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ABSTRACT

In the research projects and industrial projects severe optimization problems can be met, where the
number of variables is high, there are a lot of constraints, and they are highly nonlinear and mostly
discrete issues, where the running time can be calculated sometimes in weeks with the usual optimi-
zation methods on an average computer. In most cases in the logistics industry, the most robust
constraint is the time. The optimizations are running on a typical office configuration, and the company
accepts the suboptimal solution what the optimization method gives within the appropriate time limit.
That is, why adaptivity is needed. The adaptivity of the optimization technique includes parameters of
fine-tuning. On this way, the most sensitive setting can be found. In this article, some additional
adaptive methods for logistic problems have been investigated to increase the effectivity, improve the
solution in a strict time condition.
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1. INTRODUCTION

In research works, logistic problems are solved many times, which are not only nonlinear, but
discrete, some are non-continuous, and cannot be represented in diagrams, only with matrix
forms. In one of previous research, the problem of adaptive optimization has been employed
using evolutionary programming in the optimization of large-scale maintenance systems [1].
If the optimization problem is complex, it is hard to find the global minimum or maximum
[2, 3]. In this paper, the firefly algorithm has been applied to a logistic problem with a large
variable count. The firefly algorithm is a swarm-based heuristic algorithm presented by Xin-
She Yang [4], inspired by the mating behavior of fireflies. The firefly algorithm based on three
rules:

� All fireflies are attracted by each other;
� Attractiveness is proportioned by brightness, the less brilliant move towards the brighter

one;
� If there is no more luminous firefly than the selected one, that will move randomly in the

state space.

The algorithm is shown in Code 1.
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Code 1. Pseudo-code of the firefly algorithm, (on the
basis of [4])

The firefly algorithm has several control parameters, for
example, the absorption coefficient, the randomization
control factor, and the firefly population size. The values of
these control parameters significantly affect the quality of
the achieved solution and the efficiency of the algorithm. It
is a problem depends on selecting suitable control parame-
ters for the actual algorithm. Hard to deal with complex
issues with many local optima where the most algorithms
are trapped. Although it is highly important, there is no
consistent methodology for determining the control
parameters of the applied firefly algorithm variant. Mostly,
the settings are fixed throughout many experiments or set
arbitrarily within some predefined ranges [5].

2. THE PROBLEM

The problem to be optimized is a supply chain optimization
problem based on the olive oil production by the company
Tariş in Turkey described in [6]. The whole problem cannot
be described within the framework of this article, so the core
function (1) is needed to be optimized here. The main
objective function is the profit maximization, as in many
other cases:

FðXiÞ ¼
XI

i¼1

XK

k¼1

�
pi � cik

�
Yik �

XI

i¼1
ðoc$oili

� pciÞXi � t$toil; (1)

where pi is the product price; cik is the transportation cost;
Yik is the produced quantity; oc is the oil cost (1 L); oili is the
required oil quantity; pci is the packaging cost; X is the total
produced quantity of the given packaging unit; t 3 toil is the
transportation cost of the oil used; and the constraints are:

Xi ≥
XK

k¼1
Yik∀i; (2)

XI

i¼1
oiliXi ≤ total oil; (3)

Yik ≤ dik ∀i; k; (4)

Xi ∈Z∀ i; (5)

Yik ∈Z∀ i; k: (6)

The total produced quantity must less than the entire
amount required (1); the oil used must less than the total oil
available (2); the amount provided for each region must be
less than the required quantity of the given region (3); and
the variables must be integers (5), (6).

In the model 10 packaging units (p), and 13 regions (r)
have been used, so the matrix (Y) to be optimized, which is
the produced quantity matrix, will contain 130 variables.

3. DISTANCE AND MOVEMENT

In the research, the swarm methods like the Particle Swarm
Optimization (PSO) [7] and the Firefly Algorithm (FA) [8]
are very often used; both of them are common and widely
used to solve a wide range of problems. However, until now
they were not used for a large number of variables. The
firefly algorithm is working well with various test functions,
a lot of general problems [9], but how it performs on a large
variable count problem.

The first problem was the discrete nature of the problem.
The original firefly algorithm was developed to optimize
continuous problems and not just continuous problems, but
problems where the directions have meaning, so the moving
toward have meant so that the fireflies can move toward each
other. Thus, the first task was to define the distance of the fireflies
and define the movement function. In some articles, they fol-
lowed that way [10, 11]. The distance of two fireflies (F1, F2) is:

dstðF1; F2Þ ¼
X

i¼1::p

j¼1::r

Abs
�
yF1ik � yF2ik

�
; (7)

where F1 and F2 are the two fireflies whose distance we want
to define; yik is the decision variable the manufactured
quantity of the packaging unit i in the region k.

