
Investigation of metal built-up columns, Part I:
Formulae

Ivan Bal�a�z1p , Yvonna Kolekov�a2, Lydia Moroczov�a2 and
Antonio Ag€uero3

1 Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia
2 Department of Structural Mechanics, Faculty of Civil Engineering, Slovak University of Technology,
Bratislava, Slovakia
3 Department of Continuous Medium Mechanics and Theory of Structures, Universitat Polit�ecnica de
Val�encia, Val�encia, Spain

Received: September 9, 2020 • Revised manuscript received: October 23, 2020 • Accepted: November 13, 2020
Published online: February 24, 2021

ABSTRACT

Eurocodes give guidance how to design built-up columns having effective bending stiffness, smeared
shear stiffness and local bow imperfection amplitude e0 5 L/500 under compression. The guidance is
valid only for columns supported by hinges at their ends. The second order theory is presented, which
allows analysis of the battened and laced built-up columns with initial imperfection under combined
compression and bending with the bottom end fixed and the upper one free in the case of in-plane
buckling. The application of the theory in several numerical examples is given in Part II.
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1. INTRODUCTION

Every point on a beam-column axis undergoes displacements as a consequence of loads or
restraints. The beam-column axis moves to a new, deformed position. Displacement distri-
bution describes the shape of the function of the displacement components along the beam-
column axis. Displacement distribution for the displacement components perpendicular to
the beam-column axis are called deflection curves. To determine the exact shape and the
internal forces, it is necessary to integrate the corresponding differential equations that link
the given actions with displacement required.

The behavior of the battened and laced built-up beam-columns with sway and bow initial
imperfections under combination of different external actions with various boundary con-
ditions is investigated because the current Eurocode [1] give the rules only for limited cases.
Another reasons why the built-up columns are investigated are the facts that the published
numerical examples: are not complete; contain incorrect verification of out-of-plane buckling
resistance of the column under combination of the axial and horizontal forces, do not solve
built-up columns under combination of axial force and biaxial bending; do not solve built-up
columns made from aluminum alloys.

2. DIFFERENTIAL EQUATIONS FOR STRAIGHT UNIFORM BEAM-COLUMN
UNDER IN-PLANE LOADING

2.1. Non-linear differential equation of the large elastic displacements theory

Behavior of the column under axial compression force F with the large elastic displacements
may be described by the following non-linear differential equation:
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; MðxÞ ¼ EIkðxÞ; EI
w

00 ðxÞ
f1þ ½w0ðxÞ�2g3

2

¼ −MðxÞ;

(1)

where EI is the bending stiffness; M is the bending moment;
w is the deflection and k is the curvature. For the column
with the length L, the bottom end (x 5 0) fixed and the
upper end (x 5 L) free the bending moment is

MðxÞ ¼ −F½wL � wðxÞ�: (2)

The solution of the non-linear Eq. (1) leads to the solution
of Eq. (3) enabling the calculation of the displacement w(x)
also for the axial force F greater than the critical force Fcr.
The following equation contains complete elliptic integral of
the first kind. It is called complete if the upper bound equals
p/2. The quantity 4 is called amplitude of elliptic integral
and sinðϑÞ is called module of elliptic integralZ p

2

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½sinðfÞ�2½sinðϑÞ�2

q � p

2

ffiffiffiffiffiffi
F
Fcr

r
¼ 0: (3)

The solution of Eq. (3) may be performed with Computer
Algebra System (CAS). In the past it was necessary to use special
tables of elliptic integrals. For F/Fcr 5 1.01 the solution of Eq.
(3) gives the value ϑ 5 8.074. The relative horizontal displace-
ment of the column top wL/Lmay be then calculated as follows:

wL

L
¼ 2 sinðϑÞ 2

p

ffiffiffiffiffiffi
Fcr
F

r
¼ 0:178: (4)

