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Abstract: Electron transfer within and between proteins is a fundamental biological phenomenon,
in which efficiency depends on several physical parameters. We have engineered a number of
horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the
protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced
redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived,
low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an
electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and
the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were
obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments.
The electronic coupling term and the reorganization energy for electron transfer in this system were
estimated from temperature-dependent experiments and compared with calculated parameters using
the crystal and the solution NMR structure of the protein. These results together with the observation
of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting
TUPS to the protein allows several shortcut routes for the electron involving through space jumps
between the label and the protein surface.

Keywords: cytochrome c; intramolecular electron transfer; TUPS; time-resolved spectroscopy; triplet
excited state

1. Introduction

Electron transfer involving various metabolites, external electron sources, and redox
cofactors of proteins is a fundamental process in all domains of life on Earth. A major focus
of research in biological electron transfer has been directed towards understanding how
the distance that separates redox active centers in proteins and DNA and the molecular
structure of the separation medium influence the electron transfer rates, which must be
fast enough for physiologically relevant processes. Early studies of electron transfer in
the photosynthetic reaction center [1] yielded simple exponential dependence of electron
transfer rates on the separation distance. These data were interpreted with a model where
the protein matrix was treated as a homogeneous barrier to tunneling. In contrast, other
accumulated data [2,3] revealed that distant donor–acceptor electronic coupling in proteins
depended on the secondary and tertiary structure as well as the side chain composition of
the intervening polypeptide matrix. According to the latter viewpoint, pathways might
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exist through electron transfer proteins that would facilitate the flow of electrons between
distant sites. The homogeneous barrier model was later refined to take into consideration
the packing density distribution between the electron donor and acceptor regions [4].
Both models are properly parametrized to explain the observation that proteins conduct
electrons better than, for example, water. In artificial chemical systems where the donor and
acceptor groups are usually connected by a rigid molecular chain, packing density is less
meaningful and pathways are better defined. In proteins, minor variations of the atomic
structure due to thermal fluctuations at ambient temperatures will lead to continuous
alterations in best pathways and the packing density.

Examination of the electron transfer mechanisms in proteins requires high time-
resolution spectral measurements. Chemical modification with ruthenium complexes has
allowed investigators to also examine, in non-photosynthetic proteins, the dependence of
the electron transfer rate on the distance separating two, natively occurring and chemically
introduced, redox centers [5,6]. However, the efficiency of this method is low, as only
about 1% of the total protein population can be perturbed. An alternative method to study
electron transfer reactions in proteins is based on the photochemistry of the photoactive
label thiouredopyrene-trisulfonate (TUPS). Long lifetime, high yield of the excited triplet
state, and appropriate redox properties make the dye useful for initiation and analysis
of electron transfer reactions in chemical and biological systems [7,8]. The advantage
of this system for electron transfer studies is its high efficiency; more than 20% of the
protein molecules undergo intramolecular reduction in a single pulse. The high yield of
photoreduction enables estimation of intramolecular electron transfer rates with a high
level of reliability and accuracy. The redox properties and the bifunctional nature (oxidant
and reductant) of TUPS have been discussed in detail in our earlier publication [9].

Mitochondrial cytochrome c is a relatively small, globular, heme containing redox
protein. The distance from any point on the surface of the protein to the heme and the
rather uniform protein packing are in the range where electron transfer can take place at an
acceptable rate. Nevertheless, electron transfer between cytochrome c and its physiological
partners, the cytochrome bc1 complex, cytochrome c peroxidase, and cytochrome c oxidase,
takes place after appropriate docking with the positively charged face of cytochrome c
where the edge of the heme is exposed (albeit recessed) [10–12], assuring optimal electron
transfer efficiency. Non-physiological electron transfer between the heme and other surface
locations may still be relevant in biomimetic, bioelectronic, or biosensoric applications [13].

