such a way that the values of the maximum positive (e)

and negative (e) eccentricities are identical. By so

doing, the calculation of Ma is unambiguous.

ap ¼ ap;min when the arch becomes a four-hinge

mechanism (Fig. 7b), i.e. when

d ¼ 2e ¼ 2e ¼ 2
f 3
f 2
l
ap;min

g
: ð8Þ

Thus, we have

ap;min ¼ Cg
d

l
; ð9Þ

where C is a constant. Note that this expression is

similar to that obtained for a block (Eq. (2)), ap;min is

proportional to the thickness and for a given slender-

ness (d/l) independent of the size. Also, note that for

slender arches the locations of the hinges along the

axis are symmetric.

For a given four-hinge mechanism, the similarity to

the rigid block was proven [13] and we have for a

slender arch (see Eq. (2))

p� 1
ffiffi

l
p ; d� d

l
: ð10Þ

4 Definitions, assumptions and hypotheses

To reach our research aim, first the following defini-

tions are given:

Thrust line. The path of the resultant normal force

[2].

Weighted catenary arch (or simply catenary arch).

An arch where the thrust line for gravity load runs

through the centres of the cross sections. If the load is

uniformly distributed along the arc-length, the thrust

line is hyperbolic cosine (regular catenary, cosh(cx)/

c).

Replacement catenary arch. The replacement cate-

nary arch is a (weighted) catenary arch of uniform

thickness, which can be used safely for the design of

arbitrary arches subjected to base excitation. An

obvious choice is the catenary arch of maximum

uniform thickness, which can be drawn within the

contour of an arch (Fig. 8). (The mass distribution of

the replacement catenary arch and the original arch are

identical, the thickness plays a role in the geometry of

the mechanism, since the hinges occur at the contour.)

Critical four-hinge mechanism. The critical four-

hinge mechanism is obtained from the static analysis

of arches for the given vertical gravity load and the

horizontal load obtained from the minimum horizontal

acceleration, which results in a four-hinge mechanism

(Fig. 9a). (The hinges may occur at the interfaces.)

Critical optimal four-hinge mechanism. Same as

the critical four-hinge mechanism, but the cracks (and

hinges) occur at the locations of the maximum

eccentricities (Fig. 9b). (The critical and the critical

optimal four-hinge mechanisms are identical, if there

are infinitely high number of blocks.) The locations of

the hinges are given by parameters c3 and c3
0 (see

Fig. 9b).

Limit peak ground acceleration. The limit peak

ground acceleration is the value of the (horizontal)

ground acceleration under which the arch will not

move et al. (It is equal to ap;min defined in Sect. 1, when

the SDOF structure is the critical optimal four-hinge

mechanism.)

Neutral position of an arch. Position of a four-hinge

mechanism of an arch subjected to gravity load only,

which is in (unstable) equilibrium (Fig. 10). It is

described by the inclination d of the left rigid part of

the mechanism.

Slenderness of an arch. The thickness to span ratio:

d/l (Fig. 11).

Fig. 8 An arch and its possible replacement catenary arch
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Shallowness of an arch. The height to span ratio: f/

l (Fig. 11).

The assumptions in calculating the arch are iden-

tical to those of [12]:

• only the planar displacements of the arch are

considered,

• rocking occurs at the outermost corners of the

blocks,

• there is no sliding between blocks,

• damping during motion is neglected, however, at

the closing of interfaces there is a loss in energy

due to inelastic impact (Housner’s model),

• the change in geometry (second-order effects) is

taken into account.

An important feature of catenary arches that for

gravity load and horizontal excitation their bending

moment curves are anti-symmetrical, and hence for

slender arches the location of the hinges of the four-

hingemechanism are symmetrical (c3 ¼ c03). Note also

that the more slender the arch the smaller the energy

dissipation during impact is [12], for very slender

catenary arches the energy dissipation is negligible.

To demonstrate the dynamical similarity of multi-

block catenary arches and monolithic rocking blocks,

the following hypotheses will be investigated:

Hypothesis 1 The OAS of the four-hinge mechanism

of a very slender catenary arch is a safe and reliable

approximation of those of not slender catenary arches.