The curvature k in Eq. (1) may be for building and civil
engineering structures approximated by Eq. (5) first part
because 1þ(w0)2 ≈ 1,000. Designers in the practice therefore
work with the differential Eq. (5) second part describing
behavior of the beam with the small elastic displacement

kðxÞ≈ � w
00 ðxÞ; EIw00 ðxÞ ¼ −MðxÞ: (5)

The procedure using Eq. (1) is sometimes called the theory of
the third order, what is not very convenient. In this theory non-
linearity of static expressions and geometrical equations are
utilized and the functions cos(4), sin(4) and tan(4) are not
approximated by the values 1,4 respectively, as it is supposed in
the theory of the second order. The theory of large displace-
ments (theory of the third order) may be necessary to perform
when analyzing very flexible systems, e.g. cable-net structures.

2.2. Differential equation of the small elastic
displacements theory with effect of shear forces

In the second order theory it is supposed: an equilibrium is
fulfilled on the due loading deformed structure; the geomet-
rical expressions are linearized (6); the elasticity expressions,
e.g., (7), are linear; and the approximations (8) are accepted,

kðxÞ ¼ −
w

00 ðxÞ
f1þ ½w0ðxÞ�2g3

2

≈ � w
00 ðxÞ;

«x ¼ u0ðxÞ þ 1
2

�½u0ðxÞ�2 þ ½w0ðxÞ�2�≈ u0ðxÞ;
(6)

MðxÞ ¼ EIkðxÞ; (7)

cosð4Þ≈ 1; sinð4Þ≈4; tanð4Þ ≈ 4: (8)

Differential equation of the small elastic displacements
theory with effect of the shear forces is:

w
00 ðxÞ ¼ −kðxÞ þ g0

vðxÞ; w
00 ðxÞ ¼ −

MðxÞ
EI

þ V 0ðxÞ
GAV

; (9)

where GAV is the shear stiffness; V is the shear force and gv

is the shear strain. Compared with Eq. (5) the quantity w
00
in

Eq. (9) is increased due to the effect of the shear forces. The
relevant shear areas are defined by the formulae

AVz ¼
I2yR

A

�
SyðsÞ
tðsÞ

�2
dA

; AVy ¼ I2zR
A

�
SzðsÞ
tðsÞ

�2
dA

: (10)

2.3. General differential equation of the small elastic
displacement theory

The above differential equations of the second order may be
written in the form of the differential equations of the fourth
order (12). The following one in the most general form is
frequently used in engineering practice for a lot of various
problems: beams with shear stiffness GAV or without the
effect of shear forces (GAV 5 ∞ kN); beams with the
transverse loading (e.g., q) without or with axial tension
force (N is positive); beams with the transverse loading
(e.g., q) with or without axial compression force (N is
negative); eventually beams on the elastic foundation
(kf ≠ 0 kNm�2). Thanks to the analogies of different dif-
ferential equations of the various problems this type of dif-
ferential equation (11) may be used also for the special
problems of mixed, warping or uniform (St. Venant) torsion,
distortion, pipelines under earth pressure or cylindrical
shells under rotational symmetrical loading,

wIVðx; tÞ �
N
EI þ

EI kf
GAv EI

1þ N EI
EI GAV

w
00 ðx; tÞ

þ
kf
EI

1þ N EI
EI GAV

wðx; tÞ ¼
qðxÞ
EI

1þ N EI
EI GAV

;

(11)

where kf [kNm
�2] is the modulus of the foundation; t [s] is

the time. With dimensionless quantities:

ξ ¼ x
L
; «2 ¼ N

EI
L2; k ¼ EI

GAV

1
L2
; r2 ¼ kf

EI
L4;

ς ¼ 1
2
«2 þ kr2

1þ kr2
; h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� r2

1þ kr2

����:
s (12)

Equation (11) may be rewritten in the following forms
(13) or (14):

vIVðξ; tÞ � «2 þ kr2

1þ k«2
v
00 ðξ; tÞ þ r2

1þ k«2
vðξ; tÞ

¼ 1
1þ k«2

qðξÞ
EI

L4; (13)
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vIVðξ; tÞ � 2ςv
00 ðξ; tÞ þ sign

