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Abstract: Lysosomal degradation, the common destination of autophagy and endocytosis, is one
of the most important elements of eukaryotic metabolism. The small GTPases Rab39A and B
are potential new effectors of this pathway, as their malfunction is implicated in severe human
diseases like cancer and neurodegeneration. In this study, the lysosomal regulatory role of the single
Drosophila Rab39 ortholog was characterized, providing valuable insight into the potential cell
biological mechanisms mediated by these proteins. Using a de novo CRISPR-generated rab39 mutant,
we found no failure in the early steps of endocytosis and autophagy. On the contrary, we found that
Rab39 mutant nephrocytes internalize and degrade endocytic cargo at a higher rate compared to
control cells. In addition, Rab39 mutant fat body cells contain small yet functional autolysosomes
without lysosomal fusion defect. Our data identify Drosophila Rab39 as a negative regulator of
lysosomal clearance during both endocytosis and autophagy.
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1. Introduction

Lysosomal degradation pathways, autophagy, and endocytosis are essential for the
proper homeostasis of all eukaryotic cells. Lysosomal malfunctions often lead to, or aggra-
vate, severe human pathologies, such as Alzheimer’s disease or cancer [1]. Understanding
the molecular mechanisms that govern lysosomal processes is of great clinical importance.
Autophagic and endocytic degradation both depend on two key events: lysosomal fusion,
and the subsequent clearance. Despite the numerous factors that are already identified,
new, yet unknown proteins and mechanisms might emerge, providing new insights that
can be utilized in tackling such diseases.

Ras-related in brain (Rab) proteins play a central role in vesicular transport and fusion
events. Several Rab proteins are confirmed to regulate lysosomal pathways, e.g., Rab2
and Rab7 regulate lysosomal fusion and degradation, while Rab5 mediates early-to-late
endosomal maturation [2–5]. Rab proteins convey effector responses in an active, GTP-
bound state, thus, the factors regulating GTP- and GDP-binding, also have an excessive
regulatory role [6]. Rab2 and Rab39 share a common ancestor and, therefore, are closely
related, but in contrast to Rab2, the involvement of Rab39 in lysosome formation is poorly
understood [7].

Rab39 was originally characterized as a trans-Golgi protein, where it regulates vesicle
tethering, with possible pleiotropic effects in other vesicle trafficking pathways, such as endo-
cytosis [8]. Mammalian organisms have two Rab39 paralogs, RAB39A and RAB39B, and the
mutation of either leads to distinct pathologies. RAB39A depletion was shown to decrease
the colonization rate of certain cancer stem cells, while augmenting lipopolysaccharide-
induced autophagosome formation in macrophages [9–12]. RAB39A also regulates phago-
some acidification and caspase-1 activity, and is also localized to lysosomal associated
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membrane protein 2 (LAMP2)-containing phagosomes [9,12,13]. RAB39B, on the other
hand, is involved in the pathogenesis of an early-onset Parkinson-like disease, Waisman
syndrome [14]. Both paralogs are implicated in proper neuritogenesis [15,16]. Interestingly,
a GDP/GTP exchange factor (GEF) of RAB39B, C9ORF72 was found to regulate autophagy
in neuronal cultures [17].

Gillingham et al. (2014) presented a comprehensive interactome of Drosophila Rab
proteins, where they found strong interactions between Rab39 and endosomal maturation
defective (Ema), as well as Unc-104, two proteins involved in endosomal maturation and
lysosome motility, respectively [18]. Ema is an interacting partner of the homotypic fusion
and vacuole protein sorting (HOPS) complex, and its depletion results in a lysosomal
fusion defect similar to HOPS-deficient cells [19]. These results suggest that Rab39 may
also have a role in lysosome formation similar to Rab2.

In this study, we characterize the role of the single Drosophila Rab39 ortholog re-
garding both autophagy and endocytosis using RNAi lines and a recently generated and
published CRISPR/Cas9-generated rab39 mutant allele [20]. Based on our results, we pro-
pose that Rab39 negatively regulates lysosomal degradation without altering endosomal or
autophagic initiation and maturation.