Hypothesis 2 The OAS of the critical optimal four-

hinge mechanism of a slender catenary arch is in

general a safe approximation of that of the same arch

with possible multiple cracks.

Hypothesis 3 The OAS of a slender monolithic block

is a safe approximation of that of catenary arches with

the same frequency parameter. The more slender the

arch the closer are the OAS.

Note that Hypotheses 1 and 2 are the generaliza-

tions of the observations made for columns: see the

two bullet points in Sect. 1 (Fig. 3). These will be

validated in this paper.

Hypothesis 3 is a consequence of the first two

hypotheses as explained below. The dynamical equiv-

alency of SDOF structures [13] does not contain the

impact during motion. For slender structures, how-

ever, there is no energy dissipation, and hence it can be

stated that due to the dynamical equivalency: the OAS

of a slender monolithic block and that of the critical

optimal four-hinge mechanism of a slender catenary

Fig. 9 Critical four-hinge

mechanism (a) and critical

optimal four-hinge
mechanism (b)

Fig. 10 Neutral position of

a four-hinge mechanism

Fig. 11 Geometry of an arch with uniform thickness
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arch are identical provided that their limit peak

ground acceleration (ap,min) and their frequency

parameter (p) are identical. This statement together

with the first two hypotheses results in the third

hypothesis. Nonetheless, the third hypothesis will be

validated numerically as well.

If the above hypotheses are valid the possible

collapse of MDOF catenary arches can be determined

on the basis of the OAS of slender monolithic blocks.

5 Effect of size and slenderness

As it was discussed above, the main characteristics of

the critical optimal four-hinge mechanism of a cate-

nary arch are p, ap;min, d and the locations of the

hinges, given by c3 and c
0
3 (Fig. 9b). If the distribution

of the mass is given the function of the axis of a

catenary arch can be unambiguously prescribed by the

span and the shallowness, i.e. by l and f.

Now it is presented, how these parameters depend

on the size and slenderness of the structure.

Size effect. For a given shape (slenderness (d/l) and

shallowness (f/l) are given): c3; c
0
3, ap;min and d are

independent of the size, while the frequency parameter

is inversely proportional to the square root of size:

ap;min ¼ uniform; d ¼ uniform; p� 1
ffiffi

l
p � 1

ffiffiffi

f
p

size effectð Þ;
ð11Þ

(The moments due to the gravity loads are propor-

tional to l3 while the rotational inertia is proportional

to l4, hence the (normalized) acceleration of rotation

(i.e. p2), is proportional to l3=l4 ¼ 1=l.)

Equation (11) holds both for slender (see Eqs. (9)

and (10)) and not slender arches.

Slenderness effect for a given size. The effect of

slenderness was derived for slender catenary arches,

i.e. for d=l � 1, and are given by Eqs. (9) and (10).

ap;min and d are proportional to the thickness, while c3
and the frequency parameter are unaffected by the

thickness. Note that for not slender arches expressions

in Eqs. (9) and (10) can be used only as

approximations.

6 Calculation of the dynamic parameters

of an arch

Heyman [1] gives a procedure to determine the limit

peak ground acceleration (ap;min), and the geometry of

the corresponding critical optimal four-hinge mecha-

nism, when the thrust line touches the contour

(Fig. 12). When the four-hinge mechanism is known

using nonlinear geometrical equations and static

equilibrium the angle of the neutral position (d) can
be directly calculated. These straightforward calcula-

tions are not presented here.

To calculate the frequency parameter (p), two

slightly different expressions are given in [12]

Appendix A, which for slender arches are identical.

The application of the second one (Eq.A-10 of [12]) is

recommended (see also Eq. 17 of [13]), it is:

p ¼

ffiffiffiffiffiffi

Bv

Ad

s

: ð12Þ

The rotation of the left segment of the four-hinge

mechanism is denoted by u (Fig. 13a). Bv is the

moment which equilibrates the mechanism subjected

to gravity loads at u ¼ 0 (Fig. 13b). A is the rotational

inertia of the four-hinge mechanism. It may be

observed that their ratio is the angular acceleration

of the left segment:

Bv

A
¼ €u; ð13Þ

when the structure is at the u ¼ 0 position and it is

loaded by the gravity load (Fig. 13b). To evaluate p,

either €u is determined directly, and p ¼
ffiffiffiffiffiffiffiffiffi

€u=d
p

or all

the parameters are evaluated in Eq. (12).

