
����������
�������

Citation: Daku, G.; Vad, J.

Preliminary Design Guidelines for

Considering the Vibration and Noise

of Low-Speed Axial Fans Due to

Profile Vortex Shedding. Int. J.

Turbomach. Propuls. Power 2022, 7, 2.

https://doi.org/10.3390/ijtpp7010002

Received: 28 September 2021

Accepted: 4 January 2022

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY-NC-ND) license

(https://creativecommons.org/

licenses/by-nc-nd/4.0/).

Turbomachinery 
Propulsion and Power

International Journal of

Article

Preliminary Design Guidelines for Considering the Vibration
and Noise of Low-Speed Axial Fans Due to Profile
Vortex Shedding †

Gábor Daku * and János Vad

Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and
Economics, Bertalan Lajos u. 4-6, H-1111 Budapest, Hungary; vad@ara.bme.hu
* Correspondence: daku@ara.bme.hu
† This paper is a revised version of our paper published in Proceedings of the European Turbomachinery

Conference ETC14, Gdansk, Poland, 12–16 April 2021.

Abstract: This paper presents a critical overview on worst-case design scenarios for which low-speed
axial flow fans may exhibit an increased risk of blade resonance due to profile vortex shedding. To
set up a design example, a circular-arc-cambered plate of 8% relative curvature is investigated in
twofold approaches of blade mechanics and aerodynamics. For these purposes, the frequency of the
first bending mode of a plate of arbitrary circular camber is expressed by modeling the fan blade as a
cantilever beam. Furthermore, an iterative blade design method is developed for checking the risky
scenarios for which spanwise and spatially coherent shed vortices, stimulating pronounced vibration
and noise, may occur. Coupling these two approaches, cases for vortex-induced blade resonance
are set up. Opposing this basis, design guidelines are elaborated upon for avoiding such resonance.
Based on the approach presented herein, guidelines are also developed for moderating the annoyance
due to the vortex shedding noise.

Keywords: axial flow fan; blade vibration; low tip speed; preliminary fan design; vortex shedding

1. Introduction

Vortex shedding (VS) from low-speed axial flow fan rotor blades has become of
engineering relevance in the past decades. The VS phenomenon discussed in this paper—
termed herein as profile vortex shedding (PVS), and illustrated in Figure 1—is not to be
confused with the trailing-edge-bluntness, VS, which takes place past the blunt trailing edge
(TE) of the blade profile, acting as the aft portion of a bluff body [1]. In the aforementioned
literature, PVS is referred to as a laminar-boundary-layer VS, because it can only occur
if the boundary layer is initially laminar at least over one side of the blade profile. In
this case, the initially laminar boundary layer, being separated near or after mid-chord
position, reattaches in the vicinity of the TE—thus resulting in a separation bubble—and
finally undergoes a laminar-to-turbulent transition. Moreover, the position and the size
of the formed separation bubble plays a key role in tonal PVS noise emission. Recently,
Yakhina at al. [2] published a detailed investigation about tonal TE noise radiated by low
Reynolds number airfoils. They observed that a precondition for tonal noise emission is
the formed separation bubble being sufficiently close to the TE. PVS may occur within a
certain Reynolds number range. Based on the literature [3–5], a lower limit of Rec = 5 × 104

is assumed herein, while the upper limit is determined by the critical Reynolds number
of the natural laminar-to-turbulent transition. When PVS is discussed for low-speed fans,
as in the present paper, incompressible flow is considered by implying a Mach number
of ≤0.3.
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Figure 1. Profile vortex shedding (PVS). 

Various models are available in the literature on the PVS phenomenon. In this paper, 
only the classic model by Tam [6] and Wright [7] is referred to, in order to provide a 
straightforward and comprehensive interpretation on the mechanism. According to this 
model, PVS is related to a self-excited feedback loop. Due to the unstable laminar bound-
ary layer, Tollmien–Schlichting instability waves are generated; these waves travel down-
stream toward the TE where sound scattering occurs, and acoustic waves are created. The 
acoustic waves propagate upstream to amplify the original instabilities. If appropriate 
phase conditions are fulfilled, the disturbances are amplified at some frequencies, thus 
closing the feedback loop. Later, a number of authors, e.g., Nash et al. [8], carried out a 
critical revision on the aforementioned feedback loop model. PVS may generate vibration 
on the blade. As the studies by Ausoni et al. [9] suggest, the mechanisms of periodic vortex 
shedding and periodic blade vibration may mutually be coupled at a blade eigenfre-
quency, within a “lock-in” phenomenon. 