�
r2
	
h2vðξ; tÞ ¼ 1

1þ k«2
qðξÞ
EI

L4:

(14)

2.4. Differential equation for the bending moment

In the case of stability problems and similar issues, it is no
longer possible to consider all displacement components as
small, and the equilibrium conditions must be formulated
for the deformed structural system (the second-order the-
ory). The superposition law no longer applies to these
problems. Similarly, the superposition law does not apply to
problems with material non-linearity (e.g. the elastic-plastic
and rigid-plastic systems).

The differential equation of the beam with local bow
initial imperfection under transverse loadings (e.g. q) and
compression axial force N has for the bending moment M
the form [2]:

M
00 ðξÞ þ «2vMðξÞ ¼ −g



qðξÞL2 þ 8Ne0 þ NL2ke

�
; (15)

where e0 is the amplitude of the local bow initial imperfec-
tion in the form of the quadratic parable (very similar to
sinus) and ke is the given curvature, e.g. from the change of
the temperature. The new dimensionless parameters are the
beam shear factor g and the beam factor «V, which are used
in the second-order analysis. In the case of the first-order
theory « 5 0. If the effect of the shear forces is negligible
g 5 1 because the shear stiffness Sv 5 GAV → ∞ kN:

g ¼ 1

1� N
Sv

; «v ¼ L

ffiffiffiffiffiffiffi
gN
EI

r
¼ ffiffiffi

g
p

«: (16)

It is supposed that the normal force N and the shear
stiffness Sv 5 GAV are constants.

3. THE METHODS FOR CALCULATION OF
INTERNAL FORCES AND DISPLACEMENTS

There are many computer programs, which may be used for
calculation of internal forces and displacements. Neverthe-
less, for explanations of the mutual relations between
quantities, for creating and applying differential equations,
for understanding and education of load-bearing behavior
and for verification of computer results, the following
methods and procedures may be convenient and helpful.
They are based on: virtual work; iterative calculation;
equivalent horizontal forces; amplification factors; solution
of differential equations.

The principle of virtual work and iterative calculation
methods will not be discussed in this paper.

3.1. Equivalent horizontal forces

Appropriate allowances should be incorporated in the
structural analysis to cover the effects of imperfections,
including residual stresses and geometrical imperfections,
which can be a lack of verticality, a lack of straightness, a

lack of flatness and a lack of fit eccentricities present in
joints of the unloaded structure. According to [1, 2] equiv-
alent geometric imperfections should be used with values,
which reflect the possible effects of all type of imperfections
unless these effects are included in the resistance formulae
for column design. The following imperfections should be
taken into account: global imperfections for frames and
bracing systems; local imperfections for individual columns.

The global initial sway imperfections and the local initial
bow imperfection amplitude may be determined according
to the clause 5.3.2, Fig. 5.4 in [1].

3.2. Amplification factors, critical force and shear
stiffness

The internal forces and moments may generally be deter-
mined using either: first-order analysis, using the initial
geometry of the structure or second-order analysis, taking
into account the influence of the displacement of the
structure. The effects of the deformed geometry (second-
order effects) should be considered if they increase the ac-
tion effects significantly or modify significantly the struc-
tural behavior. First order analysis may be used for the
structure, if the increase of the relevant internal forces
or moments or any other change of structural behavior
caused displacements can be neglected. This condition may
be assumed to be fulfilled, if the following criterion is
satisfied:

acr ¼ Fcr
FEd

≥ 10; for elastic analysis;

acr ¼ Fcr
FEd

≥ 15; for plastic analysis ;

(17)

where acr is the factor by which the design loading would
have to be increased to cause elastic instability in a global
mode; FEd is the design loading on the structure and Fcr is
the elastic critical buckling load for global instability mode
based on initial elastic stiffness.