The movement function is:

move towardðF1; F2Þ: yF1ik ¼ yF1ik þ b$
�
yF1ik � yF2ik

�þ a$rnd � 0:5

(8)

executed on every matrix element, where b ¼ e−g*r, gamma
was set to 1; a5 range 0.05 randomization component where
the range is the range of interpretation, in this case, it was a
set to 30,000 as the upper limit of the decision variables.

When there is no brighter firefly the firefly moves
randomly:

moverandomðF1Þ yF1ik ¼ yF1ik þ rndð±50Þ: (9)

First, the randommovement parameter has been fixed, which
was selected by guesswork; the firefly count was 5. All runs were
done in an average office computer, a 1st generation Intel Core
I7-870 processor, 6 GB RAM, the algorithm was programmed
in C# .NET and all the test runs were limited 10 min.

Objec�ve func�on f(x), x=(x1,……, Xd)T

A general ini�al popula�on of fireflies xi (i=1,2,…….., n)

Light intensity Ii at xi is determined by f(xi)

Define light absorp�on coefficient γ

while (t < MaxGenera�on)

for i = 1 : n all n fireflies

for j = 1 :n all n fireflies (inner loop)

if (Ii < Ij), Move firefly I towards j; end if

Vary a�rac�veness with distance r via exp[-γ r]

Evaluate new solu�ons and update light intensity 

end for j

end for i

Rank the fireflies and find the current global best g*

end while
Postprocess results and visualiza�on
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The first run, with the usual parameters, as mentioned in
the literature [6], gave the following result.

Figure 1 shows the convergence of the solution. In the
figure, it is visible when the algorithm jumps out in a local
optimum, and the function does not start to flatten during
the limited 10 min of the run. The best fitness value was:
11579252.39.

4. MODIFIED RANDOM MOVEMENT WITH
SELF-ADAPTIVE VALUES

The random movement function (9) moves that firefly,
which is not moved in the actual iteration because there was
no brightest firefly than him. Several parameters have been
tried instead of the first guess ±50 value in the random
movement function; the increase was slight. Then a pro-
portional equation has been used where the random
movement is proportional to the actual value therefore, the
random movement will adapt to the scale of the actual
problem.

The proportional value equation is the following:

moverandomðF1ÞyF1ik ¼ yF1ik þ rnd
�
yF1ik

�
n
�� rnd

�
yF1ik

�
n
�
:

(10)

The algorithm was run at different proportional values (n)
(Table 1). These values show that the target function value is
not improved after it reached the 25,000 dividers, because
the highest value of the product matrix is about 30,000 so
the 25,000 and the 50,000 gives the same random movement
value of 1. This modified firefly algorithm with this method
of here its brightness improves. So, we generate N random
movement variants and choose the best solution; if the so-
lution improves the solution, the firefly will move in that

Fig. 1. The target function, firefly algorithm first run without any
adjustment

Table 1. Proportional values at random movement

Proportional to the actual value Target function

±yF1ik 8862235.24
±yF1ik =2 10661050.00
±yF1ik =5 10310898.52
±yF1ik =10 10167617.44
±yF1ik =50 11074974.70
±yF1ik =100 11546460.71
±yF1ik =500 11618969.21
±yF1ik =1000 11470180.17
±yF1ik =5000 11518200.56
±yF1ik =10000 11600611.80
±yF1ik =25000 11621109.67
±yF1ik =50000 11621109.67

Table 2. Modified random movement with proportional movement (best values are marked)

N ±yF1ik ±yF1ik =2 ±yF1ik =5 ±yF1ik =10

5 11658592.07 11819534.46 11826480.57 11901170.66
10 11708473.55 11850753.79 11922270.75 11933058.08
50 11747862.58 11811321.54 11804486.64 11968312.55
100 11706481.29 11832501.89 11933977.41 11968701.49
500 11898168.58 11777553.58 12069210.91 11971114.62
1,000 11744732.59 11887363.76 11971260.72 11953844.37

N ±yF1ik =50 ±yF1ik =100 ±yF1ik =500 ±yF1ik =1000

5 11730555.38 11652020.7 11610061.0 11612635.3
10 12028420.92 11831095.4 11512298.0 11433305.7
50 11831781.93 11902323.2 11730092.1 11542878.0
100 11874872.39 11919576.2 11766607.4 11607951.0
500 12060338.92 12120813.7 11683133.6 11571373.9
1,000 12049089.41 12063160.5 11721536.0 11682845.1

N ±yF1ik =5000 ±yF1ik =10000 ±yF1ik =25000

5 11230433.2 11498258.5 11709050.3
10 11682722.3 11607271.8 11594346.8
50 11639638.0 11524683.7 11567352.8
100 11547163.8 11490801.8 11607922.2
500 11554956.3 11287234.8 11324414.3
1,000 11370669.2 11075469.7 11280026.5
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direction, if not, it will stay there. In this case, this firefly
program acts as an elitist entity algorithm, because its value
does not change; it will go unmodified to the next generation
of the fireflies. Several proportional numbers have been
tried: the 5, 10, 50, 100, 500 and 1,000 random solutions and
selected the best; which has the minimum value of the
objective function. Do not forget that the running time is
limited, so higher cycle number (N) results in a lower

iteration count. Experimental runs have been carried out for
all proportional values.

