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SUMMARY The development of sexual fruiting bodies is one of the most complex
morphogenetic processes in fungi. Mycologists have long been fascinated by the morpho-
logical and developmental diversity of fruiting bodies; however, evolutionary developmental
biology of fungi still lags significantly behind that of animals or plants. Here, we summarize
the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, fo-
cusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed
a complex history of morphological transformations and convergence in fruiting body mor-
phologies. Frequent transformations and convergence is characteristic of fruiting bodies in
contrast to animals or plants, where main body plans are highly conserved. At the same
time, insights into the genetic bases of fruiting body development have been achieved
using forward and reverse genetic approaches in selected model systems. Phylogenetic
and developmental studies of fruiting bodies have each yielded major advances, but they
have produced largely disjunct bodies of knowledge. An integrative approach, combining
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phylogenetic, developmental, and functional biology, is needed to achieve a true fungal ev-
olutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.

KEYWORDS Basidiomycota, evo-devo, fruiting body, mating, morphogenesis,
phylogenetics

INTRODUCTION

Complex multicellular forms have evolved in just a few eukaryotic clades, including
plants, animals, red and brown algae, and fungi. In most of these groups, the com-

plex multicellular entity is a reproducing individual that performs multiple functions,
such as acquisition of nutrients (by ingestion, absorption, or photosynthesis), mating, and
movement. Complex forms in fungi make up only a part of the individual and have more
limited functions. For example, rhizomorphs and hyphal cords act as foraging structures and
sclerotia store nutrients. The most spectacular forms in fungi are fruiting bodies (also called
sporocarps, basidiomata, ascomata, or mushrooms). Fruiting bodies are probably some of
the most emblematic structures fungi produce, but they all have the same function: to pro-
duce and disseminate spores (mostly meiospores).

Fruiting bodies manifest an astonishing diversity of phenotypes. Size variation encom-
passes at least 4 orders of magnitudes ranging from cleistothecia of Ascomycota (on the order
of 100 mm), to massive bracket fungi (e.g., Phellinus ellipsoideus), to agarics (e.g., Termitomyces
titanicus), and to giant puffballs (Langermannia gigantea), which can measure up to a meter
across (see Fig. 1). This large diversity recalls Charles Darwin’s poetic vision of “endless forms
most beautiful.” However, the vast majority of species assume a limited number of canonical
forms (e.g., pileate-stipitate forms, crust fungi, puffballs, coral fungi, etc.) and appear to reflect
certain functional, phylogenetic, developmental, or genetic principles, which will be the topics
of this review.

In contrast to Darwin’s vision, variation in fungal fruiting bodies is not endless or
continuous. Rather, fruiting body evolution appears to be guided by internal or external
constraints that have driven the recurrent evolution of similar forms, that is, yielded a lim-
ited array of morphologies (1). Fruiting bodies are anatomically simple and display develop-
mental plasticity, with major morphological transformations resulting from variation in envi-
ronmental variables such as light and CO2 concentration. Fruiting body evolution in fungi is
marked by extensive convergence and lineages have shifted among a limited number of
semidiscrete forms. At the same time, fossil mushrooms in amber show that some forms
have been conserved for tens of millions of years (2–4). This apparent paradox—simplicity
and plasticity on one hand versus evolutionary conservation and convergence on the
other—suggests that natural selection plays a strong role in shaping phenotypes.

One of the grand challenges of mycology is to understand how the diversity of fruit-
ing bodies has evolved. A complete solution to this problem should address four dimensions
of fruiting body evolution: (i) historical patterns, (ii) developmental mechanisms, (iii) genetic
bases, and (iv) modes of natural selection. Accordingly, mycologists have taken four major
approaches to studies of fruiting bodies: (i) phylogenetics; (ii) developmental biology, including
morphological and anatomical studies; (iii) genetics and genomics; and (iv) functional biology
and biomechanics. Possibly for historical reasons, some of these approaches achieved different
levels of progress in different fungal clades. In the Agaricomycotina, tremendous progress has
been made toward understanding phylogenetic patterns, whereas scholars focused intensely
on the genetics of fruiting body development in the Ascomycota, where well-established labo-
ratory models (e.g., Aspergillus nidulans and Sordaria macrospora) are available. On their own,
none of these approaches are, however, wholly satisfactory; phylogenetic methods suggest
general trends in natural selection but do not identify their mechanisms, developmental or
genetic studies provide in-depth mechanistic information in single species but are hard to
extrapolate to phylogenetic scales, and functional studies in model systems generally do not
measure fitness or demonstrate differences in performance across species.

Fungal evolutionary developmental biology (evo-devo) draws on disciplines that
proliferated at various points throughout the 20th and 21st centuries. From the mid-20th
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century on, fungal morphologists studied fruiting body growth in detail, resulting in a rich ter-
minology for developmental forms (5–7). Some taxonomists formulated explicit hypotheses of
fruiting body evolution, such as the secotioid syndrome of Harry Thiers (8) or the “Clavaria
theory” of E. J. H. Corner (9) (see Glossary), but it was not until the explosion of molecular phy-
logenetics in the 1990s that tools became available to formally put these hypotheses to the
test (reviewed in reference 10). From the first days of molecular phylogenetics, fungal system-
atists sought to reconstruct historical patterns of fruiting body evolution (see, for example,
references 11 and 12). During the last 2 decades, molecular phylogenies revealed transitions
between fruiting body morphologies in numerous individual clades. Recently, studies in the
Agaricomycotina have used “megaphylogenies” with thousands of species that have docu-
mented broad patterns of morphological evolution (13, 14).

During the latter part of the 20th century, several scholars investigated the genetics
and cell biology of fruiting body development, focusing on model systems such as

FIG 1 Diversity of fruiting body morphologies in the Basidiomycota. Examples of fruiting body morphologies are shown to
illustrate the diversity of forms across the Agaricomycetes. (A to C) resupinate fruiting bodies (A, Cylindrobasidium evolvens;
B, Xylobolus frustulatus; C, Antrodia malicola); (D and E) pileate-sessile forms (D, Trametes versicolor; E, Piptoporus quercinus);
(F) cyphelloid fruiting body of Schizophyllum commune; (G and H) clavarioid/coralloid fruiting bodies (G, Clavaria rosea; H,
Clavicorona pyxidata); (I to K) pileate-stipitate fruiting bodies (I, Coprinopsis cortinata; J, Hygrocybe splendidissima; K,
Conocybe antracophila); (L to N) gasteroid fruiting bodies (L, Scleroderma citrinum; M, Geastrum saccatum; N, Rhizopogon
sp.). (Photographs by L. G. Nagy.)
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Coprinopsis cinerea, resulting in detailed premolecular views on fruiting body development
(see reference 15 for a summary). With the advent of reverse genetics in filamentous fungi,
attention shifted toward identifying developmental genes in a number of model systems.
Through genetic studies in model systems, progress has been made toward understanding
certain developmental phenomena, such as initiation of fruiting body development, the reg-
ulation of pileus expansion, or stipe elongation, among others (see, for example, references
16–20). Recently, the proliferation of genomic and transcriptomic data combined with ro-
bust phylogenies is beginning to permit comparative phylogenetic analyses of developmen-
tal genetic mechanisms (see, for example, references 21–26).

Another approach mycologists have taken to understand how natural selection has
shaped fruiting body evolution involves studies of functional morphology. For example, the
pioneering mycologists C. T. Ingold and Reginald Buller initiated studies on the biomechanics
of spore dispersal (27, 28) which have continued with the application of techniques such as
ultrahigh-speed video microscopy (29). Recently, biophysical analyses of forcible spore dis-
charge have suggested a relationship between the size of spores and the “Buller’s drop”
(see Glossary) and gill spacing (30).

In spite of these advances, fungal evo-devo has yet to elucidate some of the most
basic questions, such as the developmental bases and evolutionary origins of fruiting bodies,
the mechanisms of morphological patterning, or the causes of cell type differentiation.

Fungal evo-devo is basic science, but it has potential significance for practical applica-
tions. Fungal fruiting bodies are increasingly important as sources of sustainable foods
(including meat surrogates), and their use as medicinal compounds is gaining momen-
tum. For example, hallucinogenic compounds produced by Psilocybe mushrooms show
very promising effects in the therapy of major depressive disorders (31), whereas fruiting
bodies of Boletus edulis have been found to be the richest dietary source of antioxidants
(32). Edible and medicinal mushrooms form the basis of a multi-billion-dollar global
industry that is growing rapidly. Great advances have been made in the industrial production
of key species (33). Nevertheless, the industry has not experienced the sort of advances that
characterized crop development during the green revolution or the domestication of animals;
cultivated mushrooms remain similar to their wild counterparts. An enhanced understanding
of the mechanisms of fruiting body development could have a transformative impact on
diverse emerging technologies.

In this review, we assess the state of knowledge regarding genetic and developmental
mechanisms, phylogenetic patterns and macroevolutionary trends of fruiting bodies in mush-
room-forming fungi. We focus on Agaricomycotina, but we make comparisons to Ascomycota
and Mucoromycota where appropriate. We note that research in the developmental genetics
of Ascomycota fruiting bodies has made significantly more progress in recent years than that
for Basidiomycota fruiting bodies, and we refer the reader to recent reviews on the topic (34,
35). We first place fungal fruiting bodies in the context of research on (complex) multicellular-
ity and then discuss recent progress on understanding phylogenetic patterns and hypotheses
gleaned from examining phylogenies across the Agaricomycotina. In the second half of this
review, we introduce physiological and genetic factors underlying the process of fruiting body
development.

FRUITING BODIES AS COMPLEX MULTICELLULAR STRUCTURES

Fruiting bodies represent the most complex morphological organization to have
evolved in fungi. They are recognized as complex multicellular structures (25, 36, 37), unlike
the vegetative mycelium, which is better considered a phylogenetic grade of simple multi-
cellular organization, following the widely accepted definitions of Knoll (38). The distinction
between simple and complex multicellularity emphasizes a three-dimensional organization
in which not all cells are in direct contact with the environment, the presence of a geneti-
cally encoded developmental program, and mechanisms for communication between cells.
Complex multicellularity evolved in only five lineages, metazoans, green plants, and brown
and red algae, as well as fungi (37–39). Of these, fungi show evidence for multiple origins of
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complex multicellular structures, in contrast to other lineages, in which complex multicellu-
larity emerged only once (36, 40).

In terms of cellularity levels, the initiation of fruiting bodies on vegetative mycelia
represents a transition from a simple to more complex organization, where the main
difference lies in mechanisms of hyphal branching, growth, and adhesion patterns.
Since fruiting body initiation can be induced under laboratory conditions, it is an ideal
model system for experimentally interrogating cellular events of the transition to com-
plex multicellularity. For example, transcriptomic studies can provide real-time read-
outs of gene expression changes during the transition from simple to complex multi-
cellularity or comparisons of multiple species or multiple structures within the same
species (e.g., fruiting bodies and rhizomorphs [41]) can reveal genes key for
development.

MULTIPLE ORIGINS OF FRUITING BODIES IN FUNGI

Although different fungal lineages have diverse solutions for fruiting bodies, the
broad functions are the same: to produce and protect spores (both sexual or asexual)
from unfavorable conditions or biotic impacts (fungivores/mycophages). In this sense, the dif-
ferent types of multicellular, three-dimensional spore-bearing structures are uniformly referred
to as fruiting bodies irrespective of their taxonomic affiliation or homology relations. Among
fungi, 8 to 11 independent clades (Agaricomycotina, Pezizomycotina, Pucciniomycotina,
Ustilagomycotina, Endogonales, Neolecta, Glomus spp., and Modicella) have been identi-
fied that contain complex multicellular fruiting bodies (see Figure 1 in reference 36). In some
of these clades, fruiting-body-forming species are the minority and are nested within clades
which only form hyphae, whereas in other clades (Agaricomycotina and Pezizomycotina)
fruiting-body-forming species are dominant. Fruiting bodies in these clades do not show dis-
cernible homology at the developmental and morphological levels, which suggests they ei-
ther evolved independently or have diverged from a common ancestor to such an extent
that similarity is no longer detectable. Ancestral state reconstructions are consistent with
this notion: the most recent common ancestors of these clades had most likely no fruiting
bodies (26, 36), which implies that they evolved convergently in fungi, as has been hypothe-
sized (38, 42–45).

How complex multicellularity appeared independently many times in fungi is an
interesting question (37) to which comparative genomic studies provided some clues
in the last few years. Whole-genome sequences were published from some crucial
fruiting-body-forming species which belong to independent lineages. One of these is
the Endogonales (Mucoromycotina), one of the earliest diverging fungal groups in which
complex multicellularity appeared (21). However, developmental aspects of these species
have not yet been studied. Within Dikarya, the enigmatic genus Neolecta also represents
an independent fruiting-body-forming lineage that is nested within the mostly yeast-like
Taphrinomycotina. Sequencing the genome of N. irregularis revealed surprising genomic
attributes (22): it has ;5,500 protein-coding genes and very few introns, which makes it
more similar to genomes of related yeasts than to those of filamentous or fruiting-body-
forming fungi. A significant expansion of a fungus-specific transcription factor family was
detected, which could underlie some of the aspects of Neolecta’s uniqueness (22).
Nevertheless, the limited coding capacity of the Neolecta genome suggests that, in
terms of gene content, building complex multicellular structures does not require a
lot more genetic elements (genes and regulatory interactions) than building simple
hyphae or yeast cells (37). This was a surprising observation given that complex multicellu-
larity is considered one of the major transitions in the history of life (38, 46, 47).