Cytochrome c was the first protein where the electron transfer between TUPS and the
heme was demonstrated [7]. Since its introduction, TUPS has been used to initiate electron
transfer in azurin [8], as well as between cytochrome c and cytochrome c oxidase [14,15].
Cytochrome c is particularly well suited for electron transfer studies. Its physico-chemical
properties, including the reduction potential of the heme group, as well as its stability are
well known. The protein has been used as a redox partner in electrode reactions and at
biomimetic interfaces [16,17]. In our earlier work, we demonstrated that at least the reverse
electron transfer between the reduced cytochrome c heme and the positive radical of TUPS
may exhibit multiexponential kinetics. Molecular dynamics calculations provided a likely
explanation for both the multiexponential behavior and for the distance dependence of
the electron transfer rates. It appeared that the four-ring structure of the dye may occupy
several positions close to the protein surface, stabilized by ionic interactions, and the
electron may prefer a through space jump to or from the surface of the protein rather than
the route following the covalent bonds connecting the dye to the labeled amino acid [18].

In the present work, we constructed a panel of horse heart cytochrome c mutants,
each containing a cysteine residue on the surface of the protein. TUPS derivatives of these
variants were obtained by labeling the corresponding cysteine residues. Several lysine
residues on the surface of the protein were also labeled with an isothiocyanate derivative
of the dye. We studied the kinetics of electron transfer between the heme and the TUPS-
label, positioned at different sites on cytochrome c using the combined techniques of
kinetic multichannel and single wavelength absorption spectroscopy. The temperature
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dependence of the electron transfer rate allowed the estimation of the electronic coupling
term and the reorganization energy in several cytochrome-TUPS conjugates. Extrapolation
to the maximal, barrierless rate yielded much higher values than those calculated from
the atomic resolution structure of the protein, assuming electron transfer via the cysteine
or lysine residue to which the dye is attached. These results further corroborate that
rapid electron exchange between TUPS and the heme cofactor through the protein matrix
can bypass the covalent link, making TUPS a useful tool to study intra- and interprotein
electron transfer processes.

2. Results and Discussion
2.1. Preparation of Cytochrome c-TUPS Derivatives

The selection of the location for the engineered cysteine residues was based on three
criteria: the non-charged nature of the residues to be substituted, the accessibility of the
residues from the water phase, and noninvolvement in the interaction with cytochrome c
oxidase. In addition, three out of the six lysine residues labeled by TUPS were also mutated
to cysteines and labeled to study the effect of the linker on the electron transfer dynamics.
Figure 1 shows the crystal structure of horse heart cytochrome c (1HRC.pdb), where the
mutated amino acids replaced in silico by cysteines and also the labeled native lysines are
highlighted.
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Figure 1. Structure of horse heart cytochrome c, with in silico mutated cysteines and native lysines
that were labeled in this study by TUPS. Original structural file: 1HRC.pdb. Two different viewing
angles (top and bottom row), with and without the protein surface (left and right) are shown. Color
code: cysteines, gold; lysines that were also mutated to cysteines, blue; other lysines, green.

2.2. Quenching of TUPS Triplet Excited State Must Be Taken into Consideration in the Analysis of
the Electron Transfer

Absorption kinetics experiments were carried out with TUPS-labeled G23C mutant
without oxygen removal and in anaerobiosis. In the presence of oxygen, the initial triplet
state decayed rapidly and only small amounts of TUPS+ and reduced heme were accumu-
lated (Figure 2A). The amounts of the two forms, TUPST* and {TUPS+ plus hemered} (see
Figure 2B), were calculated by least-squares fitting the difference spectra with the pure
component difference spectra obtained earlier [9] (Figure 2E). The low yield of electron
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transfer is the result of TUPST* depletion by quenching, a process competing with the
electron transfer from TUPST* to the oxidized heme. Under oxygen-free conditions, the
lifetime of TUPST* is significantly longer and the dominant process is the electron transfer.
We used the following model (depicted in Scheme 1) to analyze the kinetic data; kforward,
kreverse, and kquench respresent forward electron transfer, reverse electron transfer, and
triplet quenching reactions, respectively.
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Figure 2. Kinetics of electron transfer between the dye and the heme in G23C-TUPS: Time-resolved difference spectra after
laser flash excitation in the presence (A) and absence (C) of oxygen; (B,D) time-dependent concentrations of the {TUPST* +
hemeox} and the {TUPS+ + hemered} species (symbols) and fit to Scheme 1 (lines). The rate coefficients obtained from the
fit are: kquench = 1.10 × 105, kforward = 3.84 × 103, and kreverse = 97.5 s−1 in the presence of O2, and kquench = 2.84 × 103,
kforward = 9.58 × 103, and kreverse = 43.7 s−1 in anaerobiosis; (E) base difference spectra used for the least-squares fit of the
spectra in (A) and (C); (F) absorption spectrum of the G23C-TUPS sample before photoexcitation, with fully oxidized heme
and characteristic TUPS bands in the 350–390 nm range.
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Scheme 1. Kinetic model of the reactions following the photoexcitation in the TUPS-cytochrome c system.

