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Abstract. We prove a common extension of Bang’s and Kadets’ lemmas for contact
pairs, in the spirit of the Colourful Carathéodory Theorem. We also formulate a gen-
eralized version of the affine plank problem and prove it under special assumptions. In
particular, we obtain a generalization of Kadets’ theorem. Finally, we give applications to
problems regarding translative coverings.

1. Plank problems

In 1950, Bang [Ba50, Ba51] proved the plank problem of Tarski [Ta32]: he showed that
if a convex body K ⊂ Rd is covered by a finite number of planks, then the sum of their
widths is not less than the minimal width of K. Here a plank P is the closed region of
Rd between two parallel hyperplanes, whose distance apart is the width of P , denoted by
w(P ). Let Kd stand for the family of convex bodies in Rd. Given a convex body K ∈ Kd

and a direction u ∈ Rd \{0}, the width of K in direction u, denoted by wu(K), is the width
of the smallest plank containing K whose bounding hyperplanes are orthogonal to u. The
minimal width of K is w(K) = minuwu(K).

In the same article, Bang suggested an affine invariant generalization of the problem.
Given a convex body K ⊂ Rd and a plank P ⊂ Rd, he defined the width of P relative to K
as

(1) wK(P ) =
w(P )

wu(K)

where u ∈ Rd \ {0} is normal to a boundary hyperplane of P .

Conjecture 1 (The affine plank problem, Bang [Ba51]). Assume that the planks P1, . . . , Pn

cover the convex body K ∈ Kd. Then
∑n

i=1wK(Pi) ≥ 1.

The statement was proved for symmetric K’s by Ball [Ba91], but is still open for general
convex bodies apart from the following special cases: only two planks in the plane [Ba54,
Mo58, Al68], at most three planks in the plane [Hu93], or when the planks can be partitioned
to two parallel subfamilies [AkKP19].

One of the main ingredients of Bang’s proof of the plank problem is the following state-
ment, which has been polished to its present form by Fenchel [Fe51] and Ball [Ba01]:

Lemma 1 (Bang’s Lemma). Let (ui)
n
1 be a sequence of unit vectors in Rd and (wi)

n
1 a

sequence of positive numbers. Then for any sequence (mi)
n
1 of reals, there exists a point u
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of the form

u =
∑

εiuiwi

with εi = ±1 for i ∈ [n], so that

|〈u, uk〉 −mk| ≥ wk

holds for each k.

Above and later on, [n] = {1, . . . , n}.
Bang’s lemma has found numerous applications in the past decades. In particular, it is a

crucial ingredient of Ball’s proof for the symmetric case of the affine plank problem [Ba91],
his lower bound on the density of sphere packings [Ba92] as well as Nazarov’s solution of
the coefficient problem [Na97].

In 2005, Kadets [Ka05] generalized the original plank problem to coverings with arbitrary
convex bodies in Rd. He proved that if a family of convex bodies K1, . . . ,Kn ∈ Kd covers
K ∈ Kd, then

∑n
i=1 r(Ki) ≥ r(K), where r(K) denotes the inradius of K. The crux of his

argument boils down to the following generalization of Theorem 1. Below, Sd−1 denotes
the d-dimensional unit sphere.

Lemma 2 (Kadets’ Lemma). Assume that U1, . . . , Un ⊂ Sd−1 are finite sets of unit vectors
in Rd so that 0 ∈ convUi for each i. Let r1, . . . , rn > 0 be positive numbers. Then for every
set of points o1, . . . , on ∈ Rd there exist ui ∈ Ui, i = 1, . . . , n so that setting u =

∑n
i=1 riui,

〈u− ok, uk〉 ≥ rk
holds for every k.