The unusual, yeast-like characteristics of the Neolecta genome prompted speculation on
the potential genetic underpinnings of the independent origins of fruiting body formation
(reviewed in detail in references 36 and 37). The proposed scenarios include (i) a single origin
and multiple losses of fruiting body formation; (ii) genetic predisposition (e.g., latent homolo-
gies), a mechanism that increases the likelihood of convergence (see references 48 and 49); or
(iii) genetic settings that could provide the plasticity needed to switch between complexity

Fungal Evo-Devo Microbiology and Molecular Biology Reviews

March 2022 Volume 86 Issue 1 e00019-21 mmbr.asm.org 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

m
br

 o
n 

06
 F

eb
ru

ar
y 

20
22

 b
y 

16
0.

11
4.

62
.7

2.

https://mmbr.asm.org


levels over hundreds of millions of years (such as simple genetic changes being sufficient for
large morphological changes) (37). The predisposition scenario was supported by Merényi
et al. (26), who compared developmentally regulated genes in fruiting body transcriptomes of
four Agaricomycotina and five Pezizomycotina species. Significant expression dynamics were
taken as a proxy for a role in fruiting body development; this approach, although far from a
perfect strategy, was found to represent a good compromise in the comparative analysis of
multiple species. Similarly, but in the Ascomycota, Trail et al. (23) found that genes whose
expression in fruiting bodies diverged fastest between species conferred a phenotype in
knockout mutants significantly more frequently than genes selected on other grounds.
Phylogenomic analyses of developmentally regulated genes by Merényi et al. showed that
more than half of conserved developmental gene families predated the last common ancestor
of the Agaricomycotina and Pezizomycotina; thus, the majority of genes were probably
coopted for fruiting body development (26). In addition, very similar gene sets were found to
be upregulated in Agaricomycotina and Pezizomycotina fruiting bodies, suggesting conver-
gent cooption in these families. These families also showed a high level of parallel gene dupli-
cation (82%), which is significantly higher than in other shared, but non-developmentally regu-
lated families (8.3%). The authors of that study interpreted the high prevalence of parallel
cooption and subsequent diversification as evidence for genetic predisposition of ancestral
species for evolving fruiting bodies. This may mean that ancestral species had certain precur-
sor traits, which easily transformed into fruiting bodies, thereby reducing mutational target
size for evolution.

PHYLOGENETIC PATTERNS IN FRUITING BODY EVOLUTION

One of the major approaches used for understanding the evolution of fruiting
bodies involve phylogenetic comparisons, mapping of fruiting body presence/absence
on a phylogenetic tree, or inferring trends in the directionality of transformations
between different morphologies. Phylogenies can also be used to assess the impact of
fruiting body morphologies on diversification by broad comparisons of character-
state-dependent speciation and extinction rates. In this section, we discuss information
gleaned from the analysis of phylogenetic trees and character states.

An overview of our understanding of Agaricomycetes phylogeny is beyond the
scope of this review; however, we note that clarifying the relationships among Basidiomycota
subphyla and among classes/orders of the Agaricomycotina has been instrumental to
our ability to infer and test evolutionary hypotheses on fruiting body formation. This has
been enabled by the revolution in molecular phylogenetics, starting in the 1990s, and
more recently in phylogenomics, which refers to the inference of phylogenetic trees
from genome-scale data. An important advance has been the clarification of the posi-
tions of the earliest-diverging classes Bartheletiomycetes (50) and Wallemiomycetes (51)
(including the Geminibasidiales [52]) in the Agaricomycotina, which, nevertheless, due to
their apparently reduced nature, represents a limiting factor for inferring the ancestral
morphology in the Agaricomycotina.

The Road to Complex Fruiting Bodies

Origin of Agaricomycotina fruiting bodies. Phylogenetic studies suggest independ-
ent origin(s) of fruiting body formation in the Agaricomycotina (26, 48), which supports
traditional views (43, 45, 53). The ancestral morphology of the Agaricomycetes was
robustly resolved as resupinate (crust-like), but this result is based on a broad categori-
zation of fruiting bodies into just five main groups. In these studies, both cushion-like
gelatinous and crust-like nongelatinous forms were considered resupinate (there are
also fully resupinate forms). Thus, either form might have been plesiomorphic (see Glossary).
The simplest resupinate forms are little more than a lawn of naked basidia produced by a
loose network of hyphae (i.e., “arachnoid” fruiting body). Support for such a morphology
being ancestral is provided by the presence of very simple, resupinate fruiting bodies in
early-diverging orders of the Agaricomycetes (e.g., Cantharellales) (Fig. 2 and 3). However,
gelatinous, cushion-like fruiting bodies as a plausible ancestral state is supported by the
dominance of such fruiting bodies in the two earliest-diverging classes (Tremellomycetes
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and Dacrymycetes) and the early-diverging Auriculariales and Sebacinales. Gelatinous fruit-
ing bodies also occur in the Pucciniomycotina, and Prasanna et al. argued they represent a
shared trait with the Agaricomycotina (54) (although the relationships between subphyla
of Basidiomycota are unresolved). Overall, the ancestral morphologies (gelatinous and/or
resupinate) and the exact origin of Agaricomycetes fruiting bodies are currently not
resolved.

To time the origin(s) of fruiting body formation, inferences can rely on molecular
clock estimates for the last common ancestor of Agaricomycetes or Agaricomycotina,
since fruiting bodies might have originated in the ancestors of these clades. Wide estimates
of early molecular clock studies (300 to 1,000 million years [Myr]) for the Agaricomycetes
(55), were narrowed down by more focused studies utilizing more precise calibration points
and/or denser sampling. There is a relative consensus among recent estimates of the age of
the Agaricomycetes. For the crown age of the class, these are centered around;300 Myr at
the Permian/Carboniferous boundary: ;290 Myr (95% highest posterior density, 222 to 372

FIG 2 Gradient of complexity levels of fruiting bodies in the Agaricomycotina. The simplest sexual
structures are basidia germinating from spores (A) and hymenia composed of lawns of naked basidia
(e.g., Cryptococcus neoformans) (B). Compact fruiting body structures are represented by gelatinous
fruiting bodies of jelly fungi (C), as well as resupinate (D to F) and complex morphologies (G). Note
differences in the thickness of the fruiting body and the appearance of sterile cell types (cystidia,
gray) in the hymenium. Basidia are indicated in red.

Fungal Evo-Devo Microbiology and Molecular Biology Reviews

March 2022 Volume 86 Issue 1 e00019-21 mmbr.asm.org 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

m
br

 o
n 

06
 F

eb
ru

ar
y 

20
22

 b
y 

16
0.

11
4.

62
.7

2.

https://mmbr.asm.org


Myr) (56), 294 Myr (57), and ;300 Myr (58), which is consistent with the oldest known
clamped hyphae from the Carboniferous (59). However, most of these analyses used very
similar approaches to taxon sampling and fossil calibration, so their results are not strictly inde-
pendent. More recently, Varga et al. inferred slightly older ages, 297 to 387 Myr (mean, 341
Myr) using densely sampled phylogenies and an extended set of fossil calibrations
(13). By combining alternative fossil calibration schemes and trees, these authors
showed that the difference from previous phylogenomics-based estimates primarily
stems from the improved placement of certain key fossils in the tree, highlighting the im-
portance of taxon sampling.

Evolution of complex fruiting bodies. In a bird’s eye view of morphology and phylog-
eny, the evolution of fruiting body types seems to have followed certain trends (60). For
example, morphological complexity (e.g., measured as the number of parts) appears to
increase as a function of the number of nodes (i.e., number of speciation events) from the
root to the tips of the Agaricomycetes tree. However, the existence of general trends in

FIG 3 Phylogenetic relationships among major Basidiomycota clades and the distribution of gelatinous
[marked by “(G)”] and resupinate [marked by “(R)”] fruiting bodies across basal clades. Orders in the “crown”
Agaricomycetes (purple clade) all contain resupinate species in various proportions. The examples shown are
Botryobasidium subcoronatum (upper image) and Dacrymyces minutus (bottom image). The Wallemiomycetes,
Geminibasidiomycetes, and Bartheletiomycetes are grayed out, indicating the lack of fruiting bodies in these
clades. (Photographs courtesy of Otto Miettinen, reproduced with permission.)
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the evolution of complexity is debated (61, 62), and fruiting body evolution should not be
viewed as a steady increase toward more complex forms. Rather, each fruiting body type
should be viewed as a result of either evolutionary constraint or ecological adaptation
over millions of years of evolution.

The term “complex” as used here is a subjective grouping that includes developmentally
integrated forms, such as the pileate-stipitate (Fig. 1i to k), gasteroid (Fig. 1l to n), coralloid
(Fig. 1g and h), and pileate-sessile (Fig. 1d and e) fruiting bodies (60). On the other hand, the
term “simple forms”mostly refers to resupinate forms in which tissue and cellular differentia-
tion is usually limited (Fig. 2) (also see the Glossary for a detailed description of fruiting body
forms). These types do not group into discrete units; there are transitional forms and a con-
tinuum of complexity levels within each of the fruiting body types. For example, while resu-
pinate forms likely emerged from lawns of naked basidia and their simplest forms hardly go
beyond a few layers of subicular hyphae and basidia, more derived crust fungi can form
fruiting bodies that are several millimeters thick with complex hyphal anatomies (Fig. 2).

Several phylogenetic studies have investigated whether there is a general trend toward
increasing complexity in Agaricomycete fruiting bodies. These analyses have focused on
multiple dimensions of morphological evolution, including (i) historical patterns, (ii) directional-
ity in transformations, and (iii) diversification effects of particular traits. All such analyses are
influenced, to various degrees, by taxon sampling and character coding. For example, Hibbett
and Binder (63) studied the evolution of resupinate forms using binary character coding
(resupinate/nonresupinate) and concluded that resupinate forms are evolutionarily labile,
that is, transformations from resupinate to other forms occur more rapidly than transforma-
tions in the reverse direction. Based on this result, Hibbett and Binder inferred that there is
a trend toward increased complexity in the evolution of Agaricomycetes (63). However,
the result was not upheld when the analyses were repeated with the “nonresupinate” state
divided into multiple characters (60). A recent large-scale megaphylogeny-based analysis
with 8,400 species and multistate coding suggested that (i) the ancestor of Agaricomycetes
had a resupinate fruiting body, with many derivations of more complex forms, and reversals
to resupinate forms; (ii) resupinate forms do not appear to be particularly labile; and (iii) resu-
pinate forms have reduced diversification rates compared to other forms (14). Thus, conclu-
sions regarding “trends” in the evolution of complex forms in Agaricomycetes will differ
depending on whether one emphasizes historical patterns, directionality in transformation
rates, or state-dependent diversification.

The broad categorization of fruiting body types that we have used thus far hardly
allows a higher-resolution view to be formulated. A wide range of different forms evolved
within each of the fruiting body types, some of which may appear more or less complex than
others. In the context of the pileate-stipitate forms, these include veils, various hymenophoral
conformations (pores and gills), specialized cell types (cystidia and pseudoparaphyses), or pig-
mentation patterns to name a few. For example, Flammulina velutipes has a simpler, “gymno-
carpic” development (see Glossary) in which the young gills are exposed to the environment,
whereas Coprinopsis cinerea primordia are formed within a nodulus (see Glossary), ensheathed
by layers of specialized veil cells. Varga et al. (64) referred to the latter as “enclosed develop-
ment” and noted an analogy with viviparity in animals, where the most vulnerable structures
(primordia or the embryo) are protected by tissue layers during their early development (64).
Estimates for the number of cell types in mushroom fruiting bodies are scarce, but Kües and
Navarro-Gonzaléz counted at least 30 cell types in fruiting bodies of C. cinerea using micro-
scopic observations (65).

At a smaller scale, convergent origins of autodigesting “coprinoid” fruiting bodies
(which liquefy themselves at the end of development; see Fig. 1I) in the Psathyrellaceae has
been demonstrated, presumably as repeated adaptations to small and labile environments
(e.g., dung [66]). A generalization we can derive from these studies is that phenotypic traits
that emerged repeatedly and became widespread in their clades provide a fitness benefit to
species. Several such traits can be found across Agaricomycetes fruiting bodies, such as the
presence of a cap, emergence of a stipe, that of complex hymenophore surfaces, partial or
universal veils, chemical characteristics (e.g., toxins), or certain spore characters (67), but only
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for some of these has a formal test been carried out (see, for example, references 64 and
67). An overarching message that emerges from phylogenetic relationships, as well as
explicit tests of evolutionary trends, is that convergence is a widespread phenomenon in
mushroom-forming fungi. This is fundamentally different from animals and plants, where
phylogenetic conservation of form has been formalized in the concept of body plans. In the
next few sections, we review the patterns of convergence in fruiting body morphologies,
highlighting the plasticity of the developmental process in fungi.