The fit of this model to the kinetics of the product formation and dissipation (symbols
in Figures 2B,D and 3B) is shown as lines, and yielded the rate coefficients for the TUPS
triplet quenching and the forward and reverse electron transfer.

In cases where oxygen removal was sufficiently complete, the calculated electron
transfer rates were not significantly different from the observed rates that can be obtained
by simple exponential fitting of the rising and falling phases of the component kinetics.

2.3. The Instantaneous Light-Induced Appearance of the {TUPS+ + hemered} Species: Role of
Solvated Electrons

For several TUPS label positions, in the first difference spectrum, taken with 200 ns
delay time after the actinic laser flash, a substantial amount of the {TUPS+ + hemered}
species was detected (Figure 3). Since further electron transfer from TUPS T* to hemeox
was subsequently observed at a slower rate, the instantaneous production of the reduced
heme could not be the result of the intraprotein electron transfer. The data in Figure 3
could be adequately fitted by Scheme 1, assuming that at time zero the initial concentration
of {TUPS+ + hemered} was >0. One explanation could be the production of TUPS+ and
solvated electrons [18–22] by the laser flash, followed by reduction of the heme by the
solvated electrons. The instantaneous appearance of {TUPS+ + hemered} was typically
observed in samples (V11C, A15C, A51C, and G77C) where the forward and reverse
intraprotein electron transfers were fast, presumably due to the short distance between the
solvent-exposed TUPS and the heme, so that solvated electrons could also be released near
the heme cofactor.
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2.4. Determination of the Coupling Terms and Reorganization Energies for Electron Transfer from
Temperature Dependent Experiments

The rate coefficient of non-adiabatic electron transfer is described by Marcus
theory [23,24] as:

k =

√
4π3

h2λkBT
H2

DA exp (− (∆G + λ)2

4λkBT
) (1)

where h is Planck’s constant; kB is Boltzmann constant; T is absolute temperature; ∆G
is the midpoint reduction potential difference between the electron donor and acceptor
pairs (TUPS+/TUPST*, heme ox/red, and TUPS+/TUPS); λ is the reorganization energy;
and HDA is the donor–acceptor electronic coupling term. In a good approximation the
pre-exponential term is an exponential function of the distance (geometric distance or con-
nectivity) between the donor and acceptor, defining the dimensionless coupling term, TDA:√

4π3

h2λkBT
H2

DA = 1013T2
DA (1/ sec) (2)

with
TDA = exp(−1/2β(r − r0)) (3)

or
TDA = ∏i εi (4)

In the first, packing density model, β = 0.9ρ + 2.8(1 − ρ), with ρ being the packing
density of the medium between the donor and acceptor and r0 is contact distance, usually
taken as 3.6 Å. In the second, pathway model εi is the decay factor for the ith step along
the best pathway connecting the donor and the acceptor, whose usual value is 0.6 for a
covalent bond, 0.36 exp (−1.7(r − 2.8)) for a hydrogen bond, where r is the heteroatom
distance in Å and 0.6 exp (−1.7(r − 1.4)) for a through space jump spreading a distance of r
(in Å) [6,25].

Rearranging Equation (1) yields:

log k + 1/2 log T = a(λ, HDA) + b(λ, ∆G)1/T (5)
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with

a(λ, HDA) = 1/2 log(
4π3

h2kB
)− 1/2 log(λ) + 2 log HDA (6)

and

b(λ, ∆G) = −0.434
(∆G + λ)2

4λkB
(7)

Measuring the electron transfer rate as a function of temperature allows the determina-
tion of two key parameters of Marcus theory: the reorganization energy and the electronic
coupling term, provided that the driving force, the reduction potential difference of the
electron donor and acceptor pairs is known. Using Equations (5)–(7) to calculate these
parameters from the experimental data assumes that over a limited temperature range
they can be considered constants or, to be more exact, negligibly temperature dependent
as compared with the exponential 1/T dependence. Such limited and here neglected
temperature dependence may arise from the thermal fluctuation of the protein structure
and the surrounding medium.