The results (Table 2) show that the modified random
movement improved the solution in every case. The higher
randomization values were better to avoid the local optima
or jump out if stuck in a local optimum, but it cannot be too
big, because it moves in the state space too far. The best
solution was at ±yF1ik =100 and N 5 500, but a lot of other
values are close to this solution. This method also greatly
improved the convergence (Fig. 2); the difference can be
noticed compared to Fig. 1.

5. ADAPTIVE FIREFLY COUNT

Another critical parameter of the algorithm is the firefly
count, which is constant in standard algorithms. The main
idea was to improve the search power of the algorithm when
the convergence was starting to flatten. So, it was decided to
use a simple adaptive method to increase the firefly count. If
there is no increase in the global optimum, then the algo-
rithm adds new random initialized fireflies to the state space,
Code 2.Fig. 2. Modified random movement improved the convergence

Table 3. Improvement on the initial solution with adaptive firefly count

N ±yF1ik ±yF1ik =2 ±yF1ik =5 ±yF1ik =10

N 5 1 12070827.22 12122923.38 12125154.01 12144917.07
Imp. 1.43% 1.94% �0.16% 0.88%
FF count 442 450 451 419
N 5 5 12051943.05 12098366.66 12087990.38 12108718.04
Imp. 1.28% 1.74% �0.47% 0.58%
FF count 905.00 895.00 870.00 855.00
N 5 10 12084262.60 12095241.06 12129499.75 12111717.77
Imp. 1.54% 1.72% �0.12% 0.60%
FF count 1145.00 1165.00 1135.00 1095.00

N ±yF1ik =50 ±yF1ik =100 ±yF1ik =500 ±yF1ik =1000

N 5 1 12134597.06 12142955.4 12010016.1 11978007.0
Imp. 0.94% 1.38% 2.03% 2.46%
FF count 301 274 61 49
N 5 5 12118359.62 12093069.9 12073598.6 12073523.3
Imp. 0.80% 0.98% 2.54% 3.24%
FF count 780.00 735.00 305.00 925.00
N 5 10 12124155.78 12083340.9 12101332.1 12106607.0
Imp. 0.85% 0.90% 2.77% 3.50%
FF count 1065.00 1065.00 780.00 565.00

N ±yF1ik =5000 ±yF1ik =10000 ±yF1ik =25000

N 5 1 11300520.0 11830410.1 12082614.0
Imp. �3.38% 1.89% 3.09%
FF count 6 24 457
N 5 5 11579538.6 11970996.8 12113865.7
Imp. �0.89% 3.04% 3.34%
FF count 10.00 45.00 905.00
N 5 10 11859666.8 12044566.4 12085391.3
Imp. 1.49% 3.63% 3.11%
FF count 35.00 375.00 1145.00
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Code 2. A simple adaptive method

This improved method has been tested with N 5 1, 5, 10
new additional fireflies combined with the self-adaptive
random movement method. Table 3 shows the solution. The
improvement percentage based on Table 2 improved values
with modified random movement and the firefly count at
the end of the limited run. According to the results, there is a
slight improvement in the results using this method, but at
two values/5 and/5,000, there are some minor negative
values where the improved method failed. The additional
firefly count is a good indicator of the continuous conver-
gence. If it is small it shows that the result gets better and
better in every iteration, like at the /5,000 case where the
result is worse than the other values, but the firefly count is
smaller, so the function has a slow but continuous conver-
gence in the calculated time window.

6. CONCLUSIONS

In this article, some improvement methods have been
shown, which have been extensively tested on a large-scale
logistic problem, and the combination of these methods has
been checked. In discrete logistic problems, where lots of
decision variables exist, it is essential to determine the
distance metric and the movement function or functions.
However, these functions are not precisely specified when
to use them and the use of which one from the available
variety is appropriate, usually the most straightforward and
fastest functions have been used. Several distance metrics
can be used, and the movement in most cases in huge state
space has to be defined by one or occasionally more
matrices, which makes the task even more complicated.
These choices can significantly affect the quality of the
solution. Because heuristics are used, it is not sure, if the
global optimum reached or not and whether the selected
movement function for the actual problem is useful or not.
The applied improvement methods can help, whether the
firefly algorithm or other heuristic methods have been
used, and their combination also can be used. Still, it needs
serious testing, to determine which helps a lot, and which

improves a little and which method did not work in this
case.
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if itera�on-bes�tera�on > 1 then
Add N new Firefly
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