2. Results
2.1. Rab39 Mutation Alters the Endolysosomal Distribution

We examined the morphology of the lysosomal compartment using two organs of
Drosophila melanogaster larvae. During our studies, we used a CRISPR/Cas9 generated
rab39 mutant allele [20], in which the rab39 coding sequence was replaced with an eye-
less promoter-driven red fluorescent protein (RFP) gene. Thus, we named this allele
rab39CRISPR-RFP (rab39C-R). For the assessment of endolysosomes, we utilized the larval
garland nephrocytes that continuously take up haemolymph via endocytosis [21]. First, we
examined the acidic organelles using LysoTracker Red (LTR), as it detects acidic endolyso-
somes in nephrocytes. We found that LTR-positive puncta were smaller in number as well
as in size in Rab39 mutant nephrocytes compared to the controls (Figure 1A,B,E).

In order to see whether the scarcity of LTR-positive vesicles is a result of defective
acidification, we performed an immunostaining against the lysosomal hydrolase Cathepsin-
L (CathL) that detects both acidic and non-acidic lysosomes. The size and number of
CathL-positive puncta were also smaller in Rab39C-R nephrocytes than in the control cells
(Figure 1C–E). This suggests either an accelerated endolysosomal degradation or a reduced
endocytic uptake or maturation, since lysosomal size increase is usually a sign of improper
degradation [22,23].
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Figure 1. Endolysosomal distribution is altered in Rab39C-R garland nephrocytes of L3 stage wandering larvae. (A,B)
Acidic organelles were marked using LTR to depict endolysosomes in control (A) and Rab39C-R (B) nephrocytes. Rab39
mutant nephrocytes contain significantly fewer and smaller LTR-positive vesicles. Please note that the smaller nuclei in B,
when compared to A are only the result of natural deviation in nucleus size. (C,D) CathL was immunostained to show
Golgi-derived vesicles, acidic and even non-acidic lysosomes in control (C) and Rab39 mutant (D) nephrocytes. CathL
puncta were fewer and smaller in Rab39 mutant nephrocytes. (A–D) Respective red (A,B) and green (C–D) channels are
shown in grayscale. (E) Quantifications of the LTR and CathL experiments, n = 10 cells. None of the samples showed
Gaussian distribution. Medians are shown as horizontal black lines within the boxes. Bars show the upper and lower
quartiles, and the whiskers plot the smallest and largest observations. *** p < 0.001. Heterozygous Rab39C-R animals in
A,C,E were used as controls.

2.2. Earlier Steps of Endocytosis Are Intact in Rab39 Mutant Nephrocytes

To assess what caused the observed lysosomal phenotype, we examined the pre-
vious steps of endocytosis in Rab39 mutant cells. Early endosomes were detected via
immunostaining against Rab5, and we saw no difference between mutant and control
cells (Figure S1A,B). An immunostaining against late endosomal Rab7 was also performed,
which again displayed an intact late endosomal compartment in Rab39C-R nephrocytes
(Figure 2A,B,E). We next measured endocytic function of nephrocytes. In this experiment,
the larvae were grown on silver nitrate-containing food, as this heavy metal is taken up
from the haemolymph by nephrocytes [24]. Since heavy metals cannot be degraded in
lysosomes, nephrocytes sequester them into terminal or storage lysosomes, or residual
bodies, as shown in Figure 2C in the case of control cells. In Rab39 deprived cells, however,
silver distribution is altered (Figure 2D,E). The silver containing vesicles show a scattered
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distribution, while their size is also decreased. These data verify that Rab39 mutant cells
can initiate endocytosis, and up to the stage of late endosomes there is no detectable mal-
function in this vesicular transport route. According to the silver uptake experiment, the
later stages of lysosomal maturation might be altered.

Figure 2. Endocytic uptake and maturation are unaffected in Rab39-depleted nephrocytes of L3 stage wandering larvae.
(A,B) An immunostaining against late endosomal Rab7 was performed in control (A) and Rab39C-R (B) cells. No visible
alteration was detectable upon Rab39 deficiency, suggesting that endosomal maturation undergoes properly. The respective
red channels are shown in grayscale. (C,D) Silver nitrate was taken up by control (C) or mutant (D) garland nephrocytes,
where silver was detected in the form of a brown precipitate. Rab39 mutant nephrocytes could also incorporate silver
nitrate, but in smaller vesicles, meaning that endocytic uptake is unaltered. (E) Quantification of the experiments depicted
in (A,D), n = 10 cells. None of the samples showed Gaussian distribution. Medians are shown as horizontal black lines
within the boxes. Bars show the upper and lower quartiles, and the whiskers plot the smallest and largest observations. NS:
non-significant (p ≥ 0.05), *** p < 0.001. Heterozygous Rab39C-R animals in A, C, E were used as control ones.