Hence, from the linear fit of the plot of log(k) + 1⁄2log(T) as a function of 1/T one
can estimate the reorganization energy, λ, and the electronic coupling term, HDA, using
the known values of the midpoint reduction potentials: −0.90 eV for TUPS+/TUPST*,
0.22 eV for heme ox/red, 0.88 eV for TUPS+/TUPS [20,21]. Previously it was shown that
the reduction potentials of cytochrome c with TUPS bound to different lysine side chains
(including those reported in this study) agreed within experimental error (20 mV) with that
of the unlabeled protein [7].

We have measured the electron transfer kinetics after photoexcitation of TUPS co-
valently bound to six different surface lysine residues: K8, K13, K39, K72, K86, and K87.
Absorption change signals were recorded at 550 and 562 nm, the former corresponding
to the maximum of the alpha band of the reduced heme c and the latter to the isosbestic
point for the reduced minus oxidized difference spectrum of heme, thereby providing
the appropriate signal to subtract the contribution of the TUPST* absorption. Data were
recorded at 0, 10, 20, 30, 40, 50, and 60 ◦C. Characteristic ∆A550–∆A562 traces for slow
electron transfer with the K8-labeled and for fast electron transfer with the K13-labeled
cytochrome c derivatives are shown in Figure 4A,C. Figure 4B,D show the plots correspond-
ing to Equation (5). Rate coefficients shown in Figure 4B,D were obtained by fitting the
kinetic traces by 2 exponentials (K8-TUPS, Figure 4A) or a single exponential (K13-TUPS,
Figure 4C). A more refined analysis, with multiexponential fit of the kinetic traces is
presented in the Supplementary Material.

From the quadratic equation for λ (Equation (7)) two values of reorganization energy
and with Equation (6) the corresponding values of HDA have been calculated (Table 1). A
comparison of the reorganization energies with the free energy changes, ∆G, shows that the
first set of solutions would mean electron transfer in the normal region (i.e., λ > |∆G|) for
the TUPS-cytochrome c system. The second set of solutions falls in the inverted region. The
electronic coupling term is systematically smaller, reflecting less efficient coupling for the
reverse electron transfer. The reorganization energy is also systematically smaller for the
reverse electron transfer. These differences are likely to be the result of different electronic
orbitals of TUPS participating in the forward and reverse electron transfer processes.

The reorganization energy for heterogeneous electron transfer can be estimated accord-
ing to the Marcus cross relation as the mean of the self-exchange reorganization energies of
the participating redox pairs:

λ = 1/2(λ1,1 + λ2,2) (8)
The self-exchange reorganization energy, λ1,1 for Fe(III/II) cytochrome c, was calcu-

lated as 1.04 eV [24], also consistent with the numerous values obtained for cytochrome
c in electrode reactions [26]. On the one hand, although the self-exchange reorganization
energy, λ2,2, for TUPS is not known, the second solution of the quadratic formula for λ
(Table 1) yields values that would imply unrealistically low values for TUPS in solution
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(λ2,2). On the other hand, the first solution yields values indicating that electron transfer
between the heme and TUPS takes place in the Marcus normal region.
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Table 1. Experimentally determined reorganization energies and electronic coupling terms for the
electron transfer between TUPS and the heme in cytochrome c-TUPS conjugates.

1st Solution 2nd Solution

λ, eV HDA, eV λ, eV HDA, eV ∆G, eV

K8
forward 2.18 3.96 × 10−5 0.57 2.84 × 10−5 −1.12

reverse 1.86 9.19 × 10−6 0.23 5.48 × 10−6 −0.66

K39
forward 2.54 1.90 × 10−4 0.49 1.26 × 10−4 −1.12

reverse 2.17 5.78 × 10−5 0.20 3.19 × 10−5 −0.66

K86
forward 2.27 7.85 × 10−5 0.55 5.52 × 10−5 −1.12

reverse 1.96 3.72 × 10−5 0.22 2.16 × 10−5 −0.66

K87
forward 2.20 3.34 × 10−5 0.57 2.38 × 10−5 −1.12

reverse 1.87 7.76 × 10−6 0.23 4.61 × 10−6 −0.66

K13 reverse 1.97 9.54 × 10−5 0.22 5.52 × 10−5 −0.66

K72 reverse 1.86 1.36 × 10−4 0.23 8.10 × 10−5 −0.66
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2.5. Electron Transfer Routes between TUPS and the Heme: Maximal Rate from Experiment and
Model Calculations