Evolutionary Plasticity of MushroomMorphologies

Convergence in fruiting body morphologies. Convergence was increasingly recog-
nized as physiological and microcharacters started to reveal that the broad macromor-
phology-based taxonomic classification during the early- to mid-20th century into
Hymenomycetes (“fleshy fungi”), Gasteromycetes (“puffballs”), and Aphyllophorales
(“polypores” and related fungi) is artificial (12). Later, at the end of the 20th century,
during the clarification of fungal taxonomy, gross morphological similarities were
shown one after the other to be poor indicators of evolutionary relationships (10).
Most of these morphologically counterintuitive relationships derive from the polyphyletic na-
ture of taxonomic groups previously thought to be uniform; these are actually the hallmarks
of the convergent evolution of morphological traits.

The approximately 36,000 described species of Agaricomycetes are usually catego-
rized into five main fruiting body types (resupinate, coralloid/clavarioid, pileate-sessile,
pileate-stipitate, and gasteroid; Fig. 1), and these forms appear many times in different
taxonomic groups (14). Here, we also follow this classification; however, it should be
noted that each of these broad categories encompasses a wide range of functionally
or morphologically different or evolutionarily independent forms (e.g., cyphelloid taxa
under “pileate-sessile”; see Glossary). A finer categorization would be advantageous for
increasing the biological realism of the discussion; however, just as in the case of statis-
tical methods (60), this approach would lose power in detecting broad tendencies.

Fossil evidence for fruiting bodies is scarce. However, some of the most spectacular
fungal fossils are mushrooms, such as Archaeomarasmius leggetti (68) or Coprinites
dominicana (69), two amber-preserved fossils that reflect the modern agaricoid (see
Glossary) morphology (fossils and their potential as calibration points are reviewed in
reference 13). This evidence highlights clearly only a very small section of the paleodi-
versity of mushroom-forming fungi, but it does indicate that the pileate-stipitate mor-
phology has been around and has remained virtually unchanged for at least ;100 Myr
(4). While fossils do not allow us to deduce patterns of fruiting body evolution, they
can be used to infer ages of major events of evolution using molecular clocks (13, 14).
Varga et al. (13) combined comparative analyses of fruiting body morphology with mo-
lecular clock estimates and showed that transformations in fruiting body morphology
happened convergently and asynchronously. For example, the pileate-stipitate mor-
phology was inferred to have evolved 85 times in clades of different sizes and ages.
This suggests that transformations in fruiting body morphologies may not be tied to
major abiotic (geologic) or biotic (e.g., radiations of plant groups) events.

As discussed above, resupinate forms appear to be plesiomorphic in the Agaricomycetes
(13, 14, 59, 60). Most of the oldest clades of the Agaricomycotina contain resupinate forms
(e.g., Trechisporales, Corticiales, and Jaapiales) or morphologies that are lumped in this cate-
gory (Auriculariales, Tremellomycetes, and Dacrymycetes). The resupinate morphology was
probably dominant in the Agaricomycetes from their most recent common ancestor in
the Carboniferous to the Jurassic era (13) (Fig. 4). With the emergence of the other forms,
the proportional representation of resupinate form began to decline rapidly. Nevertheless, the
conservation of resupinate forms suggests that they may be well adapted to certain habitats
(e.g., the undersides of logs) or that certain constraints kept them in this form. There have also
been many reversals to resupinate fruiting bodies from more complex forms via simplification
(13, 14). At least 25 transitions from the pileate-stipitate to resupinate forms were inferred by
Sanchez-Garcia et al. (14). Examples include the Agaricales genera Aphanobasidium and
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Brunneocorticium, resupinate taxa that might have evolved from ancestors with more com-
plex fruiting bodies.

Coralloid-clavarioid fruiting bodies are club- or coral-shaped structures with the
basidia located on the outer surface (Fig. 1). This morphology is rare among extant mush-
room-forming fungi, with its greatest diversity found in the Gomphales (genus Ramaria [70])
and the Clavariaceae (71) in the Agaricales. Inferences of evolutionary rates suggested it to
be an evolutionarily labile form, which evolved from resupinate ancestors (14, 60) and might
represent stepping stones toward pileate forms. Corner postulated that coralloid morphol-
ogies are precursors to more complex forms (72), which was Miller’s (73) observations of
aberrant forms of Lentinellus cochleatus being coralloid, similar to those of its close relative
Artomyces pyxidatus. In the Gomphales, a series of transitional forms between a hypothe-
sized plesiomorphic coralloid/clavarioid (Clavariadelphus-like) and putative derived pileate
(Gomphus-like) form are displayed by clavarioid fruiting bodies with a flattened top (74)
(e.g., Clavariadelphus truncatus) (Fig. 5). It is also possible that the evolutionary conservation of
the ability to switch between pileate-stipitate and coralloid growth forms is related to a stipe
elongation and branching program that is likewise widespread among Agaricomycetes.

FIG 4 Evolutionary dynamics of the dominance of fruiting body morphologies in the Agaricomycetes. (A)
Inferred proportion of a given fruiting body type (y axis) through the evolutionary time scale. Pileate-stipitate
morphologies started becoming more common and phasing out the resupinate form as dominant fruiting
body type around the Jurassic period. (Adapted from reference 13, published under a Creative Commons
Attribution 4.0 International License [http://creativecommons.org/licenses/by/4.0/].) (B) Convergent origins of
fruiting body types broken down by major morphology. Each dot represents an independent origin of the
given fruiting body type. Analysis based on time-calibrated phylogenetic trees from Varga et al. (13).
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Although coralloid forms appeared many times convergently (28 events) and lost only 14
times, the relatively low abundance of this fruiting body type suggests their low diversifi-
cation rate compared to others (14). A phylogenetic observation, although not formally
quantified, that supports the transient nature of coralloid/clavarioid type is that it is found
in several clades, but many cases basally or in early-diverging clades that display high plas-
ticity in morphologies. These include the Clavariaceae in the Agaricales (71, 75), Pterula,
Typhula, and Macrotyphula within the Pleurotinae (Agaricales) (76, 77), Clavaria zollingeri in
the Hymenochaetales (76, 77), or Clavicorona in the Russulales (78), among others.

Pileate-sessile forms comprise fungi which have a cap but lack a stipe. This morphology
is characteristic of nonresupinate Polyporales (e.g., bracket fungi) and other, mostly wood-
associated fungi. Pileate-sessile fruiting bodies evolved from resupinate (91 times) or pileate-
stipitate (42 times) forms (14), probably via the curving of the hymenium (see Glossary) off
the substrate or via the loss of stipe, respectively. Most of the corky, perennial fungi are
found in this category. The shelf-like pilei provide protection from precipitation and possibly
other factors, as well as support and increase the spore-producing surface. The number of
reversals, from pileate-sessile to resupinate (65) and pileate-stipitate (26), is also considerable.
The diversification rate of pileate-sessile groups tends to be greater than that of resupinate,
coralloid-clavarioid, or gasteroid forms but lower than that of pileate-stipitate forms.

Gasteroid forms produce spores internally, in a “gleba” structure, and include puffballs,
stinkhorns, bird’s nest fungi, and secotioid and hypogeous taxa (Fig. 1). Most gasteroid
forms are derived from pileate-stipitate lineages (117 times out of 123 events [14]), and
most such transformations coincide with the loss of forcible spore discharge (ballistospory;
see Glossary) and changes in tramal structure (8, 12, 29, 79). Both are complex features
that possibly could not be regained once lost (8); if true, this could underlie the negligible
number of apparent reversals inferred (14). For this reason, changes to gasteroid morphol-
ogies have been hypothesized to be irreversible (14, 60, 80).

The large number of transitions from pileate-stipitate to gasteroid forms is associated
with ecological (animal dispersal) and environmental factors such as aridity or cold as selec-
tive forces (11, 81). Hypogeous fungi, a special case of gasteroid forms, were hypothesized
to be an endpoint of the fungal body plan, where new selection pressures (e.g., for the pro-
duction of volatiles) appeared due to the transition to a below-ground growth mode (82,
83). Detailed phylogenetic studies highlighted that even in a short time and at small taxo-
nomic scales, the gasteroid/secotioid forms and hypogeous lifestyle emerged convergently
many times from within pileate-stipitate species (84–88). Gasteroid lineages are of various
ages and their age correlates with their morphological similarity to plesiomorphic pileate-
stipitate forms. For example, the genus Lycoperdon is nested within an old, predominantly
gasteroid lineage (Lycoderaceae) and shows hardly any similarity to agaricoid mushrooms,

FIG 5 Transition between coralloid-clavarioid and pileate-stipitate fruiting body morphologies in the Gomphales, illustrating Corner’s hypothesis of the
emergence of pileate-stipitate forms from coralloid/clavarioid ones. From left to right: Clavariadelphus pistillaris, C. truncatus convex form, C. truncatus
concave form, and Gomphus clavatus. Note the gradual flattening of the top of the fruiting body into a cap like structure and the transition of the lateral
surface (hymenium) of the fruiting body from smooth to wrinkled.
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whereas the not too distantly related genus Endoptychum is much younger, is nested within
Chlorophyllum (and is now classified as part of it), and bears a strong resemblance to pileate-
stipitate forms (86). There are several examples of multiple origins of secotioid or gasteroid
fungi within an individual pileate-stipitate genus. For example, Cortinarius (85), Russula (84),
Lactarius (89), or the already-mentioned Chlorophyllum (86) all contain multiple secotioid
species and phylogenetic trees suggest that these emerged independently in their clades.
Further, recent origins of gasteroid taxa were reported in Laccaria (originally described as
Hydnangium [87]), in Entoloma (Rhodogaster [90]), in Suillus (Gastrosuillus [91]), and in boletes
(Gastroboletus [92]), and the list could be continued.

Finally, the pileate-stipitate morphology comprises the best-known toadstool forms
with cap and stipe. Although fossils indicate that the pileate-stipitate morphology has
been around for .100 Myr (4), it emerged quite late in the Agaricomycetes; approximately
during the Jurassic (;170 to 180 Myr). As of today, it has reached an ;70% dominance over
the other four fruiting body forms (Fig. 4) and could be a key innovation in fungal evolution
(13). It evolved in multiple clades, at least 81 times (14) and is present in at least 10 of the 20
orders currently recognized in the Agaricomycetes. Despite the dominance and evolutionary
stability of pileate-stipitate forms, 191 transitions from pileate-stipitate types to other morphol-
ogies were inferred, the most into pileate-sessile forms (which also includes cyphelloid fungi)
(14). Evolutionary success of this morphology can be explained by many features, such as a
vertically lifted pileus, protection from biotic and abiotic factors, structured hymenial surfaces
that increase the spore-bearing surface, efficient humidification of the microenvironment, and
the generation of convective airflows that promote active spore dispersal (66, 93).

Evolutionary transformations at finer morphological scales. The classification of
fruiting bodies into five broad morphologies is a crude approximation of their diversity,
and focusing on the main types leaves a cornucopia of other interesting trends in fruit-
ing body evolution unexplored. Although these shortcomings will surely be addressed
in future studies, a few promising developments are worth mentioning. Convergence
was also reported in hymenophore structures, defense mechanisms (partial and universal
veil) (67), cyphelloid fruiting bodies (94), autodigesting “coprinoid” fruiting bodies in the
Psathyrellaceae, Bolbitiaceae, and Agaricaceae (65, 95–97), among others. In coprinoid fruit-
ing bodies, as in the case of gasteroid/secotioid ones, a general syndrome of morphological
change was observed, involving sudden changes to multiple cell types; such correlated evo-
lution in multiple, independent clades of coprinoid mushrooms underlines the intrinsic tend-
ency of mushroom-forming fungi for evolutionary convergence (97).

One of the spectacular traits of mushroom-forming fungi are the highly structured
hymenophore surfaces (Fig. 6). The shape of the hymenophore—whether poroid, gilled,
toothed, wrinkled, or smooth—is one of the most obvious and easily diagnosable characters
of macrofungi. Hymenophore surfaces are subject to fast evolution and, like the main mor-
phologies, extensive convergence. Many transformations between hymenophore types
were predicted based on anatomical features (72, 98, 99) and later confirmed with molecular
data (10, 100). Recently, Varga et al. (67) showed that the evolution of complex hymenophore
surfaces is the preferred direction in evolution, and gills, pores, or teeth emerged in most
order-level clades independently. Gills have evolved in at least eight orders of Agaricomycetes
(Gomphales, Cantharellales, Hymenochaetales, Gloeophyllales, Polyporales, Russulales, and
Agaricales).