We note that the planar case of Kadets’ theorem was also proved much earlier by
Ohmann [Oh53], and later independently by Bezdek [Be07]. Prior to that, Bezdek and
Bezdek [BeB95] solved Conway’s potato problem and showed that if K is successively sliced
by n − 1 hyperplane cuts, dividing just one piece by each cut, then one of the remaining
pieces must have inradius at least 1

nr(K). In a follow-up article [BeB96], they extended

their result to K-inradii instead of inradii: given a convex body K ∈ Kd and a convex set
L ⊂ Rd, the K-inradius of L is defined as

(2) rK(L) = sup{λ ≥ 0 : λK + x ⊂ L for some x ∈ Rd.}
Note that for a plank P ⊂ Rd,

(3) wK(P ) = rK(P ).

The connection to plank problems is provided by Alexander [Al68], who proved that for
K ∈ Kd, the sum of the K-inradii of n planks covering K is guaranteed to be at least 1 if
and only if for an arbitrary set of n − 1 hyperplanes, there exists a convex body L ⊂ K
with rK(L) ≥ 1

n not cut by any of these hyperplanes.
Along this direction, Akopyan and Karasev [AkK12] proved analogues of Kadets’ result

for K-inradii: among other results, they showed that if K1, . . . ,Kn form an inductive
partition of K ∈ Kd, then

∑
rK(Ki) ≥ 1 holds, moreover, the same statement is true in

the plane for arbitrary convex partitions.
The goal of the present paper is to generalize Lemmas 1 and 2 in the spirit of Bárány’s

Colourful Carathéodory Theorem [Bá82]. The resulting statement may be applied to gen-
eral covering problems involving K-inradii, and in particular, to translative covering prob-
lems.

Let K,L ⊂ Rd be convex bodies. It is a well-known fact that if K ′ is a maximal
homothetic copy of K inscribed in L, then there exists a set of points u1, . . . , un ∈ Rd
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with corresponding normal directions v1, . . . , vn ∈ Rd \ {0} such that ui is a common
boundary point of K ′ and L with corresponding (common) outer normal vector vi for
every i, moreover, 0 ∈ conv{v1, . . . , vn}. The pairs (ui, vi) are called contact pairs of K ′

and L. A set of contact pairs is called complete if 0 ∈ conv{v1, . . . , vn}. Carathéodory’s
theorem implies that in the above setting, there always exists a complete set of contact
pairs of cardinality at most d+ 1.

We are going to generalize Bang’s lemma to sets of contact pairs. The forthcoming
arguments will use the following setup. For vectors u, v ∈ Rd, we define w ∈ Rd × Rd as
w = (u, v). For any such vector w = (u, v), let ŵ = (v, u). Here comes the main result of
the paper.

Theorem 1. Assume that W1, . . . ,Wn ⊂ Rd×Rd are finite sets such that (0, 0) ∈ convWi

for each i ∈ [n]. For any set of vectors z1, . . . , zn ∈ Rd×Rd, there exist wi ∈Wi, i ∈ [n] so
that by setting w =

∑n
i=1wi,

(4) 〈w − zk, ŵk〉 ≥ 〈wk, ŵk〉

holds for each k.

Theorem 1 is formulated in the context of contact pairs (ui, vi). Setting vi = ui and
yi = xi for every i, it takes the following simpler form.

Corollary 1. Assume that all the finite vector sets U1, . . . , Un ⊂ Rd contain the origin in
their convex hull. Then for any set of vectors xi, . . . , xn ∈ Rd we may select ui ∈ Ui for
each i ∈ [n] so that setting u =

∑
i ui,

〈u− xk, uk〉 ≥ |uk|2

holds for every k.

When all the sets Ui consist of unit vectors, we recover Kadets’ lemma, while the case
Ui = {−ui, ui} with ui ∈ Rd corresponds to Bang’s lemma.

Theorem 1 and Corollary 1 lead towards the following generalization of the affine plank
problem. We say that the convex sets C1, . . . , Cn ⊂ Rd permit a translative covering of
K ∈ Kd if

K ⊂
n⋃

i=1

(Ci + xi)

for some x1, . . . , xn ∈ Rd.

Conjecture 2. Assume that the convex sets C1, . . . , Cn ⊂ Rd permit a translative covering
of the convex body B ∈ Kd. Then

n∑
i=1

rB(Ci) ≥ 1

holds.