In the case of low-speed axial flow fan blades, the difference between PVS and TE-
bluntness VS in their physical mechanisms manifests itself in scaling techniques and the 
values of the Strouhal number being also different. 

For blade profiles with thick or blunt trailing edges, the TE-bluntness vortex shed-
ding [10] can be characterized by the Strouhal number based on the free-stream velocity 
U0 and the TE thickness dTE: 

20.0/ 0TETETE ≅= UdfSt  (1) 

For PVS [11,12], which is associated with the boundary layer transition and feedback 
mechanism: 
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* ≅= UbfSt  (2) 

where f is the dominant frequency of the two types of VS, and b is the distance between 
the vortex rows. Yarusevych et al. [11] found that St* is universally valid for symmetrical, 
relatively thick NACA airfoils for certain ranges of the Reynolds number and angle of 
attack, suggesting the appellation of a “universal” Strouhal number St*, as specified in 
Equation (2). However, these airfoils are not widely used in axial fan application; there-
fore, the present authors have extended the proposed St* definition as follows. Systematic 
wind-tunnel experiments were performed on blade section models typical for low-speed 
axial fans, using a single-component hot-wire probe. Based on the measured f and b val-
ues, the authors also confirmed the validity of St* for asymmetrical profile geometries, 
such as 8% cambered plate and RAF-6E profiles, in a quasi-2D experimental analysis [13]. 
Thus, the available experimental database on PVS frequency [5] was extended. 

From an engineering point of view, the practical aspects of PVS are remarkable in 
two ways: vibration and noise. On the one hand, PVS creates a periodically fluctuating 
force normal to the chord, increasing the risk of blade vibration. On the other hand, VS 
appears as the primary source of the aeroacoustics noise of low-speed axial flow fans [14–
16]. Hence, it is an important engineering objective to check and possibly to control the 
vibration and noise of low-speed axial fans due to the PVS that is already in the prelimi-
nary design phase. It is worth noting that the signatures of blade vibration and PVS-re-
lated noise may coincide in the frequency spectra. In [17], the vibrometer connected to the 
airfoil indicated a vortex-induced vibration, the dominant frequency of which coincided 
with that of the far-field tone. 

Figure 1. Profile vortex shedding (PVS).

Various models are available in the literature on the PVS phenomenon. In this paper,
only the classic model by Tam [6] and Wright [7] is referred to, in order to provide a
straightforward and comprehensive interpretation on the mechanism. According to this
model, PVS is related to a self-excited feedback loop. Due to the unstable laminar boundary
layer, Tollmien–Schlichting instability waves are generated; these waves travel downstream
toward the TE where sound scattering occurs, and acoustic waves are created. The acoustic
waves propagate upstream to amplify the original instabilities. If appropriate phase
conditions are fulfilled, the disturbances are amplified at some frequencies, thus closing the
feedback loop. Later, a number of authors, e.g., Nash et al. [8], carried out a critical revision
on the aforementioned feedback loop model. PVS may generate vibration on the blade.
As the studies by Ausoni et al. [9] suggest, the mechanisms of periodic vortex shedding
and periodic blade vibration may mutually be coupled at a blade eigenfrequency, within a
“lock-in” phenomenon.

In the case of low-speed axial flow fan blades, the difference between PVS and TE-
bluntness VS in their physical mechanisms manifests itself in scaling techniques and the
values of the Strouhal number being also different.