From Equation (1), one can obtain the maximal electron transfer rate (extrapolated
to infinite temperature) between TUPS bound to different lysine side chains and the
heme. The maximal rates extrapolated from the experiments for both the forward and
the reverse electron transfer vary only within about two orders of magnitude despite the
very different distances between the heme and the labeled lysine. For those four positions
where the forward electron transfer could experimentally be resolved, the maximal rate
for the forward electron transfer is about an order of magnitude higher than the reverse
(Figure 5). We used the program HARLEM and either the crystal structure (1HRC.pdb) or
the solution NMR structure (1GIW.pdb) of horse heart cytochrome c to calculate the optimal
electron transfer pathways (pathway model, [27]) and the parameters of the packing density
model [4] for the electron transfer between the epsilon N atom of the lysine residues and
the edge of the π electron (ring) system of heme. The maximal rate provided by the model
calculations is in most cases significantly smaller than the extrapolated maximal rate from
the experiments (Figure 5). This is despite the fact that several covalent bonds connecting
the lysine’s nitrogen with the ring structure of TUPS, which further extend the pathway
and should decrease the calculated rate, were not taken into consideration. These results
yield further support to our published model [18] that assumes that TUPS, connected
with a flexible linker through the side chain of the labeled lysine or cysteine residues is
capable of approaching the protein surface, assuring optimal access towards the heme
via through space jump(s), leading to much faster electron transfer than when following
the covalent link. This is corroborated by the fact that our recent bias-free, machine-
learning-based multiexponential fit algorithm [28] yielded multiple, slightly different
exponential components for the “slower” TUPS-lysine positions and also several cysteine-
labeled positions (see Supplementary Material). Note that this advanced fit algorithm
also confirmed that the data represent first-order kinetic steps rather than higher order
or distributed kinetics processes. As before [18], we argue that TUPS can occupy several
spatial positions relative to the protein surface and the heme which can support different
electron transfer routes, short cutting the route following the covalent link.

Electron transfer parameters were calculated with the HARLEM program for two high
resolution horse heart cytochrome c structures. Note that that the X-ray (1HRC.pdb) and the
NMR (1GIW.pdb) structures are significantly different at certain surface positions due to the
different side chain conformations. Since in our experiments surface-exposed side chains
were labeled by TUPS, such differences in the corresponding side chain conformations
yielded sometimes rather different calculated electron transfer parameters. Cases in point
are the best pathway to the heme for lysine 72 or the packing densities to the heme for
several surface lysine residues (Figure 5).
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Figure 5. Comparison of the experimentally determined maximal electron transfer rates with the calculated maximal rates
using two atomic resolution structural models of horse heart cytochrome c. Circles and squares represent forward and
reverse electron transfer, respectively. Lines indicate equality between experimental and theoretical rates, to guide the eye:
(A) Solution (NMR) structure used in the calculation with the pathway model; (B) solution structure, packing density model;
(C) crystal (X-ray) structure used in the calculation, pathway model; (D) crystal structure, packing density model.

2.6. Electron Transfer Dynamics with Various TUPS-Labeled Cysteines

In order to assure single label positions (i.e., homogeneous samples) and map the
protein matrix in terms of electron transfer efficiency, we introduced site-specific cysteine
residues, replacing either some of the lysine residues in the above experiments or other
amino acids. Note that due to chemical differences in the label structures, cysteine labeling
results in a link longer by one covalent bond, connecting the dye to the amino acid alpha
carbon, than lysine labeling (Figure S2). Figure 6 shows the measured rate coefficients
for the electron transfer between TUPS and the heme for 17 different label positions at
room temperature, as a function of either the best pathway coupling term, or the packing
density coupling term. These coupling terms are the dimensionless quantities, TDA, in
Equations (3) and (4), calculated using HARLEM. The rate coefficients were obtained by
fitting Scheme 1 to the multichannel spectroscopic data (as in Figures 2 and 3). The path
and packing coupling terms were calculated between the edge of the heme ring structure
and the terminal atom of the labeled side chain (i.e., without the link from there to the
TUPS ring structure). Assuming that the midpoint reduction potentials and the outer
sphere reorganization energies for the TUPS forms do not significantly depend on the
label position, the variations in the exponential term in Equation (1) can be neglected and
the dependence of the rate coefficients on the label position should be controlled by the
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term TDA
2. Although there is a tendency of faster experimental rates with higher coupling