Fig. 12 Thrust line of an arch subjected to gravity load and a

horizontal acceleration ap
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7 Verification of the hypotheses

In the numerical calculation of the multi-block arches,

the model presented in [12] is applied, i.e. only planar

displacements are considered, any number of inter-

faces may split open and close, Housner’s model is

applied for inelastic impact, and the second-order

effects are taken into account.

For a few cases, the arch characteristics are given in

Table 1 by the dimensionless parameters c1 � c4,

where the arch characteristics are calculated as

p ¼
ffiffiffiffiffiffiffi

g

c1f

r

; ap;min ¼ c2
dl

f 2
g; d ¼ d

c4l
: ð14Þ

These expressions were constructed in such a way

that c1 � c4 are unaffected by the size, and for slender

structures they do not depend on the slenderness [see

Eqs. (11) and (12)]. Note that for the application of

OAS only two parameters, p and ap;min are required.

To verify the hypotheses, several thousand time-

history analyses were carried out for different arch

geometries and signals. Although the existing numer-

ical comparisons are not all conclusive, our results so

far strengthen the hypotheses.

In the following, the effect of three different

excitations will be investigated, which are shown in

Fig. 14a–c: sine curve, a square signal and a step

impulse.

Hypothesis 1 The OAS of arches with three different

shallowness and three different slenderness are given

in Fig. 15, assuming a four-hinge mechanism (the

hinges are at the maximum eccentricities). It can be

seen that the OAS of more slender arches are to the left

of less slender ones. Hence, the OAS of the four-hinge

mechanism of a very slender catenary arch is a safe

and reliable approximation of those of not slender

catenary arches.

Hypothesis 2 The effect of possible multiple cracks

is investigated in Fig. 16, for three different geome-

tries and three different signals. It can be seen that the

OAS of the critical optimal four-hinge mechanism of a

slender catenary arch is either reasonably close or a

safe approximation of that of an arch with possible

multiple cracks.

Hypothesis 3 The OAS of single rigid blocks and

MDOF catenary arches are compared for three differ-

ent geometries and excitations (Fig. 17). It can be

observed that the OAS of a single rigid block is either

reasonably close or a safe approximation of that of a

catenary arch with possible multiple cracks. The

overturning curve of the rigid block seems to be a safe

approximation of that of a MDOF catenary arch in a

wide ap=ap;min range.

Fig. 13 Illustration of the

calculation of the frequency

parameter

Table 1 Constants of Eq. (14) and Fig. 9b for the four-hinge mechanisms of catenary arches: p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g= c1fð Þ
p

, ap;min ¼ c2gdl=f
2

(mass is uniform along the arc—hyperbolic shape)

d=l f/l = 0.2 f/l = 0.3 f/l = 0.4

c1 c2 c3=c
0
3 c4 c1 c2 c3=c

0
3 c4 c1 c2 c3=c

0
3 c4

0.0125 0.219 0.823 0.24/0.28 0.34 0.270 0.897 0.26/0.28 0.40 0.321 0.983 0.27/0.29 0.45

0.025 0.218 0.829 0.22/0.30 0.31 0.267 0.899 0.24/0.29 0.36 0.318 0.984 0.26/0.30 0.43

0.05 0.229 0.853 0.18/0.34 0.25 0.263 0.907 0.22/0.32 0.34 0.313 0.988 0.24/0.31 0.40

0.1 – – – – 0.292 0.944 0.17/0.38 0.27 0.296 1.006 0.20/0.36 0.34
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8 Numerical example

The circular arch given in Fig. 18a (f=l ¼ 0:289,

d=l ¼ 0:0346) is investigated for all the three signals

shown in Fig. 14. The acceleration under which the

circular arch will not move is ap;min ¼ 3:036m=s2.

8.1 Lower bound and equivalent thickness

for the replacement catenary arch

As replacement catenary arches a lower bound ( �d) and

an ‘‘equivalent’’ thickness (d̂) can be obtained ( �d� d̂)

as follows:

• As it was stated above, the catenary arch of

maximum uniform thickness, which can be drawn

within the contour of an arch ( �d, Fig. 8) is expected

to be a safe approximation, i.e. the replacement

catenary arch thickness should not be lower than

this value.