For blade profiles with thick or blunt trailing edges, the TE-bluntness vortex shed-
ding [10] can be characterized by the Strouhal number based on the free-stream velocity U0
and the TE thickness dTE:

StTE = fTE dTE/U0 ∼= 0.20 (1)

For PVS [11,12], which is associated with the boundary layer transition and
feedback mechanism:

St∗ = fPVSb/U0 ∼= 0.18 (2)

where f is the dominant frequency of the two types of VS, and b is the distance between
the vortex rows. Yarusevych et al. [11] found that St* is universally valid for symmetrical,
relatively thick NACA airfoils for certain ranges of the Reynolds number and angle of
attack, suggesting the appellation of a “universal” Strouhal number St*, as specified in
Equation (2). However, these airfoils are not widely used in axial fan application; therefore,
the present authors have extended the proposed St* definition as follows. Systematic
wind-tunnel experiments were performed on blade section models typical for low-speed
axial fans, using a single-component hot-wire probe. Based on the measured f and b values,
the authors also confirmed the validity of St* for asymmetrical profile geometries, such as
8% cambered plate and RAF-6E profiles, in a quasi-2D experimental analysis [13]. Thus,
the available experimental database on PVS frequency [5] was extended.

From an engineering point of view, the practical aspects of PVS are remarkable in two
ways: vibration and noise. On the one hand, PVS creates a periodically fluctuating force
normal to the chord, increasing the risk of blade vibration. On the other hand, VS appears
as the primary source of the aeroacoustics noise of low-speed axial flow fans [14–16]. Hence,
it is an important engineering objective to check and possibly to control the vibration and
noise of low-speed axial fans due to the PVS that is already in the preliminary design
phase. It is worth noting that the signatures of blade vibration and PVS-related noise may
coincide in the frequency spectra. In [17], the vibrometer connected to the airfoil indicated
a vortex-induced vibration, the dominant frequency of which coincided with that of the
far-field tone.

Measurements on PVS in the literature are mostly related to isolated and steady
airfoils [2,11–13,17,18]. Only a few studies dealt with PVS in the case of rotating blades of
asymmetrical profiles being characteristic for realistic axial fans. Longhouse [19] detected
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PVS noise on an axial fan of four cambered plate blades with a constant blade chord.
Nevertheless, except for a small segment (~10%) of the span of one blade in near-tip region,
the PVS noise was suppressed by aft-chord serrations. Furthermore, the spanwise variation
of free-stream velocity tended to broaden the noise signature of PVS, thus acting against
a remarkable, well-detectable tonal PVS character. Grosche and Stiewitt [20] examined a
four-bladed propeller-type axial fan rotor with a moderate sweep and twist. They observed
PVS noise at α ≈ 4◦ angle of attack, viewed in the rotating frame of reference near the
blade tip, for three different Reynolds numbers based on the chord length (Rec = 9 × 104,
1.3 × 105, 2.6 × 105). All of the aforementioned observations—both the isolated blade
profile and rotor consideration—suggest that the following blade features tend to increase
the inclination for the occurrence of well-detectable tonal PVS: high aspect ratio (AR),
low solidity, moderate twist, and constant blade chord. These parameters are typical for
propeller-type fans [21]. Such propeller-type fans, where low-solidity is characteristic over
a significant portion of the span, have been designed, for instance, by [22,23].

In order to moderate the harmful noise and vibration effects due to PVS, pessimistic
design scenarios have systematically been discovered for which such harmful effects are
pronounced. Furthermore, these design characteristics were coupled with rotor dynamics
consideration. Based on this coupling, an exemplary unfavorable design case was set up
in terms of both operational and geometrical characteristics, for which PVS demonstrates
an increased risk of blade resonance. Taking the rotor of such an unfavorable design
case—termed hereafter the PVS-affected rotor—as reference, approximate semi-empirical
design guidelines can already be elaborated in the preliminary design phase for checking
and possibly avoiding PVS-induced resonance. The design guidelines for noise reduction,
reported in [13], have also been further developed toward a more detailed model, as
illustrated in this paper.