Equation (3) shows that this is indeed an extension of Conjecture 1, the affine plank
problem.

In addition to the special cases of the affine plank problem discussed earlier, Conjecture 2
has been proved if B is an ellipsoid [Oh53, Be07, Ka05] or if the sets Ci form a partition of
B in the plane, or an inductive partition in higher dimensions [AkK12]. Corollary 1 implies
that it also holds in a wide range of cases.
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Theorem 2. Conjecture 2 holds if for every i ∈ [n] there exists some oi ∈ Rd such that
rB(Ci)B − oi and Ci − oi have a complete set of contact pairs Wi ⊂ Rd × Rd with (0, 0) ∈
convWi, so that for any two such contact pairs (ui, vi) ∈Wi, (uj , vj) ∈Wj with i 6= j,

(5) 〈ui, vj〉 = 〈uj , vi〉
holds.

We immediately obtain the following generalization of Kadets’ theorem [Ka05].

Corollary 2. Conjecture 2 holds if for every i ∈ [n] there exists some oi ∈ Rd such that
rB(Ci)B − oi and Ci − oi have a complete set of contact pairs of the form (u, u).

A particular case is when oi ∈ rB(Ci)B, and the contact points between rB(Ci)B and
Ci are the local extrema of the radial function |x − oi| for x ∈ ∂(rB(Ci)B), provided that
0 is contained in the convex hull of these. Such a situation is illustrated on Figure 1.

Figure 1. Convex discs with complete sets of contact pairs of the form
(u, u)

The direct application of Theorem 1 yields another sufficient condition.

Proposition 1. Conjecture 2 holds in R2d if for every i there exists some oi ∈ R2d such
that rB(Ci)B − xi and Ci − oi have a complete set of contact pairs of the form (w, ŵ).

Applications of Theorem 1 to translative coverings are listed in Section 3.

Although the above results are formulated for finite vector sets/families of convex sets in
Rd, they may be extended to an arbitrary number of vectors/convex sets in finite dimen-
sional real or complex Hilbert spaces using the standard techniques.

Further developments, historical and mathematical details related to the plank problem
may be found in [Am10, Be14, FT22].

2. Proof of the main results

Proof of Theorem 1. For each i, let wi = (ui, vi) and zi = (xi, yi) with ui, vi, xi, yi ∈ Rd.
Select wi ∈Wi, i ∈ [n] so as to maximize

(6)
∑
i 6=j

〈ui, vj〉 −
∑
i

〈xi, vi〉 −
∑
j

〈uj , yj〉
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and set w = (u, v) =
∑

iwi, that is, u =
∑

i ui and v =
∑
vi. We will show that (4) holds

for every k, that is,

(7) 〈u− xk, vk〉+ 〈uk, v − yk〉 ≥ 2〈uk, vk〉.
Let k ∈ [n] be arbitrary. By the condition of the theorem, there exist non-negative

numbers α(w′k), w′k ∈Wk so that
∑

w′
k∈Wk

α(w′k) = 1 and∑
w′

k∈Wk

α(w′k)w′k = (0, 0).

Moreover, since (6) is maximal, for each w′k = (u′k, v
′
k) ∈Wk,

0 ≥
∑
i 6=k

〈ui, v′k − vk〉+
∑
j 6=k

〈u′k − uk, vj〉 − 〈xk, v′k − vk〉 − 〈u′k − uk, yk〉.

Multiplying the above equation by α(w′k) and summing up for all w′k ∈Wk leads to

0 ≥
∑
i 6=k

〈ui,−vk〉+
∑
j 6=k

〈−uk, vj〉 − 〈xk,−vk〉 − 〈−uk, yk〉,

which directly implies (7). �

Proof of Theorem 2. We may assume that 0 ∈ B. Let λi = rB(Ci) for every i, and λ :=∑
λi. Assume on the contrary that λ < 1 and B ⊂

⋃
(Ci + x′i) with some x′1, . . . , x

′
n ∈ Rd.