The second order effects may be calculated by using an
analysis appropriate to the structure (including step-by-step
or other iterative procedures). For frames where the first
sway buckling mode is predominant first order elastic
analysis should be carried out with subsequent amplification
of relevant action effects (bending moments, shear forces,
displacements) by appropriate amplification factor,

kII ¼ 1
1� 1

acr

¼ acr

acr � 1
: (18)

The quantities of the second order theory may by calcu-
lated by amplifying quantities of the first order theory by
amplifying factor kII,

MII ¼ kIIMI ; VII ¼ kIIVI ; wII ¼ kIIwI : (19)

The formulae (19) give: exact values of MII, VII, wII if the
shape of displacement due to loading obtained in the first
order analysis is affine to the shape of the buckling mode;
approximate values of MII, VII, wII, if the similarity of the
shape of displacement due to loading obtained in the first
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order analysis with the shape of the buckling mode is at least
quantitative; otherwise the formulae must not be used.

The exactness of the approximate values of MII, VII, wII

may be increased by the well-known Dischinger’s factors
d and dw

MII ≈
1þ d

1� 1
acr

MI ; VII ≈
1þ d

1� 1
acr

VI ; wII ≈
1þ dw

1� 1
acr

wI : (20)

The critical force Ncr,v should be calculated according to
Eq. (22), if the effect of the shear forces is taken into account:

kII; v ¼ 1
1� 1

acr; v

¼ acr; v

acr; v � 1
; acr; v ¼ Fcr; v

FEd
; (21)

1
Ncr; v

¼ 1
Ncr

þ 1
Sv
; Ncr; v ¼ Ncr

1þ Ncr
Sv

: (22)

The shear stiffness for the individual single column is
Sv 5 GAV. The relevant shear areas AV are defined in Eq.
(10). The shear stiffness GAV of the individual single columns
is relatively large and therefore the influence of shear forces is
usually neglected. But its influence is necessary to take into
account in the cases with extremely large tension axial forces.
This is the case of warping torsion of thin-walled closed
profiles where the large torsional stiffness GIt plays in analogy
an extremely large fictitious axial tension force.

The following shear stiffness for the battened and laced
built-up members is defined in Eurocode [1]. The shear
stiffness of battened built-up members is

Sv ¼ 24EIch; z

a2
�
1þ 2EIch; z

nbIb
h0
a

�; Sv;max
2p2EIch; z

a2
; (23)

where EIch,z is the bending stiffness of the chord; nb and Ib
are the number of battens in a panel and the second moment
of the batten, respectively; h0 is the distance of the centers of
gravities of the chords and a is the distance of the battens.
The shear stiffness of lacings of built-up columns is given in
Fig. 6.9 [1].

The shear stiffness of the laced built-up columns is
usually greater than the shear stiffness of the battened built-

up columns due to larger value of the distance of the centers
of gravities of the chords.

The critical force of the flexural buckling may be calcu-
lated from the basic formula

Ncr ¼ p2EI
L2cr

; Lcr ¼ kL; (24)

where Lcr is the buckling length. The value of k, the buckling
length factor for columns, should be assessed from knowl-
edge of the end conditions. Unless a more accurate analysis
is carried out, the value of k from Table 1 may be used.

Buckling length factors kp are increased for columns with
fixed end(s) in comparison with theoretical values k. The
comparisons of kp values with theoretical ones k are pre-
sented in Table 1.

In the most European countries are used the theoretical k
values in the design practice but for example in UK and
Australia are used the increased kp values. Eurocode [1] uses
the theoretical k values.