• The limit peak ground acceleration (ap;min, see the

definition above) of the replacement catenary arch

is taken to be identical to that of the arch, which

results in thickness, d̂.

The lower bound and the equivalent thicknesses of

the replacement catenary arch are 0.0207 l and

0.0293 l (Fig. 18b, c); their overturning curves are

given by dashed and dotted lines in Fig. 19. The

results of the simplified calculations are given in

Table 2; the details are given below for the lower

bound solution.

For the lower bound replacement catenary arch (d/

l = 0.0207), p and apmin can be calculated numerically,

they are:

p ¼
ffiffiffiffiffiffiffi

g

c1f

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

c1l f=lð Þ

r

¼ 11:82
ffiffi

l
p 1

s

� �

; ap;min ¼ c2
dl

f 2
g

¼ c2
l

f

� �2d

l
g ¼ 2; 163

m

s2
;

ð15Þ

where c1 = 0.2437, c2 = 0.8896, g = 9.81 m/s2.

The OAS of a rigid block and the arch (with these p

and ap;min values) are presented in Fig. 19. For all the

three signals, the OAS of the rigid block is a safe

approximation of that of the arch, provided that p and

ap;min are calculated by Eq. (15). Since for a rigid

block p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:75g=R
p

), we may write:

R ¼ 0:75
c1 f=lð Þ l ¼ 0:0528l.

We may observe that for this geometry even the

block determined from the equivalent thickness of the

arch results in a safe approximation due to the effects

of the applied simplifications, namely that.

– a four-hinge mechanism is investigated instead of

the MDOF arch,

– a very slender structure is considered instead of the

real one.

The determination of the geometry of the replace-

ment arch is not the task of this paper, whether the

response of a block based on the ‘‘equivalent’’

thickness can be in general used for an arbitrary

geometry safely can be answered only after extensive

numerical investigations.

9 Proposed design method

Now it is demonstrated, how the safety of an arch can

be determined, if the characteristic OAS of a rigid,

monolithic slender block for a given site is given [28],

as shown in Fig. 20d. The peak ground acceleration

(ap) is determined under which the circular arch shown

in Fig. 20a is safe, where the total size is l ¼ 10:0,

f=l ¼ 0:289, d ¼ 0:35 m.

The dimensions of the replacement catenary arch is

obtained by geometrical considerations, here the

‘‘equivalent’’ thickness is applied: l = 10 m,

f = 2,924 m, d = 0.293 m. For the replacement cate-

nary arch (Fig. 20b), p and ap;min must be determined

numerically (which is based on a simple static

Fig. 14 Signals in the

numerical calculations.

Complete sine (a), square
signal (b) and a step impulse

(c)
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Fig. 15 OAS of optimal critical four-hinge mechanisms of catenary arches with different slenderness, the signals are shown in

Fig. 14a–c (parameters of the arches are given in Table 1)
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analysis), they are p ¼ 3:705=s, ap;min ¼ 3:036 m=s2.

From the curve of Fig. 20d, we have (at p = 3.705):

ap
ap;min

¼ 1:351 ! ap ¼ 3:036	 1:351 ¼ 4:102
m

s2
:

ð16Þ

This means, that if in the given location the PGA

(ap,max) of possible earthquakes are below 0.418 g, the

investigated circular arch may move during the

excitation, but it is not going to collapse.

Obviously, for the design procedure, the character-

istic OAS (for a slender block) [28] must be known for

a specific site, which is not available yet. (They were

determined only for one hundred individual records in

[28].)

9.1 Comparison with the response spectrum

analysis

We would like to emphasize the analogy between the

possible design methodology for overturning of rock-

ing multi-block arches (Fig. 20) and columns and the

response spectrum analysis (RSA) of elastic (or

elastic–plastic) MDOF structures (Table 3) [32]. In

both cases,

– instead of the complex structure, a SDOF structure

is investigated: for the RSA a spring–dashpot

system, which is defined by the period of vibration

and the damping ratio, while for the rocking

structure a (slender) monolithic block character-

ized by the frequency parameter and the limit peak

ground acceleration;

Fig. 16 OAS of optimal critical four-hinge mechanisms and multiple crack models for three different arch geometries (a) and three

different excitations (b) (signals are shown in Fig. 14)
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– the response spectrum of the SDOF structure is

calculated: for RSA the (pseudo) acceleration

response spectrum (Sd), while for rocking struc-

tures the overturning acceleration (response) spec-

trum (OAS) (Fig. 21);

– the original structure in both cases is evaluated on

the basis of the response spectrum of the SDOF

structure.