Choose ε > 0 so that (1 + ε)λ < 1. For each i, let Wi be the complete set of contact
pairs between λiB − oi and Ci − oi which contains (0, 0) in its convex hull. Also, set
o = (1 + ε)

∑
oi and xi = x′i + oi − o for each i.

Apply Theorem 1 to the sets (1 + ε)Wi and the corresponding points zk = (2xi, 0). It
implies the existence of wi = (ui, vi) ∈Wi, i ∈ [n] so that setting w = (u, v) =

∑
(1 + ε)wi,

〈u− 2xk, (1 + ε)vk〉+ 〈v, (1 + ε)uk〉 ≥ 2(1 + ε)2〈uk, vk〉
holds for each k. Since (5) implies that 〈u, vk〉 = 〈v, uk〉, the above equation simplifies to

〈u− xk, vk〉 ≥ (1 + ε)〈uk, vk〉 > 〈uk, vk〉.
Since uk is a boundary point of Ck − ok with outer normal vk, the convexity of Ck implies
that u − xk 6∈ Ck − ok, equivalently, u + o 6∈ Ck + x′k for any k. On the other hand,
ui ∈ λiB − oi for every i. Therefore,

u ∈
∑
i

(1 + ε)λiB −
∑
i

(1 + ε)oi = (1 + ε)λB − o.

Since B is convex and 0 ∈ B, (1 + ε)λB ⊂ B. Hence, u + o ∈ B, but it is not covered by
any of the sets Ck + x′k, which is a contradiction. �

The proof of Proposition 1 is nearly identical, thus we leave it to the dedicated reader.

3. Applications to translative coverings

Corollary 1 readily implies the next statement regarding translative coverings.

Proposition 2. Let K = {K1, . . . ,Kn} be a family of convex bodies in Rd containing the
origin in their interior. For each i, let Vi ⊂ Sd−1 be a set of direction vectors for which
0 ∈ conv Vi. Denote by Ui the set of projection vectors of 0 onto the supporting hyperplanes
of Ki corresponding to members of Vi. Then K does not permit a translative covering of
U1 + . . .+ Un.
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A particular case is when all the Ki’s are homothets of a fixed convex body K ∈ Kd.
Such homothetic coverings have been studied extensively, see e.g. [Na18], Section 3.2 of
[BrMP05] and Section 15.4 of [FT22]. A related conjecture is due to Soltan [So90]:

Conjecture 3 (V. Soltan). Assume that K ∈ Kd and that λ1K, . . . , λnK permit a transla-
tive covering of K with λi ∈ (0, 1) for every i. Then

n∑
i=1

λi ≥ d.

Let T d denote the d-dimensional regular simplex. Setting K = T d, n = d + 1 and
λi = d

d+1 shows that the above bound may not be improved.

Conjecture 3 was proved for d = 2 or n = d + 1 by Soltan and Vásárhelyi [SoV93] and
for K = Bd by Glazyrin [Gl19], while Naszódi [Na10] showed that

∑
λi > αd for any fixed

α < 1 if d is sufficiently large.
Böröczky asked whether the same bound holds for covering a triangle with its negative

homothets. Vásárhelyi [Vá84] gave an affirmative answer. We conclude the article with the
extension of this result to arbitrary dimensions.

Theorem 3. Assume that T ⊂ Rd is a non-degenerate simplex, and λ1, . . . , λn ≥ 0 are so
that the family −λ1T, . . . ,−λnT permits a translative covering of T . Then

(8)
n∑

i=1

λi ≥ d.

Proof. We may assume that T = T d with its centre at 0. Let V be the set of normal
directions of the facets of T d and U be the set of projection vectors of 0 onto the facets
of T d. It is well-known that convU = −1

dT
d. Applying Proposition 2 with Ki = −λiT d,

Vi = V and Ui = λiU yields an uncovered point in

U1 + . . .+ Un ⊂ (λ1 + . . .+ λn)T d,

which implies (8). �
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