The critical force Ncr,v should be calculated according to
Eq. (22) and the following is valid:

Ncr; v<Ncr; Lcr; v>Lcr: (25)

3.3. Solutions of differential equation by Rubin

Rubin published in ref. [2] the formulae for calculation of
beam bending moments M(x), shear forces V(x), displace-
ment w(x) and rotation 4(x). There are formulae there for
12 various actions, including effect of global and local initial
imperfections, non-uniform temperature and unit disconti-
nuities and displacements. These formulae are applicable for
4 different boundary conditions:

Case 1: rotation and translation are fixed at both ends (Item
1 in Table 1 is called Euler’s case 4);

Case 2: rotation and translation are fixed at one end, rotation
is free and translation is fixed at other end (Item 2 in
Table 1 is called Euler’s case 3);

Case 3: rotation is free and translation is fixed at both ends
(Item 3 in Table 1 is called Euler’s case 2);

Table 1. Buckling length factor kp compared with theoretical k values

End conditions: a) rotation; b) displacement Scheme kp k

1. a): clamped-clamped; b): fixed-fixed 0.7 0.5

2. a): clamped-hinge; b): fixed-fixed 0.85 0.7

3. a): hinge-hinge; b): fixed-fixed 1.0 1.0

4. a): clamped-clamped; b): fixed-free 1.25 1.0

5. a): clamped-partially restrained; b): fixed-free 1.5 ?1)

6. a): clamped-free; b): fixed-fixed (cantilever) 2.1 2.0

7. a): hinge-elastically clamped; b): fixed-free ≥ 2.11) 2.0

1) Depends on stiffness at the clamped end.
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Case 4: rotation and translation are fixed at one end, both
are free at other end (Item 6 in Table 1 is called
Euler’s case 1).

Rubin’s formulae give exact values for both theories: theory
of the first or the second order and they take or do not take
into account the influence of shear forces. These formulae are
very convenient for performing large parametrical studies.

If the column with global sway initial imperfection F has
the boundary conditions defined by the case 6 given in
Table 1 and it is loaded by the combination of external axial
compression force NEd located in the point xN 5 L m (ξ N 5
xN/L 5 1.0); horizontal force HEd located in interval 0 m ≤

xH ≤ Lm (0 ≤ ξ H 5 xH/L ≤ 1.0) and bending momentMEd,e

located in 0 m ≤ xM ≤ L m (0 ≤ ξ M 5 xM/L ≤ 1.0), the
following formulae may be used for the calculation of the
bending moment and shear force.

The bending moment due to horizontal force HEd,tot for
ξ ≤ ξH is:

MH
EdðξÞ ¼

8>><
>>:

g sin½ð1� ξHÞ«�sinðξ«Þ
« sinð«Þ �

�g sin½ð1� ξÞ«�
sinð«Þ

sinð«Þ � sin½ð1� ξHÞ«�
« cosð«Þ

9>>=
>>;LHEd; tot:

(26)

The bending moment due to horizontal force HEd,tot for
ξ > ξH is:

MH
EdðξÞ ¼

8>><
>>:

g sinðξH«Þsin½ð1� ξÞ«�
« sinð«Þ �

�g sin½ð1� ξÞ«�
sinð«Þ

sinð«Þ � sin½ð1� ξHÞ«�
« cosð«Þ

9>>=
>>;LHEd; tot ;

(27)

HEd; tot ¼ HEd þ NEdF: (28)

The bending moment due to external bending moment
MEd,e for ξ ≤ ξM is:

MM
EdðξÞ ¼

8>><
>>:

�cos½ð1� ξMÞ«�sinðξ«Þ
sinð«Þ �

�sin½ð1� ξÞ«�
sinð«Þ

cos½ð1� ξMÞ«�
cosð«Þ

9>>=
>>;MEd; e: (29)

The bending moment due to external bending moment
MEd,e for ξ > ξM is:

MM
EdðξÞ ¼

8>><
>>:

cosðξM«Þsin½ð1� ξÞ«�
sinð«Þ �

�sin½ð1� ξÞ«�
sinð«Þ

cos½ð1� ξMÞ«�
cosð«Þ

9>>=
>>;MEd; e; (30)

MEdðξÞ ¼ MH
EdðξÞ þMM

EdðξÞ: (31)