values, especially when calculated from the pathway model, the correlation is weak, and
the rate data strongly scatter. This is again in agreement with our explanation that the
flexible link connecting the dye to the protein allows the dye to approach the heme and
exchange electrons with it faster than it would be possible from the point of the dye’s
covalent attachment to the protein. Note that the electronic coupling term based on the
packing density model is more sensitive to the conformation of the surface side chain than
that based on the pathway model (Figure S3). This difference results in more horizontal
scatter of the data points in Figure 6A,B than in Figure 6C,D.
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Figure 6. Forward and reverse electron transfer rates calculated using Scheme 1 from multichannel absorption kinetic
measurements performed at room temperature. Rates are shown versus the dimensionless pathway or packing density
coupling terms between the edge of the heme ring structure and the terminal atom of the labeled amino acid, calculated
with HARLEM, using the structure 1HRC.pdb. (A,B) Forward and reverse rates, respectively, plotted versus the coupling
term, TDA calculated with the packing density model (Equation (3)); (C,D) forward and reverse rates, respectively, plotted
versus TDA calculated with the pathway model (Equation (4)).

3. Materials and Methods
3.1. Chemicals

Most chemicals were purchased from Sigma-Aldrich (Saint Louis, MO, USA) and
AppliChem (Darmstadt, Germany); 1-isothiocyanatopyrene-3,6,8-trisulfonate (IPTS) was
purchased from Lambda Fluorescence (Graz, Austria). Distilled water was additionally
purified on a Milli-Q system (Millipore, Burlington, MA, USA).



Molecules 2021, 26, 6976 12 of 15

3.2. Construction of Mutant Genes of Cytochrome c

Recombinant cytochrome c genes with single cysteine substitutions in 13 various posi-
tions: V11C, A15C, G23C, G34C, G37C, G45C, A51C, G56C, I57C, G77C, K8C, K39C, and
K87C were obtained from the wild-type horse heart cytochrome c gene using site-directed
mutagenesis with the Quick-Change Site-Direct Mutagenesis Kit (Stratagene, CA, USA),
as described previously [29–31]. The nucleotide sequences of mutant genes in the plasmid
DNA were determined on an ABI Prism 3100-Avant Genetic Analyzer (Applied Biosystems,
Beverly, MA, USA).

3.3. Expression, Isolation, and Purification of Cytochrome c Mutants

Expression of the mutant genes of cytochrome c was performed in the JM-109 strain
of E. coli, as described previously [31,32]. After the growth, cells were homogenized
using a French press (Spectronic Instruments, Inc., Rochester, NY, USA) at high pressure
with subsequent centrifugation at 95,000× g. Purification of the target proteins were
performed on a BioLogic HR liquid chromatographic system (Bio-Rad, Hercules, CA, USA),
according to the previously elaborated scheme [33]. The degree of protein purity was
determined by absorption spectroscopy and SDS-PAGE electrophoresis. The fractions
with A409/A280 ratio of 4.5:5.0 (corresponding to a purity of ≥95% for the substance
commercially prepared by Sigma-Aldrich, Saint Louis, MO, USA) were dialyzed three
times against 10 mM ammonium carbonate buffer (pH 7.9), and lyophilized. All stages
of isolation and purification of proteins were controlled by electrophoresis in 12% Tris-
tricine PAGE under denaturing conditions [34]. Concentrations of mutant proteins were
determined by absorption spectroscopy at 409 nm (ε = 1.06 × 105 M−1 cm−1) [35].

3.4. Preparation of TUPS-Modified Cytochrome c Derivatives

Surface-exposed lysine and cysteine side chains of cytochrome c were labeled with
TUPS, according to published procedures [7,18]. Briefly, lysines were labeled by incubating
chromatographically purified cytochrome c with IPTS at 38 ◦C for 48 h in 0.5 M KCl at
pH 7.5 and the labeled proteins were separated from the excess dye by size-exclusion
chromatography. The lysine-labeled TUPS-cytochrome derivatives were separated by
ion-exchange HPLC [7]. The thiol-specific TUPS derivatives were prepared by incubat-
ing IPTS with cystamine at pH 9.0 for 6 h at room temperature. Cytochrome c with an
engineered single surface cysteine was reduced with 5 mM dithiotreitol (DTT) for one
hour to break possible interprotein disulfide bonds. The protein was separated from
DTT by size-exclusion chromatography and incubated with an 8-fold excess of TUPS-
cystamine, as described in [18]. The unbound dye was separated from the labeled protein
by size-exclusion chromatography.