Transitions between poroid and gilled or between poroid and toothed hymenophores can
be found even in closely related sister taxa, confirming convergent evolution. For example,
the Boletales are dominated by mushrooms with a characteristic poroid hymenophore (e.g.,
Boletus edulis), but lamellate hymenophores have evolved repeatedly (101), in Hygrophoropsis,
Austropaxillus, Paxillus, the Gomphidius-Chroogomphus clade, and Phylloporus. Lamellate genera
nested in poroid clades are further exemplified by Lentinus, Panus, and Lenzites in the
Polyporales (102) or Neolentinus and Heliocybe in the Gloeophyllales. On the other
hand, poroid genera nested within larger gilled clades are represented by Poromycena,
Favolaschia, Dictyopanus, or certain species of Resupinatus (103) (all in the Agaricales). The
genus Steccherinum displays both poroid and toothed hymenia (104).
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A well-studied hymenophore transformation occurs in Lentinus (Polyporales), which
presents both pores and gills. Pores of Lentinus may be angular, broad, and radially elon-
gate (L. arcularius, syn. Polyporus arcularius) or small and round (L. brumalis, syn. P. bruma-
lis). Lamellae (see Glossary) may be linear, narrow, and crowded (e.g., L. crinitus) or broad,
widely spaced, and connected at their bases by tangential “cross bridges” (L. tigrinus).
Using scanning electron microscopy, Hibbett et al. (102) suggested that the “cross bridges”
of L. tigrinusmay be homologous to the tangential hymenophore elements of L. arcularius.
If so, the transformation between these forms might be explained in terms of hetero-
chronic shifts in the growth of radial and tangential elements in the hymenophore.

Apparent from these studies is that convergence is characteristic not only of the evolution
of the main fruiting body types but also of other, finer-scale traits of fruiting bodies. What
underlies this extreme evolutionary plasticity of fruiting body types remains to be understood.
Explanations proposed thus far include purely adaptationist views, implying that similarity
evolved in response to common selective pressures. Alternative hypotheses involved constraint
or neutrality, with small genetic changes being sufficient for dramatic morphological changes
(i.e., large mutational target size [11]), the existence of predisposing genetic elements, or devel-
opmental potentials (reviewed in references 48 and 49) that are conserved over larger evolu-
tionary distances. Cases are knownwhere mutations in a single locus caused dramatic morpho-
logical changes (see, for example, references 65 and 105). One factor that might determine the
evolutionary plasticity of fruiting bodies is the plasticity of the developmental programs of fruit-
ing bodies. There are several examples of aberrant or stalled morphologies resembling other
morphologies. For example, stipes of certain species grown in the dark elongate or branch in a
way that resembles coralloid fruiting bodies (e.g., Lentinellus [73]). Pileate-stipitate species often
respond to environmental perturbations, or infections with incomplete or stalled cap expan-
sion, reminiscent of secotioid fruiting bodies. These observations suggest that some of the
recurring evolutionary transformations (i.e., convergence) might be facilitated by an inherent
developmental plasticity encoded in the genomes of mushroom-forming fungi.

Effect of Morphological Innovations on Diversification Rates

Morphological innovations might influence speciation and extinction rates or lead to ex-
plosive speciation events, which describe the speed at which new species accumulate in a
clade and are collectively known as the diversification rate (speciation minus extinction).
Traits could lift constraints on diversification by several mechanisms, such as by optimizing
nutritional investment and reproductive efficiency or by allowing the organisms to enter

FIG 6 Hymenophore configurations. The diversity of hymenophore configurations in the Agaricomycetes is depicted. From left to right: smooth hymenophore
(top, Auricularia-auricularia-judae; bottom, Xylobolus frustulatus); wrinkled hymenophore (top, Cantharellus cibarius; bottom, Irpex lacteus); poroid hymenophore
(top, Neoboletus luridiformis; bottom, Polyporus tuberaster); toothed (also called hydnoid) hymenophore (top, Hydnum sp.; bottom; Pseudohydnum sp.); gilled
hymenophore (top, Hymenopellis radicata; bottom, Lepista sordida). (Photographs by L. G. Nagy, Z. Merényi, and X.-B. Liu.)
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new, unoccupied niches (106). Whether fruiting body morphologies influenced diversifica-
tion has been a recurrent question in research on the Agaricomycetes.

The first formally tested hypothesis in this context addressed the impact of the gasteroid
morphology on diversification rates in three clades of mushroom-forming fungi (Scleroder-
matinae, Lycoperdaceae, and Phallomycetidae [80]). Significant differences in diversification
rates of gasteroid versus nongasteroid species were not found, and only under certain, weakly
supported models did gasteroid lineages have higher diversification rates. These results are in
line with those of a study across the entire Agaricomycetes (14). Model-based predictions
suggested that in their clades the equilibrium frequencies of gasteroid forms are higher than
their current diversities. Although this prediction is contingent on several parameters, includ-
ing taxon sampling, it means that, with time, gasteroid forms will become more common in
their clades. From this and the observation that the vast majority of gasteroid lineages are
very young, the authors derive that the current paucity of gasteroid species in the Agari-
comycotina are due to only a few lineages being sufficiently old and successful to accumulate
species and that intermediate forms (secotioid species) might be at high extinction risk,
whereas, if lineages can pass through this bottleneck, they can diversify at higher rates (13).

Recent large-scale studies showed that pileate-stipitate species have the highest diversifi-
cation rates, followed by pileate-sessile ones, whereas resupinate species were associated
with the lowest diversification rates in the entire Agaricomycetes (13). Such broad analyses
have the potential to uncover broad tendencies, but the higher the scale, the more likely
interactions between trait- or clade-specific patterns can yield mixed signals (strengthening
or quenching). The higher diversification rate of complex morphologies might be explained
by their ability to support higher spore-to-biomass ratios, more efficient protection of basi-
dia, or other, as-yet-unknown fitness benefits they confer. Thus, pileate-stipitate morpholo-
gies may be key innovations (13), but what property (or properties), from a functional point
of view, makes the key difference relative to simpler forms is unknown. To address this ques-
tion, Varga et al. (67) examined traits that are phylogenetically codistributed with the
pileate-stipitate morphology. One such trait is “enclosed development,” a developmental
strategy in which the young hymenium is ensheathed from the environment by hyphal
layers (e.g., by veils). Another trait, one examined by Varga et al. (67), was complex hymeno-
phores (gills, pores, or teeth). Both traits evolved convergently and were associated with
higher diversification rates; however, their effects were found to be independent from that
of the pileate-stipitate morphology. Thus, although this work highlighted two additional
traits that influence diversification rate, they are not the ones that confer evolutionary
advantage to the pileate-stipitate morphology. Notably, a distant analogy between enclosed
development and viviparity exists, with the remark that in fungi a fruiting body primordium,
whereas in animals and plants the embryo itself is enclosed in a protective environment.

An alternative, nonmorphological hypothesis that received significant attention is
that lifestyle, in particular, ectomycorrhizal symbiosis (ECM), affects diversification patterns
(77, 107–110). Studies of diversification rates in ECM clades yielded mixed support for this
hypothesis, often being contingent of taxon sampling ratios or analytical methods. Using a
global Agaricomycetes phylogeny, Sánchez-García et al. (14) showed that fruiting body
form is overall a stronger driver of diversification rate differences than nutritional mode
but that lifestyle might have also spurred diversification at local scales. Several other fac-
tors might also influence diversification, such as morphology at smaller scales, life history,
dispersal events (110), latitudinal distribution patterns (111), unknown factors, or combina-
tions of factors (77). The first explosive diversification event in fungi was reported in the
genus Coprinellus (Psathyrellaceae), where streamlining the defense mechanisms for lower
nutritional investment was hypothesized as the driver of the adaptive radiation (112). The
rich morphological and ecological diversity of mushroom-forming fungi provides a good
substrate to test such questions in future studies.

Sources of Developmental Innovation

Development in plants and animals versus fruiting bodies: do mushrooms have a
body plan? Animals, plants, and fungi share a unicellular common ancestor which existed at
least 1.6 billion years ago (43, 113). They evolved complex multicellular forms independently;
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accordingly, few, if any, parallels can be drawn between their developmental programs. A few
very broad similarities that animals, plants, and fungi share include a spatially and temporally
integrated developmental program or determinate growth in fruiting bodies, animals, and
certain plant organs (e.g., inflorescences). However, aside from these superficial traits, develop-
ment in fungal fruiting bodies progresses along fundamentally different rules from that in ani-
mals or plants. For example, animals and plants develop from an embryo, whereas fungal fruit-
ing bodies emerge as hyphal aggregations on the vegetative thallus. As a consequence, many
of the concepts and models developed by zoologists or botanists may not be applicable in
the context of fungal development. Rather, mycologists might need to develop their own de-
velopmental concepts, models, and hypotheses, which should integrate fruiting body mor-
phometrics, evolutionary/phylogenetic inference, and developmental observations (114, 115).

We may also wonder whether body plans exist in fungi. The notion of a body plan was
introduced by zoologists (116) (based on the German phrase Bauplan) and eventually adopted
also by botanists (117). The term has been of limited use in mycology (see, for example, the
study by Liu and Hall [118]); rather, mycologists discussed morphologies in the context of
“fruiting body types.” A body plan is a group of structural and developmental characteristics
that can be used to identify a group of animals, such as a phylum or a higher taxonomic unit
(116). Fruiting bodies, on the other hand, show high plasticity even across smaller evolutionary
scales, such as orders or families (see below), which makes it difficult to designate a single
type for the Agaricomycetes or any of the orders therein. For example, the resupinate genus
Trechispora was shown to include coralloid Scytinopogon (119) species, indicating that transi-
tions in fruiting body morphology can happen within a relatively short time. Similarly, gaste-
roid species have emerged convergently within numerous agaric genera, such as Cortinarius
(85) for Russula (78). These frequent transformations between fruiting body types just suggest
that the basic principles of developmental evolution of Agaricomycetes might be fundamen-
tally different from those of animals, rendering the concept of a body plan not suitable to
describe development in mushroom-forming fungi. A body plan concept may apply to fungi
at smaller phylogenetic scales, although convergence and secondary simplification are com-
mon in many Agaricomycetes families. We note that the concept of a body plan may apply
better to the Pezizomycotina, where apothecia, perithecia, or pseudothecia are conserved
fruiting body types within their respective classes, providing more ground for discussing body
plans as they were defined originally.

Another concept that has been discussed in fungi is the developmental hourglass, an anal-
ogy to describe the conservation of embryogenesis during mid-development, with more
divergence between species in early and late development (120). This hypothesis experienced
renewed popularity recently after an hourglass pattern was discovered in transcriptome data
of plant and animal embryogenesis, too (121, 122); however, this hypothesis also received
intense criticism (123). An hourglass-shaped transcriptomic signature has been detected in
Coprinopsis cinerea as well (124), in which the “waist” coincides with the young fruiting body
stage when meiosis in the gills prepares nuclei for spore formation (125). Thus, the “waist”
region may be interpreted as the effect of the upregulation of highly conservedmeiotic genes,
which causes the overall conservation of the transcriptome to shift towardmore ancient genes
(126). Under this interpretation, the observed fungal “hourglass” is generated by fundamen-
tally different mechanisms than it is in animals.

Mechanisms of developmental evolution. Development of plants, animals, and
fungi have fundamentally dissimilar anatomical and genetic bases. While we know very little
on the mechanistic sources of developmental innovations in fungi, they share some general
mechanisms with animals and plants. One of the very few examples is heterochrony (see
Glossary), that is, shifts in the relative rate and timing of developmental events. Heterochrony
has been invoked in several morphological transformations in fungi (including evolution of
the Lentinus hymenophore [see above]) or (the genus Panus [Polyporales] [102]). The best-
known example concerns the evolution of gasteroid species, such as puffballs and false truf-
fles. Gasteroid fruiting bodies represent a naturally replicated example (emerged ;123 times
[14]) of developmental innovation and a general “syndrome” of phenotypic changes can be
observed in an earlier study (8). Despite initial uncertainties in the directionality of evolution
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between gasteroid and agaricoid forms (mostly stemming from historical taxonomic separa-
tion of gasteroid “Gasteromycetes” and agaricoid “Hymenomycetes” [for a review, see refer-
ence 10]), it is now clear that gasteroid forms represent a derived state. Thiers observed in the
Sierra Nevada, where moisture is mostly supplied by scattered thunderstorms, that fruiting
bodies of many fleshy fungi become arrested in development due to the lack of a continuous
water supply (8). It has been suggested that evolution of gasteroid forms results from a failure
of the pileus to expand, resulting in a permanently enclosed hymenophore (8). If so, then “gas-
teromycetation” can be considered an example of paedomorphosis (127), a special case of
heterochrony, which is the retention of juvenile-like features of an ancestor in a descendant
organism.

Gasteromycetation is one of the few evolutionary transformations where a continuum of
transitional forms outline a probable sequence of evolutionary events (Fig. 7). From normal
pileate-stipitate species, the road seems to lead through agaricoid forms with permanently
closed caps and contorted gills to closed (angiocarpic; see Glossary) fruiting bodies in which
stipe starts to degenerate and eventually disappear (or remained as a columella) and

FIG 7 Series of fruiting body forms that connect pileate-stipitate and gasteroid fruiting bodies in the genus
Cortinarius. Thiers’ hypothesis posits that secotioid and gasteroid fruiting bodies derive from pileate-stipitate
ones. (A) Stereotypical pileate fruiting bodies of Cortinarius glaucopus with thin, silky partial veil; (B) drought-
adapted C. magnivelatus with a thick, membranous partial veil that does not break up; (C) Thaxterogaster porhpyroideus,
a secotioid species with lacunar (not gilled) hymenophore and a globose, closed cap, but slender mushroom-shape; (D)
Thaxterogaster pingue, another secotioid Cortinarius with a shortened stipe; (E) C. flavopurpureus, a gasteroid species with
clearly visible stipe remnant (columella); (F) C. infrequens, a gasteroid species with reduced stipe remnant (columella); (G)
Hymenogaster utriculatus, with hardly discernible stipe remnants.
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hymenial tissue shows transitions to a gleba-like structure (8). Collateral with changes in
fruiting body morphology, ballistospory is lost in many lineages (probably made dispensable
by internal spore production), and fruiting bodies tend to grow underground and evolve
novel aromatic volatiles, which aids animal dispersal. Analogous, closed and/or underground
morphologies evolved also in the Ascomycota in truffles and false truffles. The genetic
mechanisms of gasteromycetation are not well understood, but its pervasive convergence
and some very recent transitions suggest that it may require minor genetic changes or is
associated with a large mutational target size (11).