2.3. Rab39 Depletion Accelerates Endosomal Maturation

After having analyzed the nephrocyte morphology using fluorescent methods, their
ultrastructure was also examined. We found a seemingly normal early and late endoso-
mal compartment upon Rab39 depletion, as anticipated (Figure 3A,B). Nevertheless, the
cytosol of the Rab39 mutant cells was abundant with small, electron-dense, lysosome-like
vesicles (Figure 3B). These structures could be either Golgi-derived vesicles or some kind
of lysosomes. Considering the small number of CathL-positive vesicles in mutant cells
(Figure 1D), we suggest that only a small portion of the observed vesicles could be Golgi-
derived vesicles (also known as primary lysosomes), the majority are more likely to be
endolysosomes that have undergone degradation and are depleted of CathL.
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Figure 3. Endocytosis is accelerated in Rab39 depleted nephrocytes of L3 stage wandering larvae. (A,B) An ultrastructural
analysis revealed normal late endosomal (marked with asterisks) size and distribution both in control (A) and Rab39 mutant
(B) nephrocytes. In the mutant cells, however, only small, electron-dense lysosomes were present as opposed to control
cells where lysosomes were larger. Two representative lysosomes are marked with arrows in both cases. (C,D) TRA was
taken up by control (C) or Rab39 mutant (D) nephrocytes for 5 min, and it was chased 0 (C,D), 10 (C’,D’) or 30 min (C”,D”).
In the mutant cells, TRA was internalized and degraded faster than in control cells. (E,F) The HA-tagged HOPS-subunit
Vps41/Lt and late endosomal Rab7 were co-stained to detect their colocalization in control (E) and mutant cells (F). The
colocalization increased upon Rab39 mutation. Boxed regions are enlarged in insets in (E,F) and colocalizing signals are
marked with arrows. (G) Quantification of the experiments depicted in (E,F), n = 10 cells. None of the samples showed
Gaussian distribution. Medians are shown as horizontal black lines within the boxes. Bars show the upper and lower
quartiles, and the whiskers plot the smallest and largest observations. ***: p < 0.001. Heterozygous Rab39C-R animals with
(E,G) or without (A,C) the indicated transgenes were used as controls.

To assess the degradation efficiency of Rab39 mutant cells, a fluorescent tracer, Texas
Red-Avidin D (TRA), was added to the media in which the garland cells were incubated
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for 5 min (pulse). Afterward, the tracer was allowed to be internalized and degraded for an
additional 0, 10, or 30 min (chase) by removing TRA from the media but keeping the cells
within the media. In control cells after the 5 min pulse, TRA appeared in the outermost
layer of the nephrocytes (Figure 3C). After the 10 min chase, TRA was observed closer
to the nuclei and in larger vesicles that are presumably late endosomes and lysosomes
(Figure 3C’) [4]. After 30 min of chase, TRA reached the perinuclear cytoplasm and most
likely was sequestered by endolysosomes (Figure 3C”) [19]. In Rab39 mutant cells, even
after only the 5 min pulse, TRA was already present in larger vesicles that might be late
endosomes (Figure 3D). It reached the perinuclear region after 10 min of chase and already
started to be degraded, as the signal started to be vague and diffuse (3D’). After 30 min of
chase, the TRA signal was considerably fainter in Rab39 mutant nephrocytes compared to
the control cells, as most of the tracer was degraded and quenched by this time (3D”). This
suggests that TRA reaches lysosomes, and it is likely removed by accelerated lysosomal
clearance in Rab39 mutants.

Increased lysosomal activity implies an elevated level of endosomal maturation, thus
we assessed the colocalization between HOPS and late endosomal Rab7. In order to localize
HOPS, a upstream activating sequence (UAS)-driven HA (hemagglutinin) epitope-tagged
recombinant version of one of its subunits, Vps41/Light (Lt) was used [25]. We found
increased colocalization between Vps41-HA and Rab7 upon Rab39 depletion in garland
nephrocytes (Figure 3E,G), suggesting an accelerated late endosomal maturation that
probably conveys late endosomes towards lysosomal fusion at a higher rate.