If the column with local bow initial imperfection has the
boundary conditions defined by the case 3 given in Table 1
and it is loaded by the combination of external axial
compression force NEd located in the point xN 5 L m (ξ N 5
xN/L 5 1.0); horizontal force HEd located in interval 0 m ≤

xH ≤ L m (0 ≤ ξH 5 xH/L ≤ 1.0); bending moment MEd,e,1

located in interval 0 m ≤ xM1 ≤ Lm (0 ≤ ξM1 5 xM1/L ≤ 1.0)
and bending moment MEd,e,2 located in the interval 0 m ≤

xM2 ≤ L m (0 ≤ ξM2 5 xM2/L ≤ 1.0), the following formulae
may be used for the calculation of the bending moment and
shear force distributions.

The bending moment due to horizontal force HEd for ξ ≤
ξH is:

MH
EdðξÞ ¼

�
g sin ½ð1� ξHÞ«�sin ðξ«Þ

« sin ð«Þ


LHEd: (32)

The bending moment due to horizontal force HEd for ξ >
ξH is:

MH
EdðξÞ ¼

�
g sin ðξH«Þsin ½ð1� ξÞ«�

« sin ð«Þ


LHEd: (33)

The bending moment due to external bending moment
MEd,e,1 for ξ ≤ ξM1 is:

MM1
Ed ðξÞ ¼

8>><
>>:

�cos½ð1� ξM1Þ«�sinðξ«Þ
sinð«Þ �

�sin½ð1� ξÞ«�
sinð«Þ

cos½ð1� ξM1Þ«�
cosð«Þ

9>>=
>>;MEd; e; 1 :

(34)

The bending moment due to external bending moment
MEd,e,1 for ξ > ξM1 is:

MM1
Ed ðξÞ ¼

8>><
>>:

cos½ðξM1«Þ�sin½ð1� ξÞ«�
sinð«Þ �

�sin½ð1� ξÞ«�
sinð«Þ

cos½ð1� ξM1Þ«�
cosð«Þ

9>>=
>>;MEd; e; 1:

(35)

The bending moment due to external bending moment
MEd,e,2 for ξ < ξM2 is:

MM2
Ed ðξÞ ¼

8>><
>>:

�cos½ð1� ξM2Þ«�sinðξ«Þ
sinð«Þ �

�sin½ð1� ξÞ«�
sinð«Þ

cos½ð1� ξM2Þ«�
cosð«Þ

9>>=
>>;MEd; e; 2:

(36)

The bending moment due to external bending moment
MEd,e,2 at the bottom end for ξ ≥ ξM2 is:

MM2
Ed ðξÞ ¼

8>><
>>:

cos½ðξM2«Þ�sin½ð1� ξÞ«�
sinð«Þ �

�sin½ð1� ξÞ«�
sinð«Þ

cos½ð1� ξM2Þ«�
cosð«Þ

9>>=
>>;MEd; e; 2:

(37)

The bending moment due to the local bow initial imper-
fection with the amplitude e0 is:

Me0
EdðξÞ ¼

g

«2

�
cos½ð0:5� ξÞ«�

cosð0:5«Þ � 1



ð−8NEde0Þ: (38)

The shape of the local bow initial imperfection which well
approximates the shape of buckling mode may be sinus (see (39)
first row) or parable of the second order (see (39) second row),
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w0ðξÞ ¼ e0 sinðpξÞ;
w0ðξÞ ¼ e04

�
ξ� ξ2

	
;

0≤ ξ ¼ x
L
≤ 1; (39)

Equation (38) supposes that initial imperfection has the
shape of parable of the second order.

4. CONCLUSIONS

The formulae for calculation of internal forces of the column
with initial imperfection take into account the shear stiffness
Sv of battened or laced built-up columns by using parameter
g. They allow performing parametrical study with the first
or second order theory. The applications of formulae
(26)–(31) in numerical examples, which are part of results of

the large parametrical study, may be found in Part II of the
paper.
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