DEVELOPMENTAL BIOLOGY OF FRUITING BODIES

Agaricomycetes, and to a lower degree Ascomycota, produce complex fruiting bodies,
with genetically encoded shapes, sizes, and coloration. The ability of mushroom-forming
fungi to differentiate and establish cell types within fruiting bodies in a spatially and tempo-
rally coordinated manner is truly amazing and is probably unparalleled in the fungal king-
dom. How this process works has fascinated mycologists for a long time. Developmental
mycologists provided detailed descriptions of the development fruiting bodies in a range of
model systems (e.g., C. cinerea and S. commune [65]). The genetic bases of fruiting body for-
mation began to be elucidated in the late 20th century, and the discovery of gene function
was guided mostly by analyses of naturally occurring or laboratory-generated mutants.

There are fundamental differences between the development of fruiting bodies and
that of animals or plants. While in the latter, ontogenesis refers to the sculpting of a repro-
ducing individual, fruiting body development refers to the emergence of structures from
the vegetative mycelium that enclose and support sexual spore production. Fruiting
bodies integrate the apparatus for sexual spore production, including karyogamy, sporan-
gium development (basidia or asci), meiosis, spore morphogenesis, and discharge.
However, the genetic processes that fruiting bodies encompass are a lot more complex
than just those related to spore production (e.g., meiosis and spore morphogenesis).
Several of these represent adaptations to the terrestrial environment (e.g., defense against
desiccation or UV radiation) or are related to sculpting species-specific morphologies.

There is a stunning evolutionary plasticity in fruiting body development and class-wide
conservation of developmental programs is lacking (e.g., lack of body plans [see above]).
Therefore, a general framework that describes all Agaricomycetes probably cannot be dis-
cussed, but example or model developmental fates can (65) (see more details below). While
generalizations on the developmental program are hard to formulate, the genetic processes
that participate in fruiting show some conservation (128). For example, two key events that
precede fruiting body development are mating (129–132) and the integration of environ-
mental and internal cues that specify readiness for fruiting across the colony. Another broad
and conserved function is pattern formation and cell differentiation; however, cellular and
molecular mechanisms and the underlying regulatory and structural genes are mostly
unknown. A significant challenge that lies ahead of mycologists is identifying genetic circuits
that drive the differentiation of tissue types within fruiting bodies. This will be necessary for
the ability to elucidate the evolution of transformations between fruiting body types and
gains/losses of various characters within. Below, we review information on the genetics of
fruiting body development, both at the level of general processes and at the level of individ-
ual regulatory or structural genes.

The Process of Fruiting Body Development

Fruiting body development has been investigated both in model systems (C. cinerea and
S. commune) and in a few edible mushrooms with commercial value, such as A. bisporus, P.
ostreatus, L. edodes, and F. velutipes. The development of most of these fungi has been
reviewed elsewhere recently (15, 65, 133). Therefore, we do not present here the develop-
mental process in great detail; rather, we only briefly discuss the development of C. cinerea
(Fig. 8), which forms one of the most complex pileate-stipitate fruiting bodies with an esti-
mated 30 different cell types (65). Fruiting body formation starts with the emergence of a
loose hyphal aggregate, called a primary hyphal knot, on the dikaryotic mycelium (125, 134).
Primary hyphal knots are formed by the differentiation of aerial hyphae that grow toward
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each other and start to branch extensively with restricted apical growth (125). In secondary
hyphal knots, the aggregate is densely packed and a mucilaginous material can be found
between the cells that may be involved in hyphal adhesion (134, 135). Anastomosis often
occurs between the adjacent hyphae (125). Under appropriate conditions, the hyphal knot
develops into a fruiting body primordium, in which the tissue differentiation becomes clearly
visible (65). The lower part of the primordium becomes the basal plectenchyma (see Glossary),
the middle part gives rise to the stipe, and the upper part differentiates into the pileus (136).
The primordia of some fungi, including C. cinerea, are surrounded by one or more layers
of protective hyphae called the veil (15).

Further development involves the differentiation of the hymenium in a region between
the stipe and the cap and continues toward the outer surface of the cap, resulting in
dome-shaped rudiments that become the gills (137). The hymenium of C. cinerea consists
of four differentiated cell types: basidia, cystidia, cystesia, and paraphyses (see Glossary)
(138). Karyogamy occurs within the basidia, followed by meiosis (139). Around the end of
meiosis, the maturation of the fruiting body starts. In this species, it involves mostly tur-
gor-driven cell expansion and virtually no change in cell numbers and leads to elongation
of the stipe, the expansion of the cap, and the production of basidiospores on basidia (65).
At maturation, C. cinerea releases basidiospores, and the cap autolyzes (140). Hyphal-knot
formation, tissue differentiation in the primordium, karyogamy and meiosis in the basidia,
growth by cell expansion, and basidiospore production, as well as the regulation of these

FIG 8 Time scale illustrating the progression of Coprinopsis cinerea development. Drawings show key developmental stages. Key
genes discussed in the text are shown at developmental transitions. Abbreviations: C.cin, Coprinopsis cinerea; S.com, Schizophyllum
commune; L.edo, Lentinula edodes; F.vel, Flammulina velutipes. Major developmental events (mating, compact tissue formation,
tissue differentiation, meiosis, stipe elongation, sporulation, autolysis) are indicated by blue arrowheads.
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by environmental cues (e.g., light), are shared mechanisms among mushroom-forming fungi.
However, species-specific departures from this general program are common (e.g., the lack of
light regulation of A. bisporus [141] or brown film formation in L. edodes [142]) but are not the
subject of the current review.

Genetic Bases of Fruiting Body Development

Most of our knowledge on the genetics of fruiting body development comes from
forward genetic approaches, such as UV- or restriction enzyme-mediated integration
(REMI)-generated and spontaneous mutants (e.g., C. cinerea [143, 144], S. commune
[145], and F. velutipes [146]). For example, Muraguchi et al. (144) UV mutagenized oidia
(see Glossary) of a homokaryotic strain, A43mutB43mut (a self-compatible strain widely
used as a model system), of C. cinerea and reported 1,018 mutant strains exhibiting
fruiting body formation defects. They classified mutants into nine groups: (i) “depress”
mutants, where aerial hyphae are reduced and senescent hyphae undergo autolysis
(215 strains); (ii) mutants that cannot form hyphal knots (377 strains); (iii) primordium-
less mutants in which hyphal knots cannot progress to primordia (89 strains); (iv)
maturationless variants, where primordia cannot develop into fruiting bodies (193
strains); (v) elongationless variants possessing mature fruiting bodies with short stipes
(eln mutants, 19 strains); (vi) extensionless mutants that form mature fruiting bodies
but where the cap does not expand (exp mutants, 8 strains); (vii) sporeless variants that
are not able to form basidiospores (73 strains); (viii) “compound type” variants, which
exhibit combinations of the above-mentioned phenotypes (23 strains); and (ix) other
mutants, including “dark stipe” or “blind” variants (21 strains). Dark stipe mutants rep-
resent an intensely studied group; in these, the pileus and the stipe tissues remain ru-
dimentary, and the basal part of the primordia elongates (19). Beyond targets for fol-
low-up studies, the numbers of mutants in each category from these mutagenesis
screens provide information on the mutational target size of each developmental tran-
sition. Others generated C. cinerea mutants using REMI (143) or utilized spontaneous
mutants (141, 143, 147). In addition to mutant collections and other forward genetic
approaches, comparative transcriptomic studies are emerging as a valuable source of
functional hypotheses on dozens to hundreds of genes. These studies provide informa-
tion about expression patterns which cannot directly be translated to function; how-
ever, they highlight plenty of genes with cell type- or tissue-specific expression, which
may eventually be translated into genetic hypotheses.

Within fruiting bodies, cellular processes, such as the generation of fruiting body-specific
cell wall architectures (148), storage carbohydrate metabolism and mobilization (125, 149,
150), defense (151), and meiosis and spore morphogenesis (152, 153) are well known. These
are orchestrated by molecular and regulatory mechanisms characteristic of eukaryotic cells;
of these, transcriptional regulation (see, for example, reference 18), alternative splicing (25),
nucleus-specific expression (126, 154), natural antisense transcripts (see, for example, refer-
ences 126, 139, and 155), RNA editing (though controversial, see reference 126), and small
noncoding RNA species (156) received more attention, among others. Fruiting body cells
integrate external cues related to environmental factors (e.g., light responses [125]) and
communication processes (e.g., through volatiles [157, 158] or unknown hormone-like com-
pounds), which are transmitted through conserved signal transduction pathways. In the fol-
lowing sections, we introduce the progression of fruiting body development through the
example of C. cinerea, as well as highlight genetic processes for which robust evidence
proves a role in fruiting body development.

Alternative splicing. Alternative splicing (AS) is a posttranscriptional modification
of mRNA that leads to the emergence of multiple transcript isoforms with potentially
diverse functions (159). AS can expand the organism’s protein repertoire, which has
been correlated with an increased complexity of multicellular organisms (154, 160–162),
or could regulate transcript levels posttranscriptionally via the nonsense-mediated RNA
decay (NMD) pathway. Based on available evidence, the latter seems more likely as a
function of AS in fungi (25). In fungi, intron retention is the most abundant splicing event, fol-
lowed by the alternative 39 splice site and the alternative 59 splice site, whereas exon skipping
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amounts to ,2 to 3% of all splicing events (25, 161). In contrast, exon skipping is the most
prevalent AS form in animals and is the major source of the expansion of protein-coding
repertoires (163). Intron retention is mostly viewed as a mechanism to destine transcripts to
the NMD pathway that degrades them and thus regulates transcript levels posttranscription-
ally (163–165). Nevertheless, the Agaricomycotina possess more exons and introns than
other fungi (166, 167), and AS occurs in a significantly higher proportion of genes (36 to
46%) than in other fungi (1 to 8%) (25). Several genes have developmentally regulated tran-
script isoforms which, whether translated to proteins or destined to decay, expand the space
of developmentally regulated transcripts (25). In S. commune, AS occurs in diverse genes
(e.g., transcription factors [TFs] and carbohydrate-active enzymes [CAZymes]), and alternative
transcript expression highly increased in aggregates and fruiting bodies compared to vege-
tative mycelium (168), whereas in another study splicing prevalence did not change signifi-
cantly with developmental stages (25).

Transcriptional regulation. Recent studies revealed that transcriptional rewiring
may be key to the transition from vegetative mycelium to fruiting body development
(128, 169). Perhaps somewhat unsurprisingly, transitions between developmental
stages are associated with changes in the transcriptional regulation of genes. However,
the most remarkable transcriptomic changes in the life cycle of the fungus (e.g., measured in
the numbers of differentially regulated genes) were encountered at the transition from vegeta-
tive mycelium to fruiting body initials (25, 41). This aligns with the transition from simple to
complex multicellular growth and the onset of several processes not characteristic of vegeta-
tive mycelia (adhesion, differentiation, and possibly intense communication [36]). Within fruit-
ing bodies, cap development seems to be associated with more transcriptomic changes,
whereas stipe development seems to be associated with fewer transcriptomic changes (25,
26, 41). It is currently not known whether this transcriptional rewiring is achieved through the
activation of certain (“master”) regulatory cascades or via more general changes to chromatin
structure (e.g., promoter accessibility), or both.

Mating. A prerequisite of sexual fruiting body development is the formation of a fertile
dikaryon by compatible monokaryotic hyphae, which is governed by mating and the mating
loci. The basics of basidiomycete mating systems were known a hundred years ago (170).
Basidiomycota are usually heterothallic, which means the haploid individual is self-sterile
and for sexual reproduction has to find a mating partner that carries different alleles at the
mating-type (MAT) loci. Among fungi, only the basidiomycetes possess a tetrapolar or bifac-
torial mating system, which requires two different alleles at two physically unlinked loci,
called HD and P/R, that segregate and generate different mating types (171). It is hypothe-
sized that the ancestral state was tetrapolar, and unifactorial or bipolar mating systems
emerged convergently, by the loss of function in determining mating specificity of the P/R
locus or by fusion of the MAT loci, resulting in physically linked loci that act as a single locus
(172–176). Tetrapolar species (e.g., C. cinerea and S. commune) can have numerous (up to
hundreds) alleles in both MAT loci, resulting in thousands of different mating types (177),
that promote outbreeding (129, 178–180).