3.5. Kinetic Spectroscopy

A combination of a multichannel and a single wavelength detector in the same light
path [18,36,37] was used to obtain time-resolved difference spectra (with high-spectral
resolution and moderate temporal sampling intervals) and absorption kinetic traces at
selected wavelengths with fine temporal sampling. TUPS-labeled cytochrome c was excited
by the third harmonic of a Nd-YAG laser (Continuum Surelite-II). The energy density of
the 355 nm, 5 ns laser pulse at the sample was 20 mJ/cm2. A continuous white measuring
light from a 35 W Hamamatsu high pressure Xe lamp, passing the sample perpendicular
to the exciting laser light, was dispersed by a Jobin-Yvon spectrograph (HR320). Two
different detectors could be selected by a switching mirror. Multichannel spectroscopy was
performed on a gated optical multichannel analyzer (Princeton Instruments IRY512) or an
Andor iStar gated ICCD detector (Andor Technology, Belfast, UK) with 100 nanosecond
time resolution. Difference spectra were collected at several delays per decade, by averaging
10–20 scans. The spectrum taken at 1 sec delay served as the reference. Single wavelength
absorption kinetic traces were measured with a 20 MHz sampling rate at 550 nm, and
reference traces at 562 nm were subtracted, to obtain the kinetics of heme reduction and
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reoxidation. Noise suppression of these traces was achieved by averaging over windows of
logarithmically increasing width. All measurements were done at 20 ◦C, in 10 mM HEPES
buffer at pH 7.5. Single wavelength kinetic measurements on lysine-labeled samples
were performed in the 0–60 ◦C temperature range. The TUPS-cytochrome c concentration
was between 10 and 20 µM, the protein was oxidized by substoichiometric amounts of
cytochrome c oxidase, and oxygen removal was achieved by adding 20 mM glucose,
100 µg/mL glucose oxidase, and 10 µg/mL catalase.

3.6. Data Analysis and Modeling

Data analysis, including the fit of the data matrices by the base spectra of the pure
forms, the multiexponential fit of the kinetic traces, as well as fitting the kinetics by the
reaction scheme (Scheme 1) were performed by programs written in «Matlab» (The Math
Works, Natick, MA, USA). Electron transfer parameters were calculated from the atomic res-
olution structures of cytochrome c using the program HARLEM [https://crete.chem.cmu.e
du/index.php/software/2-uncategorised/18-harlem, accessed on 15 November 2021].

4. Conclusions

The advantages of using TUPS to study electron transfer lie in the relatively easy
chemistry to achieve singly labeled pure protein samples, the high quantum efficiency
of the excited triplet state (TUPST*) production, and the low reduction potential of the
triplet. On the one hand, the flexibility of the linker connecting TUPS to amino acids (lysine
or cysteine) allows the mobility of the dye to the extent that it is not possible to assign
the entry point of the electron to an exact location on the protein surface. On the other
hand, our experiments and calculations show that electron injection by TUPS into the heme
can be much faster than expected from the distance or connectivity based on the position
of the amino acid to which the dye is attached. This is a clear advantage when TUPS
is used to initiate intraprotein or interprotein electron transfer in more complex systems
than cytochrome c alone. Indeed, electron transfer was successfully characterized between
internal cofactors by TUPS-labeled cytochrome c in complex with cytochrome c oxidase, and
the flavin cofactors in the more complex TUPS-labeled enzymes, cytochrome P450 reductase
(CPR) and the reductase domain of neuronal nitric oxide synthase (nNOS) [14,15,38].

Supplementary Materials: The following are available online, Figure S1: Temperature dependence
of the amplitudes and rate coefficients obtained from the multiexponential fit of the kinetic traces
measured on the K8-TUPS sample, Figure S2: Structure of TUPS as linked to lysine or cysteine side
chain, Figure S3: Comparison of the dimensionless coupling terms calculated with HARLEM using
the pathway and the packing density models for various native and engineered side chains of horse
heart cytochrome c, Table S1: Experimentally determined reorganization energies and electronic
coupling terms for the electron transfer between the heme and TUPS bound to lysine 8, in various
presumed conformations.
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