Fig. 17 OAS of a multiple crack model catenary arch and a rigid block for three different arch geometries (a) and three different

excitations (b) (signals are shown in Fig. 14)

Fig. 18 The investigated circular arch (a) and the lower bound (b) and equivalent (c) replacement catenary arches
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An important difference that the RSA—at least for

SDOF elastic structures—is ‘‘accurate’’, while the

above procedure for rocking arches contains several

conservative approximations: (i) the replacement of

the arch by a catenary arch, (ii) then its replacement by

a slender monolithic block and (iii) the neglect of the

energy dissipation during impact (which is negligible

for slender structures only).

Fig. 19 OAS of an arch and its replacement rigid blocks for the three signals shown in Fig. 14

Table 2 Comparison of the dynamic characteristics of an arch (Fig. 18) and its simplified models

Model Circ. arch d/l = 0:0345 d/l = 0.0293 (equivalent) d/l = 0.0207 (lower bound)

Repl. catenary arch Monolithic block Repl. catenary arch Monolithic block

c1 0.242 0.2473 R ¼ 0:0536l 0.2437 R ¼ 0:0528l

c2 0.768 0.8914 0.8896

ap,min 3.036 3.036 3.036 2.163 2.163

Fig. 20 Design of an arch if the OAS of a monolithic block for a

specific site is known: the arch geometry (a); a possible

replacement catenary arch and its frequency parameter and the

limit ground acceleration (b) and the evaluation of the

characteristic OAS (d) of a slender block (c)
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10 Discussion

In this paper, the similarity of the responses of

monolithic columns and multi-block arches are inves-

tigated. It was shown how the OAS of slender

monolithic blocks can be applied for multi-block

arches. The key of the solution was that there is

dynamical similarity of the response of a monolithic

column and a multi-block arch if the latter one is a

catenary arch.

As it has been shown, the four-hinge mechanism is

a good approximation of multi-block catenary arches

for overturning. This seems to be in contradiction to

the conclusion of [29] where it was stated that

considering a SDOF four-hinge mechanism may

significantly overestimate the collapse load of multi-

block arches. Note that there is no contradiction: this

new statement is valid only for catenary arches.

Since most of the arch-shapes do not follow the

thrust line, the first step of design is the determination

of the replacement catenary arch. In this paper, only an

equivalent and a lower bound thickness was given, the

lower value (when only that portion of the arch is

considered (Fig. 8), which constitutes a catenary arch)

is a conservative approach. To reach a better approx-

imation, a refined replacement procedure should be

developed. (Since in the recommended design proce-

dure the catenary arch is characterized by two

parameters, p and ap;min only, a possible solution can

be that these two parameters are approximated

directly, without giving the geometry of the ‘‘replace-

ment catenary arch’’.)

Since it was shown previously that the results of a

single block (e.g. its overturning acceleration response

spectrum) can be safely used for the design of multi-

block columns, and in this article, it was demonstrated

that multi-block catenary arches behave analogously

to multi-block columns; we may conclude that the

results of single blocks can be directly used for the

evaluation of multi-block arches as well. Although the

existing numerical comparisons are not all conclusive,

we are convinced that the presented methodology is

Table 3 Comparison of

RSA and the proposed

design method for

overturning

Response Spectrum Analysis Overturning of rocking structures

Simplified model SDOF spring–dashpot system SDOF slender monolithic block

Governing parameters T and n p and ap;min

Response spectrum Sd OAS

Result of analysis Base shear force for a given ap ap which results in overturning

Fig. 21 The (pseudo)

acceleration response

spectrum of a SDOF elastic

structure (a) and the OAS of

the rocking block (b)
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the proper approach to the earthquake-resistant design

of multi-block arches.
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