2.4. Rab39 Mutation Increases Autolysosomal Degradation in Fat Cells

After having concluded that Rab39 might act as an inhibitory protein during endocyto-
sis, we aimed to investigate autophagic degradation as well. We used our well-established
methods in the fat body cells (hereafter referred to as fat cells) of third instar (L3) larvae,
either in the early or wandering stages [26]. The former was starved in order to induce
autophagy, while in case of the latter, developmental autophagy was already initiated, as
wandering larvae break down their stored nutrients in a genetically programmed manner
to produce sufficient energy during the pupal stage. In order to assess autophagy, first a
3xmCherry-tagged autophagy-related 8a (Atg8a) reporter (3C8) that labels all autophagic
structures was used to detect alterations upon Rab39 depletion. To achieve the most precise
results, a clonal system, where control and Rab39 RNAi cells were present in the same
samples, was utilized [2]. Rab39 RNAi cells were marked with GFP, while the adjacent
GFP-negative cells were control ones. Rab39-deficient cells of starved larvae contained
considerably fainter and significantly fewer 3C8 vesicles, showing a clear lysosomal alter-
ation (Figure 4A, Figure S2). When we turned to the same reporter in wandering larvae,
3C8 puncta were brighter, but nevertheless smaller in RNAi cells compared to the adja-
cent control ones (Figure 4B, Figure S2). Notably, the increased delivery of autophagic
3xmCherry-Atg8a toward lysosomes upon Raptor-mediated inhibition of TOR kinase
complex 1 also produced smaller but brighter signal as a result of increased autophagic
flux [27].

Our initial findings could also be explained by reduced lysosome biogenesis accom-
panied with autophagosome accumulation. We performed ultrastructural analysis in
order to see whether the number of autophagosomes in starved early L3 stage larvae is
increased. Our analysis revealed no change in autophagosome number. On the contrary,
only small autolysosomes were observed, and within them cargo degradation progressed
normally based on morphology, suggesting that there are no intact organelles present
within (Figure 4C,D). Moreover, the distribution of autolysosomes was assessed using
a dLAMP-3xmCherry (L3C) reporter construct in our clonal system in starved larvae.
L3C puncta were smaller in Rab39 RNAi cells compared to the neighboring control cells
(Figure 4E, Figure S2). Autophagic flux can be monitored using a tandem tagged Atg8a
protein (mCherry-GFP-Atg8a), as GFP is pH-sensitive and thus gets quickly quenched in
acidic environment, as opposed to the pH-stable mCherry [28,29]. We found no difference
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between Rab39 RNAi and control cells regarding autophagic flux, as GFP was quenched
in both cases. Furthermore, as observed before, mCherry-positive vesicles are smaller in
Rab39 RNAi cells (Figure 4F,G).

Figure 4. Rab39 accelerates autophagic degradation in fat cells. (A,B) 3xmCherry-Atg8a was expressed in all fat cells in
starved (A) or wandering (B) L3 stage animals. In the GFP-positive cells, Rab39 was silenced with RNAi (marked with
yellow line in the grayscale panels). In both cases, 3xmCherry-Atg8a dots were smaller in the GFP-positive cells compared
to the adjacent control cells. (A) An inset shows the size difference of 3xmCherry-Atg8 dots. (C,D) Representative electron
micrographs of autolysosomes (marked with asterisks) from control (C) and Rab39 mutant (D) starved fat cells of L3 stage
wandering larvae. The mutant cells contain smaller yet degrading, functional autolysosomes (i.e., no intact organelles are
visible within the autolysosome), and also no autophagosome accumulation is observed. (E) dLAMP-3xmCherry expressing
fat body tissue from starved L3 stage larvae: Rab39 RNAi cells (marked with GFP) contain smaller dLAMP-3xmCherry
dots than the neighboring control cells. (F,G) mCherry-GFP-Atg8a with (G) or without (F) Rab39 RNAi was expressed in
several cells in fat tissues of L3 stage starved larvae. Magenta alone depicts autolysosomes (marked by arrows), as GFP is
quenched in acidic environment. Please note that the difference in nuclei size is the result of rapid nuclei size change due to
development and it does not affect autophagic flux. (H) Rab39QL-YFP was expressed in cell clones, while 3xmCherry-Atg8a
reporter was expressed throughout the fat body tissue of L3 stage starved larvae. By expressing the constitutively active
form of Rab39 in an ectopic manner, large mCherry-positive vesicles appeared. (I) Colocalization experiment in L3 stage
starved larvae of Rab39QL-YFP and LTR shows a marginal overlap between the two signals, suggesting an autolysosomal
Rab39 localization. Boxed regions are enlarged in (F,G,I) and colocalizing signals are marked by arrows. Heterozygous
Rab39C-R animals with (F) or without (C) the indicated transgenes were used as controls.
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A UAS-driven, constitutively GTP-bound Rab39-YFP (Rab39QL-YFP) was utilized
to examine the effects of Rab39 gain of function. Rab39QL-YFP enhanced the size of
L3C puncta in starved fat cells in larvae, suggesting impaired lysosomal degradation
(Figures 4H and S2). RAB39A was shown to localize to LAMP2-vesicles in macrophages [9],
thus we also wanted to verify the lysosomal localization of Drosophila Rab39. Rab39QL-
YFP was expressed in fat cells, with acidic lysosomes marked by LTR. The two signals
showed partial colocalization, demonstrating that a subset of lysosomes contains Rab39 on
their limiting membranes (Figure 4I).