The HD mating-type locus encodes two different homeodomain (HD) transcription
factors (HD1 and HD2) that regulate the initial steps of clamp formation and the coupling of
haploid nuclei (181). In dikaryotic mycelium, the HD1/HD2 heterodimer regulates the expres-
sion of genes involved in establishing and maintaining the dikaryon (182). Hitherto, no direct
targets of the HD1/HD2 TF-complex have been identified (183). In bipolar species HD proteins
are solely able to promote sexual development (176). On the other hand, the P/R locus enco-
des a pheromone/receptor system that controls reciprocal nuclear exchange and nuclear
migration (184). The pheromones of basidiomycetes are not essential for plasmogamy but
determine mate compatibility (182). They are small prenylated lipopeptides, which are ligands
of a pheromone-sensing G-protein-coupled receptor (GPCR) (171). The recognition of a phero-
mone by the target GPCR activates a full line of signal transduction pathways, including Ras,
cAMP-dependent signaling, MAP kinase cascade, and Cdc24 (185–187). However, it is impor-
tant to note that because there is a large temporal separation between mating and fruiting
body formation, mating is a necessary but not sufficient event in fruiting.
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Triggers of fruiting body development. The induction of fruiting body development
is a result of complex interactions between internal and external cues, such as nutrient (C/N)
availability, temperature, light, CO2 concentration, or nutritional status of the mycelium,
among others (188). Several similarities exist between triggers of fruiting body initiation
(as a morphogenetic process) and that of sexual reproduction in model fungi or in nonfungal
eukaryotes, although the genetic circuits governing these responses became significantly
more complex during the evolution of mushroom-forming fungi. While for simpler species
(e.g., yeasts) nutrient depletion is often necessary and sufficient to initiate sexual reproduction,
the corresponding networks in mushroom-forming fungi integrate multiple internal and exter-
nal cues into a developmental decision for sexual reproduction. This section summarizes some
generalities on the induction of fruiting body formation.

Nutrient accessibility is one of the major factors governing sexual reproduction in microbes.
Starvation triggers sporulation not only in fungi but also in slime molds (189), suggesting that
this response is ancient. The mechanisms behind starvation sensing in mushroom-forming
fungi are not well explored; however, the conservation of the response suggests that it may
be possible to extrapolate information from simpler organisms to mushroom-forming fungi.
Starvation-induced pathways are well studied in Schizosaccharomyces pombe (190), Aspergillus
spp. (191), S. cerevisiae (192), and Candida albicans (193), in which GPCRs, Ras, cAMP-depend-
ent pathways, and MAPK, as well as carbon/nitrogen sensing pathways, play key roles
(reviewed in reference 194). cAMP-dependent pathways are involved in nutrient sensing and
chemotactic cell aggregation also in Dictyostelium (189). In S. cerevisiae and S. pombe, the addi-
tion of glucose to starved cells increases cAMP levels (via activation of adenylate cyclase) and
causes cAMP to bind cAMP-dependent protein kinases (PKAs), leading to the inhibition of mat-
ing and sporulation. On the other hand, under starvation, reduced cAMP and PKA activity
induces sexual development. Fruiting body development responds to nutrient availability
putatively through similar mechanisms. Constitutively active versions of the S. commune G-pro-
tein a-subunits resulted in a 160 to 200% increase in intracellular cAMP levels in dikaryons and
suppressed fruiting, indicating a role for cAMP signaling in mushroom formation (195). In C.
cinerea, cAMP levels rise during hyphal knot and primordium formation and then decline dur-
ing fruiting body maturation (196). The addition of exogenous cAMP induced fruiting in C. cin-
erea (197) but not in S. commune (198).

Mushroom-forming fungi have specific temperature requirements to initiate and
sustain fruiting body development. In many species, fruiting body development is trig-
gered by dropping temperature, which might be a response to the onset of favorable
conditions (e.g., autumn). For example, Pleurotus spp., Lentinula spp., Flammulina spp., or
Armillaria spp. require a 5 to 10°C temperature drop compared to what is optimal for veg-
etative growth (41, 199, 200), whereas other fungi (e.g., C. cinerea) are able to fruit without
a temperature downshift (125). Molecular aspects of the response to temperature changes
are, to our best knowledge, unknown in mushroom-forming fungi.

Light influences diverse aspects of fungal physiology, including fruiting body morpho-
genesis (125, 201, 202). Vegetative hyphae can grow in complete darkness, whereas light is
required for fruiting in most species (one exception being A. bisporus [141]). The active wave-
length required for fruiting lies between the blue-light and near-UV range (400 to 520 nm
and 320 to 400 nm, respectively), corresponding to the excitability of blue light receptors
(white collar complexes and cryptochromes) (16, 202). Several aspects of the light response
are species specific. For example, primordium induction requires light in most but not all
species (201), whereas several developmental processes and checkpoints (e.g., cap formation
and meiosis) require multiple alternating blue-light illumination/dark periods (125) in a spe-
cies-specific manner. For example, under low light or in darkness, F. velutipes produces long
stipes and underdeveloped caps, which is taken advantage of in industrial production of
“enoki”mushrooms (201, 203).

There are several other factors, such as CO2 concentration, aeration, humidity, salinity, or
pH, that affect fruiting body development and that are often taken into consideration during
commercial mushroom cultivation. High CO2 concentrations tend to promote mycelial
growth and suppress fruiting, whereas low CO2 concentrations lead to malformed fruiting
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bodies with longer stipes and reduced pilei (e.g., F. velutipes and P. eryngii) (199, 204, 205). In
several species, higher CO2 concentrations inhibit, whereas lower CO2 concentrations promote
pileus expansion in a number of species. CO2 is sensed via the cAMP signaling pathway, and
its concentration may be relayed by first converting it to bicarbonate by carbonic anhydrases,
which then modulates the activity of soluble adenylyl cyclase so that cAMP is synthesized
(206). In S. commune, the repression of fruiting by exogenous cAMP may mimic high CO2 con-
ditions and may act through similar pathways (207).

How the above-mentioned signals are sensed and what gene regulatory networks
converge on the induction or repression of fruiting body initiation is poorly known in
most cases. Our knowledge is too patchy at the moment to infer evolutionary patterns,
which may also be complicated by the fast evolution of responses, which probably
evolve hand in hand with habitat preferences. There is no ubiquitous change that
leads to fructification in all fungi; instead, fruiting is a result of potentially additive
effects of cascades of cellular and genetic events triggered by the environment, which
are not necessarily the same across the fungal diversity. To understand these, it will
first be crucial to identify key regulators and their regulatory interactions with genes,
in particular those that are conserved across species.

Early developmental events. Fruiting body development starts with the formation
of loose hyphal assemblages called hyphal knots or aggregates that emerge on dikaryotic
mycelia. This is formed by neighboring hyphae forming a tiny round shape, called the pri-
mary hyphal knot (;0.1 mm) (65, 125). Upon light induction, in C. cinerea, the primary
hyphal knot further develops into a tightly interwoven structure, the secondary hyphal knot
(;0.2 mm) (65, 125, 204), whereas in continuous darkness, it develops into sclerotia, globose
resting structures (123, 127, 146, 204, 208). Secondary hyphal knots and sclerotia very likely
share the same initiation pathway (149, 209) and have similar transcriptomic profiles (149).
Hyphal knots are three-dimensional structures, whereas in the vegetative mycelium hyphae
run in a loose arrangement (following fractal-like dimensions). Accordingly, a number of
multicellular processes, such as adhesion, cell wall remodeling, and possibly new pathways
of cell-to-cell communication are activated in hyphal knots. Many of these are quite poorly
known currently; however, we have some information on cell surface proteins, which may
be related to adhesion, as well as some structural and regulatory genes.

A group of cell surface proteins, hydrophobins, are known to play crucial roles in the aer-
ial growth of hyphae. For example, SC3 of S. commune has been reported to be present in
the cell wall of monokaryotic and dikaryotic hyphae and fruiting bodies as well (210) and
was thought to be crucial for hyphal-knot formation. SC3 homologs have been described in
multiple species (ABH3 of A. bisporus [211], CoH1 of C. cinerea [212], POH1 of P. ostreatus
[212], FVH1 of F. velutipes [213], and LeHYD2 of L. edodes [214]). Added to the culture me-
dium, purified SC3 could complement the aerial hypha defect of the ABH3 mutant of A. bis-
porus, suggesting conserved roles for these hydrophobins during fruiting body initiation
(211). Some hydrophobins were reported to line air channels within fruiting bodies (e.g., SC4
of S. commune [215] and ABH1 of A. bisporus) that prevent water entering into these chan-
nels. Other cell surface proteins, the galectins CGL1 and CGL2 of C. cinereamay be involved
in defense during fruiting body formation (147, 216, 217). Cgl2 expression is induced in
hyphal knots, and its expression is maintained throughout fruiting body formation, whereas
cgl1 is expressed in primordia and mature fruiting bodies (218). The promoter sequence of
cgl1 and cgl2 of C. cinerea contains a CRE motif, which suggests that their expression is regu-
lated by cAMP (218). CGL1 and CGL2 bind to some as-yet-unknown b-galactoside-contain-
ing lipids (219). Other lectins were also shown to be upregulated in hyphal knots (128), such
as the jacalin-related lectin in F. velutipes (220) and the AAL galectin of A. aegerita (221).
Some lectins (e.g., CCL1 and CCL2 of C. cinerea) play a defense role against predators (222).
GPI-anchored and fasciclin-like proteins may also be involved in cell adhesion (41). A fasci-
clin-like molecule encoded by Le.flp1was identified as a fruiting body-specific gene in L. edo-
des (223); it is localized in the gills, especially at the boundary between the subhymenium
and the trama, where the differentiation of the basidia takes place, as well as at the cortical
regions of the primordium, the pileus, and the stipe (223). Transcriptomic studies suggest
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that further GPI-anchored and fasciclin-like proteins are upregulated in hyphal knots (25),
suggesting an important role of secreted proteins in early development.

The regulation of hyphal-knot formation involves G-protein-activated MAP kinase and
cAMP/PKA signaling (224). The spontaneous thn1mutation of S. commune suppresses aerial
hyphae and subsequent fruiting body formation (145, 225). thn1 encodes a GTPase activat-
ing protein that negatively regulates G-protein signaling (226). Its deletion in S. commune
revealed that thn1 is involved in multiple processes, such as the temporal coordination of
clamp cell (see Glossary) formation, the production of certain metabolites, and the induction
several hydrophobins (e.g., Sc3 [224]). The role of G-protein signaling in aerial hypha forma-
tion and fruiting was further evidenced by the lack of aerial hypha and fruiting body forma-
tion in mutants with constitutively active a-subunits, Gpa1 and Gpa3, of S. commune (195).
This resembled the phenotype of the thn1mutant (195). The mutation elevated intracellular
cAMP level in S. commune (227), which might mechanistically explain the block in fruiting.
An interesting G-protein b-subunit-like protein with seven WD40 domains, cpc2 was also
reported to regulate intracellular cAMP level in F. velutipes (228). The knockdown of Fv.cpc2
completely impaired fruiting body formation in F. velutipes. CPC2 is a widely conserved pro-
tein among fungi, and Fv.cpc2 was able to complement the sexual developmental defects
caused by cpc2 deletion in N. crassa (228). Its C. neoformans ortholog, Gib2, was reported to
function as an alternative G-protein b-subunit (229).

Transcriptional regulation of hyphal-knot initiation is also known to some extent. In
S. commune, seven functionally characterized transcription factors (bri1, c2h2, fst3, fst4,
hom1, hom2, and gat1) are significantly upregulated during fruiting body formation
(18), of which three were proven to be involved in aggregate (i.e., hyphal-knot) formation.
Of these, hom2 and bri1 affect vegetative colony morphology: deletion mutants have sym-
metrical colonies and cannot form aggregates (18). Another transcription factor, fst4, does
not affect vegetative colony morphology but regulates aggregate formation and is
hypothesized to act downstream of hom2 and bri1. These transcription factors, as well as
their expression patterns, are conserved among mushroom-forming fungi (169). Deletion
mutants of the transcription factor c2h2 of S. commune form aggregates, but their devel-
opment cannot progress further. c2h2 probably functions downstream of fst4 and seems
to be conserved among Agaricomycetes (18). Its expression was found to be developmen-
tally regulated in several species (25, 169, 230), and its overexpression accelerated fruiting
body formation in A. bisporus (198). In L. edodes, priB, a transcriptional regulator with a Zn
(II)2Cys6 zinc cluster and a bZIP domain, was found to be upregulated in the primordium
and the fruiting body of L. edodes (231). Its binding site was determined (232), and three
genes (priB, mfbC, and uck1) were reported to be priB dependent (233). Its homologs are
also developmentally regulated in S. commune and Auriculariopsis ampla (169). Although
priB was originally reported to be most abundantly expressed in primordia of L. edodes (231),
transcriptomic data showed that it is already upregulated at the initiation of fruiting body de-
velopment in L. edodes (142). In F. velutipes, an HMG-box protein, PDD1, was also reported to
be involved in fruiting body initiation. Knockdown of Fv.pdd1 resulted in slower vegetative
growth and the lack of primordium formation, whereas its overexpression resulted in higher
yields (234). However, further investigations are needed to elucidate its exact function.
Another interesting HMG-box transcription factor that impacts the initiation of fruiting is
pcc1 (235). In C. cinerea, mutation of the pcc1 gene leads to pseudoclamp formation and pre-
cocious fruiting in homokaryons without mating. pcc1 is suggested to be a transcriptional
repressor (207, 236). In addition, the pH-responsive transcription factor Rim101/PacC family
govern pH-dependent morphological transition and virulence in many fungal pathogens
(237–241). Interestingly, the homologous gene in Ganoderma lucidum, GlPacC, was develop-
mentally regulated during fruiting body formation, and the GlPacC-silenced strain was de-
fective in primordium formation (242); its cell wall was 25 to 30% thinner and contained
;20% less b-1,3-glucan than that of the wild-type strain (243).