3. Discussion

Factors governing lysosomal degradation have long been investigated, as their mal-
functions often lead to numerous kinds of pathologies. With the most common ones being
neurodegenerative and cancerous diseases, the clinical relevance of characterizing these
proteins is paramount. With each discovered regulatory element, a potential new thera-
peutic factor emerges. In the past years, several proteins residing primarily in the Golgi or
Golgi-derived vesicles were claimed to play a role in lysosomal degradation and some of
these proteins were characterized by our group, such as Rab2 which is closely related to
Rab39 [4,30].

Rab39 also localizes predominantly to the trans-Golgi, nevertheless, it was claimed
to be involved in a variety of cellular mechanisms, e.g., endocytosis, neuritogenesis, ox-
idative stress response, cannabinoid receptor signaling, Drosophila embryogenesis, Notch
signaling, lipid transport, or microtubular organization [11,31–34].

In this work, we propose a role of Drosophila Rab39 as a negative regulator of lyso-
somal degradation during both endocytosis and autophagy. This finding is in line with
an article that shows that in RAB39A-depleted macrophages, lipopolysaccharide-induced
autophagy is augmented, while RAB39A localizes to LAMP2-vesicles [9]. The mechanism
by which Rab39 proteins regulate autophagy remains to be elucidated. A possible pathway
of this mechanism could be the regulation of the mechanistic target of rapamycin (mTOR)
or transcription factor EB (TFEB), as they both reside on lysosomes and modulate lysosomal
biogenesis and clearance [35–37]. Another possible mechanism could be the regulation of
cellular localization of lysosomes, as Rab39 interacts with the kinesin-like protein KIF1A
(Drosophila Unc-104). KIF1A was shown to transport Atg9 to presynaptic vesicles and thus
plays a central role in neurodevelopment and neural function maintenance [18,38]. This
interaction could prove as possible explanation for the observed neurodegeneration upon
RAB39B mutation. It was shown both in Drosophila and humans that KIF1A mutation
causes neuropathies, as it is also involved in synaptic vesicle transport [39,40]. Furthermore,
both Unc-104 and Rab39 interact with Pruning defect 1 (Prd1) that participates in the en-
dolysosomal degradation of excessive axons and dendrites in association with Unc-104 [41].
Rab39 was found to interact with the dynein-adaptor Bicaudal D (BicD), which was also
shown to bind Rab2, a Golgi-derived protein involved in lysosomal degradation [4,18].
Furthermore, according to our findings, the HOPS subunit Vps41 was enriched on late
endosomes in Rab39-depleted cells. A possible explanation could be that a clear interaction
was found between Rab39 and Ema, an effector of the HOPS complex [18]. Since Ema
was found to play a crucial role in both autophagy and endocytosis [19,42], a connection
between Ema and Rab39 seems suitable in the regulation of both processes.

In conclusion, the interaction network of Rab39 could underlie various mechanisms
by which Rab39 fine tunes lysosomal clearance. In our Drosophila model cells, a clear
enhanced lysosomal degradation phenotype was observed in Rab39 loss-of-function cells.
On the other hand, it remains to be explored how Rab39 could serve as a hub in association
with Unc-104, Prd1, Ema, and BicD.
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4. Materials and Methods
4.1. Fly Work

Flies were raised at 25 ◦C on regular cornmeal–agar–yeast medium. To acquire
starving fat cells, 95 h old larvae were starved in 20% sucrose solution for 4 h at room tem-
perature (RT). For obtaining wandering fat body tissue, where developmental autophagy
occurs, and for the nephrocyte experiments, wandering L3 instar larvae were dissected.
The Rab39C-R stock was a gift of Peter Robin Hiesinger (Freie Universität Berlin, Germany).
Rab39 RNAi (FlyBase ID: FBst0053995) and Rab39QL-YFP (FlyBase ID: FBst0009823) were
obtained from the Bloomington Drosophila Stock Center (BDSC), Bloomington, IN, USA.
We generated Gal4-expressing fat cell clones using the following stocks: hs-Flp; UAS-DCR2,
Act > CD2 > Gal4; UAS-GFP, or hs-Flp; dLAMP-3x-mCherry, UAS-GFP; Act > CD2 > Gal4,
UAS-DCR2, or hs-Flp; 3x-mCherry-Atg8a, UAS-GFP; Act > CD2 > Gal4, UAS-DCR2 [2,43].
UAS-Vps41-9xHA was generated in our lab [30]. Autophagic flux was assessed using the
tandem GFP-mCherry-Atg8a reporter as described earlier [27,44]. The prospero-Gal4 stock
for expression in nephrocytes was a gift of Bruce Edgar (ZMBH, Heidelberg, Germany).

The generation of fat cell clones is bosed on the random cellular expression of the heat
shock (hs) promoter driven Flip recombinase (Flp). In a subset of cells, Flp eliminates the CD2
casette from between the actin (Act) promoter and the Gal4 coding sequence, thus enabling Gal4
transcription. Upon Gal4 expression, genes driven by the UAS promoter are also expressed in the
same cell (i.e., GFP that marks the cell, and the RNAi/overexpression construct).

4.2. Immunohistochemistry

For immunostaining, larvae were bisected in phosphate buffered saline (PBS) and
fixed with 4% formaldehyde in PBS for 50 min at (RT). Samples were rinsed and extensively
washed (3 × 10 min at RT) and permeabilized in PBS with 0.1% Triton X-100 (PBTX) for
10 min at RT, followed by incubation in blocking solution (5.0% FCS (DE14-802F, Lonza, Bel-
gium) in PBTX, 30 min at RT). Samples were then incubated in blocking solution containing
primary antibodies and sodium azide (0.01%) overnight at 4 ◦C. Next, samples were rinsed
3 times and washed with PBTX with extra 4% NaCl for 15 min at RT, then washed with
PBTX for 3 × 15 min in PBTX at RT, then incubated in blocking solution for 30 min at RT,
followed by incubation with secondary antibodies in blocking solution for 3 h at RT. Wash-
ing steps were repeated, while nuclei were stained using 4′,6-diamidino-2-phenylindole
(DAPI) added to the NaCl-containing PBTX, and samples were mounted in Vectashield
(Vector Laboratories, Burlingame, CA, USA, H-1000). The primary antibodies were: mon-
oclonal mouse anti-Rab7 (1:10, Developmental Studies Hybridoma Bank/DSHB, Iowa
City, IA, USA) [45], polyclonal rabbit anti-CathL (1:100; ab58991, Abcam, Cambridge, UK),
polyclonal rabbit anti-HA 1:100 (Merck, Darmstadt, Germany, H6908), polyclonal rabbit
anti-Rbsn-5 (1:1000) [46]. The secondary antibodies were: Alexa Fluor 568 goat anti-mouse,
Alexa Fluor 488 goat anti-rabbit (all 1:1000; Invitrogen, Carlsbad, CA, USA).

4.3. LysoTracker Staining and TRA Uptake Assay

For TexasRed-Avidin uptake assay, L3 wandering larval proventriculi with garland
nephrocytes were prepared in cold Shields and Sang M3 insect medium (hereafter referred
to as M3, Merck, Darmstadt, Germany, S8398) and incubated in 0.1 mg/mL TexasRed-
Avidin D (Vector Laboratories, A-2006) containing M3 for 5 min at RT, rinsed 3 times, then
incubated in M3 for 0, 10 or 30 min, then fixed with 4% formaldehyde in PBS for 50 min at
RT. Samples were washed 3 × 10 min in PBS, stained with DAPI and mounted as described
before. For LysoTracker staining, fat tissues of starved larvae were bisected in cold PBS and
incubated in LysoTracker Red DND-99 (1:1000 in PBS; Thermo Fisher Scientific, L7528) for
1 min at RT. Samples were then rinsed 3 times, mounted in 80% glycerol in PBS containing
DAPI, and photographed immediately.
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4.4. Fluorescent Imaging