Less is known about the chromatin-level regulation of hyphal-knot development.
Investigation of REMI-generated mutants of C. cinerea uncovered a putative arginine
methyltransferase, Cc.rmt1, which seems to be involved in multiple processes during
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growth and fruiting body development (244). The rmt1 mutants showed a reduced growth
rate on media containing glucose as a carbon source and altered differentiation of aerial
hyphae and failed to form normal hyphal knots and oidiophores. Interestingly, on media
containing sucrose as a carbon source, the vegetative growth defect was not observed, but
the cultures still failed to develop hyphal knots and oidia (244). Cc.rmt1 is homologous (244)
to A. nidulans RmtA (245), an epigenetic developmental regulator that is reported to methyl-
ate histone H4 (245) and control conidium and sclerotium differentiation.

REMI-generated mutants of C. cinerea comprised another strain with a hyphal-knot
defect, in which the underlying gene was identified as a homolog of the yeast snf5 pro-
tein (246), a well-studied component of the S. cerevisiae SWI/SNF complex (247). C. cin-
erea snf5 contains two repeats (rp1 and rp2), but unlike its yeast homolog (247), it also
contains a C-terminal GATA Zn-finger domain. Further analysis of the Cc.snf5 gene
showed that the complete disruption of the gene affects dikaryon formation, while the
disruption of the Zn-finger domain alone affects only hyphal-knot formation (244). snf5
was reported to play a role in the sexual differentiation of C. neoformans (248) and to
interact with transcriptional regulators in S. cerevisiae (249). Cc.snf5 may act similarly,
with the additional GATA Zn-finger domain extending its function (244).

During hyphal-knot formation, hyphae branch extensively, which requires fast mitotic divi-
sion. The genetic background of this process is poorly understood; nevertheless, two mitosis-
related genes were reported to affect hyphal-knot formation (250, 251). The first is the Cc.arp9
gene (251), a homolog of S. pombe arp9, which is an actin-related protein and reported to be
a part of the SWI/SNF and the RSC chromatin remodeling complex (252). The deletion of the
last 33 C-terminal amino acid residues of Cc.arp9 caused defects in vegetative growth, hyphal-
knot initiation, and oidiophore development (251). This suggests an indirect role for this gene
during fruiting body formation, possibly via its role in sister chromatid cohesion, as was
reported for its fission yeast homolog (251). Via analyzing temperature-sensitive strains with
fruiting body formation defects, Muraguchi et al. (250) identified Cc.smc1, which plays a role in
metaphase to anaphase transition during the cell cycle of C. cinerea and, interestingly, affects
hyphal-knot differentiation. The Cc.smc1 mutants carried a 14-amino-acid insertion in the
highly conserved C-terminal region of the protein (250). The homologs of smc1 are cohesin
subunits of the SMC (structural maintenance of chromosomes) family proteins (253) and are
involved in mitotic sister chromatid cohesion. The authors hypothesized that rapid cell division
in the compact core of the hyphal knot of C. cinereamight be impaired by the altered kinetics
of the cohesin subunit (250). Although both Cc.arp9 and Cc.smc1 were reported to play a role
in mitotic sister chromatid cohesion and are linked to hyphal-knot defects, they seem to act
in different phases of hyphal-knot formation. However, the available information on these
mutants is not sufficient to decide whether or not both genes are involved in the same pro-
cess during the intensive branching within the hyphal knot. The differentiation of the hyphal
knot into fruiting body also depends on correct dikaryotic cell cycle that ensures the syn-
chronous division of the two parental nuclei within the dikaryotic cells. In C. cinerea, the
knockdown of the expression of two conserved kinases of the DNA damage response path-
way, Cc.Atr1 and Cc.Chk1, resulted in high level of abnormal mitosis and the silenced strains
were arrested in the hyphal-knot stage (254).

Interestingly, a UV-generated mutant of C. cinerea is also arrested in the transition
between the hyphal-knot and primordium stages, and the gene responsible for the
mutant phenotype was reported to encode a cyclopropane fatty acid synthase, cfs1
(255). Mutant cfs1 carries a mutation in a domain suggested to be involved in the catalytic
function of the enzyme (255). It was upregulated during the hyphal knot to primordium
transition (222). However, its exact function remains to be elucidated.

Tissue differentiation and growth. (i) Regulation of differentiation. Under appro-
priate conditions (e.g., light induction [see details on light regulation below]), the hyphal
knot differentiates into primordia with clearly distinguishable stipe, cap, and gill tissues
(65) (Fig. 8). This “pattern formation” is barely understood in mushroom-forming fungi.
The process needs, among others, a blue-light stimulus (125). Under constant darkness,
C. cinerea produces “dark stipes” in which the stipe and the pileus remain rudimentary
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and the basal plectenchyma elongates (19, 125) (Fig. 9C). Two mutant strains of C. cin-
erea, C. cinerea dst1-1 (19) and C. cinerea dst2-1, showed the same phenotype even under
fruiting inducing conditions. The genes underlying the mutations are dst1 and dst2,
respectively. dst1 was reported to be a homolog of N. crassa wc-1, which encodes a pho-
totropin-like receptor (WC-1) that interacts with WC-2, forming the white-collar complex
(WCC) that regulates the expression of light-responsive genes (16). Like its homolog, C.
cinerea dst1 was also suggested to function as a blue-light photoreceptor (19). dst2 enco-
des a protein with a FAD-binding 4 and a berberin-like domain and was suggested to act
as a novel photoreceptor, though its exact function remains to be elucidated (17). The
genome of C. cinerea harbors a homolog of N. crassa WC-2, the other component of the
WCC. The disruption of Cc.wc2 resulted in a dark stipe phenotype, confirming an identi-
cal role for its N. crassa homolog (256). In L. edodes, the orthologs of WC-1 and WC-2,
PHRA and PHRB, respectively, were reported to interact with each other via a PAS do-
main, and the light-dependent regulatory role of PHRB was confirmed (257). In S. com-
mune, inactivation of either wc-1 or wc-2 also resulted in a blind phenotype (258): instead
of asymmetrical colonies, the dikaryon formed symmetrical ones, and mushroom forma-
tion was abolished (230, 258). Gene expression studies on WCC deletion strains identified
several downregulated genes known to be involved in fruiting body development of S.
commune, including c2h2, hom1, and multiple hydrophobin genes (230).

Though blue light (wavelengths 400 to 525 nm) is known to be the most important
for the initiation of fruiting body differentiation, other photoreceptors were suggested to
play a role in fruiting in several species. Flavin-related molecules might be photoreceptors
in S. commune (259) and C. congregatus (260). In P. ostreatus, a cryptochrome-like photore-
ceptor system was suggested to regulate hyphal aggregation (261), whereas putative far-red
sensing photoreceptors were reported in Armillaria ostoyae (41). (For a detailed review of pho-
toperception and light-regulated gene transcription, see references 202 and 262.)

The velvet family contains fungal-specific transcriptional regulators, which play a key role
in coordinating sexual and asexual development and secondary metabolism (263, 264).
Their function is mostly studied in Ascomycetes; however, velvet proteins appear to have
morphogenetic roles in the Basidiomycota as well (e.g., Umv1, Umv2, and Umv3 in Ustilago
maydis [265]). RNA-seq studies in mushroom-forming fungi revealed that velvet family mem-
bers were developmentally regulated and show conserved expression patterns in L. bicolor,
S. commune, C. cinerea, and L. edodes, etc. (26, 222, 266).

(ii) Differentiation and maturation of the cap. In C. cinerea, after the hyphal knot
receives a light stimulus, the differentiation and later the maturation of the cap and
the stipe happen more or less in parallel. Limited information is available for the differentiation
of the cap and its tissues. The ichijiku mutant of C. cinerea is a result of a spontaneous

FIG 9 Phenotypes of five developmental mutants of C. cinerea. (Drawings are based on photographs in references 17, 147, 267, 282, and 289.) (A) eln3-1
(elongationless3) mutant. The stipe of the mutant does not elongate due to a mutation in the eln3 gene that encodes a membrane-bound
glycosyltransferase (289). (B) exp1-2 (expansionless1) mutant. The mutant is defective in pileus expansion and autolysis; therefore, its cap never expands and
remains pale due to a mutation in the transcription factor gene exp1 (282). (C) dst1-1 dst2-1 (dark stipe1,2) mutants. In these mutants, the cap and the
stipe remain rudimentary, and the basal plectenchyma elongates due to a mutation in the ortholog of the conserved blue light photoreceptor wc-1 (dst1)
and a putative novel photoreceptor (dst2) (17). (D) ich1-1 (ichijiku) mutant. The mutant is unable to develop a differentiated pileus and cannot produce
basidiospores. The differentiation of the veil cells of the ich1-1 mutant is restricted to a small area at the top of the primordium (267). (E) cag1-1 mutant.
The mutant is unable to develop gills due to a mutation in the cag1 gene encoding a conserved transcriptional repressor (147).
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mutation that produces an odd-shaped primordium in which the pileus does not differentiate
and the mutant is unable to produce basidiospores (267) (Fig. 9D). The ich1 gene encodes a
protein with a methyltransferase domain and a winged helix-like DNA-binding domain, but its
exact function is unknown (267). Another cap-related mutant is the UV-generated cag1-1mu-
tant of C. cinerea, in which the stipe and the pileus start to differentiate, but gills do not de-
velop (147) (Fig. 9E). cag1 is a homolog of S. cerevisiae tup1 (268), a conserved transcriptional
repressor (269) involved in several cellular processes such as sexual and asexual development
and developmental switching (270, 271). C. cinerea has a paralogue of cag1, named Cc.tupA.
Using reciprocal tagging, their location was visualized, and both genes were found to be
highly expressed in the developing gills (147). cag1 and Cc.tupA might be members of a con-
served regulatory network involved in differentiation processes in fungi.

Interestingly, in L. edodes, a MAP kinase, Le.MAPK, and its interacting partner (Le.DRMIP)
were shown to be highly expressed in the developing gills (272), especially in hymenophores.
The hymenophore contains gill trama hyphae which at this time start to differentiate into pro-
basidia, in a topology similar to the localization of tupA of C. cinerea (147, 272). Cdc5 is a puta-
tive transcription factor known originally from L. edodes and is hypothesized to affect the dif-
ferentiation of the cap (273). Immunohistochemistry showed that Le.cdc5 is expressed in
similar levels in the primordia and the immature fruiting body, but the primordial prehymeno-
phore (the region between the pileus and the stipe, where the hymenophore develops) con-
tained larger amounts of its transcript (274). In L. edodes the abundance of Le.cdc5 transcripts
was observed in the hymenium, where basidia and basidiospores are formed. Cdc5 contains a
Myb-type DNA-binding domain and several putative nuclear localization signals and is
reported to bind a 7-bp consensus sequence (59-CAACAC/T/G-39) (274). However, orthologs of
cdc5 from S. cerevisiae (275), S. pombe (275), and the human Cdc5L (276) were found to be
essential for pre-mRNA splicing. No such role was reported for Le.cdc5, while Nakazawa et al.
(277) proved that the protein is able to interact with another DNA-binding protein, Le.CIPB,
and together they regulate the expression of the gene ctg1. The same regulatory circuit was
found in C. cinerea, where ctg1 was proven to be exclusively expressed in vegetative mycelia
and in the hymenium (278). ctg1 overexpression resulted in a more rapid stipe elongation in
C. cinerea and L. edodes (278). This suggests the existence of an interesting regulatory process
where a cap-specific gene regulates the elongation of the stipe.

Limited information is available about the differentiation of the basidium. Some in-
formation on basidium development is available in C neoformans (279). pum1 of C. neo-
formans is an RNA-binding protein that is known to play a crucial role in basidium dif-
ferentiation and sporulation (279). Its deletion causes severe defects in basidium
morphogenesis and was shown to induce the expression of csa2, which temporally
coordinates meiosis and basidium maturation (280). In F. velutipes, five pum1 homologs
were identified, among which two were significantly upregulated in young fruiting
body cap and fruiting body cap, where basidium differentiation happens (281).

The cap of C. cinerea expands 3 h before the onset of autolysis. Muraguchi et al. (144)
found two strains defective in pileus expansion and autolysis. A single gene, named exp1
(expansionless 1), proved to be responsible for this phenotype in both mutants (282)
(Fig. 9B). Exp1 encodes an HMG1/2-like protein with two HMG-boxes at its C terminus.
The expression level of exp1 is low in the primordium and reaches the highest level in
the pileus 3 h before its expansion (282). exp1 was also identified in L. edodes, found to be
expressed postharvest, and speculated to control cap senescence (283). The main effectors
behind the autolysis of fruiting body cells are cell wall-degrading enzymes (283). These
results suggest that exp1 in fruiting-body-forming fungi participates in the regulation of
the expression of genes responsible for cell wall degradation.