Fluorescent images were obtained at RT with an AxioImager.M2 microscope (Carl
Zeiss, Oberkochen, Germany) with an ApoTome2 grid confocal unit (Carl Zeiss) using EC
Plan-Neofluar 40×/0.75-NA Air (Carl Zeiss) or Plan-Apochromat 40×/0.95-NA Air (Carl
Zeiss) objectives for fat cells, and Plan-Apochromat 63×/1.40-NA Oil (Carl Zeiss) objective
for nephrocytes, an Orca Flash 4.0 LT sCMOS camera (Hamamatsu Photonics, Hamamatsu,
Japan), and Zeiss Efficient Navigation 2 software (Carl Zeiss). Immersol 518F (Carl Zeiss)
immersion oil was used for the 63x objective. Images from 8 consecutive focal planes
(section thickness: 0.25 µm for nephrocytes and 0.35 µm for fat cells) were projected onto
one single image, except for the colocalization assays, where we aimed to exclude any false
positive colocalization, thus assessing only one focal plane. Images were processed in Zeiss
Efficient Navigation 2 (Carl Zeiss) and Photoshop CS4 or CS6 (Adobe, San Jose, CA, USA)
to present final figures.

4.5. Electron Microscopic Analysis

Fat bodies or nephrocytes were fixed in a solution containing 3.2% paraformalde-
hyde, 0.5% or 1% glutaraldehyde for nephrocytes or fat cells, respectively, 1% sucrose,
and also 0.028% CaCl2 in 0.1 N sodium cacodylate, pH 7.4, overnight at 4 ◦C. Samples
were immobilized within 1% agar in distilled water (DW). Samples were postfixed and
contrasted in 0.5% OsO4 for 1 h and in half-saturated aqueous uranyl acetate for 30 min at
RT, dehydrated in a graded series (50%, 70%, 96% and 100%) of ethanol, and embedded in
Durcupan (Fluka, Buchs, Switzerland) according to the manufacturer’s protocols. Then,
70 nm sections were stained in Reynolds’ lead citrate and viewed with a JEM-1011 trans-
mission electron microscope (Jeol, Tokyo, Japan) with a Morada digital camera (Olympus,
Tokyo, Japan) using iTEM software (Olympus). Images were processed in Photoshop CS4
(Adobe) to present final figures.

4.6. Statistics

We quantified our unmodified, single focal plane images using ImageJ software (NIH,
Bethesda, MD, USA). n = ten cells of each genotype were quantified. For measurement,
cells were randomly selected, and the areas were measured manually. In the mosaic
animal experiments, a randomly generated RNAi cell clone and a neighboring control
cell was chosen for quantification. The normality test for each data sets was performed
using SPSS17 (IBM, Armonk, NY, USA), and when the distribution of at least one of the
compared datasets was non-Gaussian, the Mann–Whitney U-test was performed. When
each dataset showed normal distribution, T-test with independent samples was performed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms221910635/s1, Supplementary Figure S1: Early endosomal distribution is unaltered in
Rab39 mutant nephrocytes. (A-B) Early endosomal Rab5 was marked by immunostaining both in
control (A) and Rab39C-R (B) garland nephrocytes with no difference in vesicle size or distribution.
Supplementary Figure S2. Statistical analysis of experiments depicted in Figure 4: From left to right:
number of 3xmCherry-Atg8a dots per cell in starved larvae (non-Gaussian), size of 3xmCherry-Atg8a
dots in starved larvae (non-Gaussian), number of 3xmCherry-Atg8a dots per cell in wandering
larvae (non-Gaussian), size of 3xmCherry-Atg8a dots in wandering larvae (non-Gaussian), size of
dLAMP-3xmCherry dots in starved larvae (Gaussian), size of 3xmCherry-Atg8a dots in starved
larvae (Gaussian). In all cases n = 10 cells. Medians are shown as horizontal black lines within the
boxes. Bars show the upper and lower quartiles, and the whiskers plot the smallest and largest
observations. ** p < 0.01 *** p < 0.001.
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