(iii) Differentiation and elongation of the stipe. The stipe differentiates parallel
with the cap to support and position it for efficient spore dispersal. The stipe elongates
via the lateral extension of stipe cells with no or limited contribution of cell division to
the elongation process (284). In the secondary hyphal knot, hyphae line up in parallel
to give rise to the stipe, emerging from the primordial shaft (125). The elongationless2
mutant (eln2-1) of C. cinerea produces a “flat” primordium and later develops a short
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stipe in the mature fruiting body (285). This is the consequence of a mutation in the
eln2 gene, which encodes a cytochrome p450 enzyme with an as-yet-unknown func-
tion. In plants, cytochrome p450 enzymes are reported to regulate development via
the production of phytohormones (286, 287). No such cytochrome p450 produced
compounds were reported to be involved in fungal development, but it should be
noted that a hormone-like substance, 10-oxo-trans-8-decanoic acid, was reported to
influence stipe elongation of A. bisporus (288); therefore, the existence of such substances
cannot be ruled out (285). Another mutant, elongationless3, produces a fruiting body with a
short stipe (289) (Fig. 9A). As mentioned above, in wild-type C. cinerea stipe cells line up in
parallel and form side-by-side contacts with each other. In the mutant, stipe cells were not
arranged in a parallel fashion and did not elongate properly and, unlike in a normal stipe,
there was a space between the cells (289). The eln3 gene encodes a glycosyltransferase
located in the plasma membrane and was found to be expressed in the rapidly elongating
stipes, but no further details are available about its function (289). It is noteworthy that
homologs of eln3 were found to be developmentally regulated in F. velutipes (281), V. volva-
cea (290), Rickenella mellea, Lentinus tigrinus, and A. ostoyae, all with a well-developed stipe
but not in the stipeless cyphelloid S. commune and the resupinate Phanerochaete chrysospo-
rium (25, 41). The UV-generated mutant collection produced by Muraguchi et al. (144) con-
tained one more elongationless mutant for which the underlying gene was elucidated and
designated as eln8-1 (291). The mutation was rescued by a septin gene homologous to S.
cerevisiae cdc3. In the mutant, stipe cells fail to elongate; instead, they inflate. The mutation
also affects the veil cells that take a lemon shape. It was concluded that Cc.cdc3 is responsi-
ble for the maintenance of the cylindrical shape of stipe and veil cells. Shioya et al. (291) la-
beled Cc.cdc3 using enhanced green fluorescent protein to observe its cellular localization
and found that before the elongation of the stipe, Cc.cdc3 can be found in patches, while in
elongating stipe and veil cells Cc.cdc3 arranges in abundant thin filaments around the cortex
parallel to the longitudinal axis of the cells (291).

During stipe elongation, the lateral extension of stipe cells is limited to the apical
region of the stipe in most fruiting-body-forming fungi (292–295). The molecular background
of stipe elongation has been reviewed thoroughly recently (148); therefore, we only briefly dis-
cuss here the genes involved in the process. In the elongating stipe, the rigid fungal cell wall
must be loosened by the concerted action of several cell wall-modifying enzymes (e.g., chiti-
nases, b-1,3-glucanases, and b-1,6-glucanases [148]) to provide plasticity for the wall to be
able to expand following increasing turgor pressure during stipe elongation (148). Several pro-
teins belonging to the above groups were proved to be developmentally regulated during
fruiting body formation (25). Chitinases are reported to play a key role in this process. In C. cin-
erea, two chitinases were proven to be able to reconstitute heat-inactivated stipe elongation:
ChiE1 (296) and ChiIII (297). Double knockdown of these two enzymes resulted in a defect
of stipe elongation in C. cinerea (298). Besides chitinases, b-1,3-glucanases are also known to
be involved in cell wall extension during stipe elongation, including ENG, BGL2, or EXG of C.
cinerea (for a detailed description, see reference 290). Another exo-b-1,3-glucanase, EXG2,
belonging to glycoside hydrolase family 55, participates in stipe elongation, cap expansion,
and senescence of V. volvacea and L. edodes (299). Chitin deacetylases, such as cda1 and
cda2, are also involved in stipe elongation of C. cinerea (300).

APPLIED ASPECTS OF FRUITING BODY DEVELOPMENT

Fruiting body development has important and dynamically expanding biotechnological
applications. Mushrooms represent healthy and sustainable food products, a source of
promising medicinal (antioxidant, antimicrobial, and immunomodulating) compounds and,
most recently, are becoming industrial workhorses in diverse applications. The global edible
mushroom market is valued over US$54 billion in 2020 and is expected to expand, as the
per-capita consumption of the ;350 edible mushroom species rises (33, 301). The pharma-
ceutical uses of mushroom fruiting bodies are outstandingly versatile, and the medicinal
application of mushrooms has a long history and new applications in modern health care
(302, 303). For example, lentinan, a polysaccharide isolated from Lentinula edodes (Shiitake),
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is one of the most widely used b-glucan due to its immunostimulatory activity (304). Clinical
trials showed that psilocybin, a compound isolated from fruiting bodies of Psilocybe spp., is
very promising in treating depression, anxiety, and certain addictions (31, 305).

The improvement of commercial mushroom strains is still mostly based on conventional
breeding approaches, such as selection and hybridization (306, 307). Industrially important
traits have been targets of breeding programs, such as senescence (shelf-life), shorter life cycle,
resistance to pathogens, or spore production. A non-browning button mushroom (A. bisporus)
strain constructed using the CRISPR-Cas9 technology became the first organism confirmed
unregulated by the USDA (U.S. Department of Agriculture). This non-browning strain is defec-
tive in one of the polyphenol oxidase enzyme-encoding genes (308). A sporeless strain, defi-
cient in the msh4 gene, has been reported in P. ostreatus, which overcomes the problems
caused by intense sporulation of this species (309, 310) (e.g., allergic reactions, spread of dis-
eases, and depletion of genetic diversity in natural populations). Spent mushroom compost is
rich in both lignocellulosic plant materials and fungal compounds, such as the antimicrobial
polysaccharide chitosan, and is thus particularly apt for circular economy (311). Beyond fruiting
body production, mycelia of Agaricomycetes have promising applications as insulating or
building materials or as animal-free leather alternatives (312). Leveraging evo-devo knowledge
for improving the biotechnological application of mushroom-forming fungi is becoming feasi-
ble as we gain more and more information on how fruiting bodies develop. With the applica-
tion of “omics” and genome-editing techniques, we can gain insight into the molecular mech-
anisms and regulatory networks of fruiting body morphogenesis, including industrially
exploitable target genes for improving environmentally sustainable manufacturing (313–315).

CONCLUDING REMARKS: TOWARDS MUSHROOM EVO-DEVO

Fruiting bodies are the result of a fascinating developmental process and of a possibly
even more fascinating series of evolutionary transformations. The field of “evo-devo” studies
how developmental programs change during evolution; as such, it is a marriage between
evolutionary and developmental biology. Research on fruiting bodies has made tremendous
progress in both fields. Phylogenetic studies uncovered trends in how morphologies
evolved, while developmental and genetic studies revealed some key genes underlying
fruiting body development. Here, we reviewed advances in both fields and showed that
these are painting an ever more refined picture on the biology of fruiting bodies.

One of the big questions mycologists will need to answer is what drives convergence in
fruiting body morphologies. Is it driven purely by ecological adaptation, or are there genomic
factors that promote the repeated emergence of the same morphologies? Genetic mecha-
nisms that constrain evolvability or that promote convergence are starting to emerge from
studies of fungal and nonfungal organisms (48, 316). From an ecological perspective, we cur-
rently have little information on how external factors could drive the convergent evolution of
fruiting bodies. While we suspect that gasteroid morphologies represent adaptations to dry
habitats, no such clear hypothesis exists for others and species with various morphologies
(e.g., pileate-stipitate and coralloid) can coexist in what appears to be the same habitat.

On the other hand, genetic information on fruiting body development has been
accumulating at a steady pace, thus far mostly based on the analyses of spontaneously
occurring mutants of ones selected from mutagenesis screens. A promising new source of
functional hypotheses are genomic and transcriptomic data sets, especially comparative
ones, which can pinpoint dozens to hundreds of genes that show a consistent association
with fruiting body development across species. The community has just started to develop
and embrace routine genome engineering techniques (CRISPR/Cas9) (317–323), which will
allow us to test functional hypotheses on genes in a systematic and large-scale manner.
Population genomics might prove to be another rich source of hypotheses on genotype-
phenotype mapping, especially in economically interesting species.

As of today, however, insights from phylogenetics and developmental biology
remained largely disjunct, which is a major caveat that should be remedied for mushroom
evo-devo to really come to fruition. The multitude of approaches available for mycologists
today should allow a new synthesis of phylogenetic and developmental/genetic
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information into a coherent picture on fruiting body evolution. This will answer, or at least
outline strategies for solving, many of the biggest questions of the field, such as what
genetic circuits (e.g., master regulators) underlie the induction of fruiting body develop-
ment, tissue differentiation (e.g., into cap and stipe), and cell fate within fruiting bodies, as
well as, from an evolutionary perspective, the origins of fruiting bodies, transformations
between fruiting body types, or convergence. Although these topics represent a subjec-
tive listing of what we perceive as some of the grand questions in fruiting body biology, if
solved successfully, such research should allow mushroom evo-devo to emerge and
mature as a field. Solving pieces of this puzzle will also allow improving applied aspects of
mushroom biology as well, such as the development of better mushroom crops and
biotechnology.

APPENDIX
GLOSSARY
agaricoid A type of fruiting body with stipe, cap, and gills.
angiocarpic/hemiangiocarpic/gymnocarpic development These terms describe the

position of the hymenium relative to the environment during fruiting body develop-
ment. The hymenium can be exposed completely during development (gymnocarpic)
and can be enclosed first and exposed during spore production and maturation (hemi-
angiocarpic) or enclosed during fruiting body development and ruptured only after
spore production (angiocarpic).

basal plectenchyma A tissue at the bottom of the differentiating primordium con-
sisting of undifferentiated hyphae. It stores glycogen that is translocated into the
fruiting body during development.

ballistospory The forcible spore discharge mechanism of Basidiomycota.
Buller’s drop A drop of liquid that appears at the apex of the basidiospore. Rapid

movement of the liquid drop is essential for spore discharge.
clamp cell (=clamp connection) Hook-like structures formed by terminal hyphal cells

that ensure the proper distribution of genetically distinct nuclei during mitotic cell divi-
sions. Clamp cells are unique to the Basidiomycota.

Clavaria theory A hypothesis put forth by E. J. H. Corner, which posits that pileate-
stipitate morphologies evolved via coralloid/clavarioid intermediates.

coralloid A fruiting body type that resembles a club or branched coral, without a cap
and stipe.

cyphelloid Derived, cup- to barrel-shaped, pendant fruiting body type with a size
usually less than 2 mm in length and diameter.

cystesium (plural: cystesia) A specialized adhesive cell type in the hymenium of sev-
eral Agaricomycetes that makes adhesive contact with a cystidium.

cystidium (plural: cystidia) A specialized cell type in the hymenium of several
Agaricomycetes. They are believed to act as spacer cells.

gasteroid A fruiting body type in which spores are produced internally. Their hyme-
nium evolved into an enclosed structure called gleba.

heterochrony Shifts in the relative rate and timing of developmental events.
hymenium Spore-bearing tissue layer on the hymenophore of Agaricomycete fruit-

ing bodies where hyphae develop into basidia.
hymenophore The hymenium-bearing structure of the fruiting bodies.
lamellae Gills of a mushroom.
oidium (plural: oidia) A thin-walled fungal spore, produced asexually by certain fungi.
paraphysis Specialized, vacuolated, sterile spacer cells, considered to be the major

structural components of the lamellae of certain mushroom-forming fungi. They
arise as secondary branches of subbasidial cells.

pileate-sessile A fruiting body type with a cap, but no stipe.
pileate-stipitate A fruiting body type comprising the classic toadstool morphology

with a cap, a stipe, and complex hymenophore (gills, pores, and teeth).
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pileus The cap of a mushroom.
plesiomorphic An extant property that reflects an ancestral character state.
resupinate A fruiting body morphology that usually consist of a flat layer of fertile

hyphae with additional supporting hyphal layers in some species. Resupinate fruit-
ing bodies follow the morphology of the substrate (see Fig. 1A).

secotioid A fruiting body morphology that bears resemblance to both gasteroid and
pileate-stipitate types. They resemble a pileate-stipitate mushroom in which the
cap fails to open. Secotioid species typically retain ballistospory (Fig. 1A to C).

secotioid syndrome A series of morphological traits (closed pileus, shortened stipe,
thickened veil) that cooccur in secotioid fruiting bodies. This “syndrome” was recog-
nized and forms the basis of a hypothesis put forth by Harry Thiers on the origins
and adaptive value of secotioid fruiting bodies.
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