2. Blade Vibration: An Overview

Turbomachinery blade profiles are suggested to be modeled in preliminary analysis
as simple cantilever beams [24–30], which means that all degrees of freedom of the blades
at the blade root, i.e., where connected to the hub, are constrained. The pure bending—
or, in other words, transversal or flexural—vibrations of a prismatic beam with uniform
cross-section according to time (τ) and the coordinate along the longitudinal direction of
the beam (z) are described by the partial differential equation below, which is derived from
the Euler-Bernoulli’s beam theory [26,31]:

EI
∂4g(z, τ)

∂x4 + ρb A
∂2g(z, τ)

∂τ2 = 0 (3)

where g(z, τ) is the lateral displacement along the axis perpendicular to the blade chord;
E is the Young modulus; I is the second moment of area with respect to the axis being
parallel to the chord and fitting to the center of gravity (CG) of the blade section; A is
the cross-sectional area of the blade profile; and ρb is the density of the blade material.
The method of variable separation can be used to produce the free vibration solution. By
utilizing the proper initial and boundary conditions, the i-th eigenfrequency (see later) and
normal mode shape [31] can be expressed as follows:

Fi(z) = (cos βiz − cosh βiz)−
(cos βil + cosh βil)
(sin βil − sinhβil)

(sin βiz − sinhβiz) (4)

where i is the order-number, i.e., 1, 2, 3 etc.; F(z) is the characteristic function or the normal
mode of the beam; l is the radial extension of blade from hub to tip, i.e., the blade span, and
βil ≈ (2i − 1)π/2. For illustrative examples, Figure 2 qualitatively presents the shapes for
some bending modes, generated on the basis of Equation (4). The vertical axis represents
the normal mode (i.e., dimensionless displacement) and the horizontal axis shows the
dimensionless length of the beam.
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The pure torsion of the cantilever beam is governed by the following differential
Equation [32]:

GIt
∂2ζ(z, τ)

∂x2 + ρb Ip
∂2ζ(z, τ)

∂τ2 = 0 (5)

where ζ(z, τ) is the rotation angle around the longitudinal direction of the beam; G is the
shear modulus; It is the torsional stiffness or torsional constant; and Ip is the polar moment
of area of the blade section.

It is important to note that in practice, mixing of modes can occur, and accordingly,
various researchers have executed studies on experimental and theoretical evaluations
of flexural-torsional vibration analysis, taking into account the coupling of flexural and
torsional modes, e.g., [24,27,28,31,33,34]. The present authors have only dealt with pure
bending and torsional vibration modes, keeping in mind the simplest possible analytical
description mode.

In the literature, basic concepts are available for the analytical treatment of the vibra-
tion of beams/blades affected by centrifugal force field due to their rotation. Such concepts
regard both untwisted [31] and twisted [24,28,29] geometries. As discussed in [25], the
centrifugal force originating from the rotation of the blades has a stiffness-increasing effect,
i.e., it tends to moderate the inclination of the blade to vibrate. At the present state of
research, the authors neglect the mechanical effect of the centrifugal field, for the following
reasons: (a) The centrifugal field tends to be of moderate significance in the low-speed
fan blades discussed herein; and (b) the intention is to make a pessimistic—i.e., safety-
increasing—preliminary design approach via neglecting the stiffness-increasing trend due
to the centrifugal field. Blade twist tends to reduce the bending eigenfrequencies, as FEM
computations (not presented herein) demonstrate. Therefore, for twisted blades, the critical
frequencies of excitation tend to be shifted toward lower values. At the present state of
research, the authors neglect the mechanical effect of blade twist. The reasonability of such
neglect is commented on later on. The concerted review of the effects of centrifugal force
field and blade twisting, or taking into account the mixing of the pure vibration modes, is
planned to be the subject of future research.

Even mechanical or fluid mechanical excitations can unavoidably induce the vibration
of the axial flow fan blade to a certain extent, as well as being a source of vibration in the
structure on which it is installed. Such excitation effect may derive from the interaction of
the fan blades with the wake developing behind the elements placed upstream of the rotor
e.g., supporting struts, inlet guide vanes, or even from the discussed PVS phenomenon.
For instance, corresponding to the pressure rise, a steady mean lift force acts on the blade.
However, the lift force also has a varying component e.g., the fluctuating force due to PVS.
As detailed by [25,35], both forces produce a bending moment, resulting in vibration. If the
dominant frequency of PVS coincides with an eigenfrequency of the blade, resonance may
occur, and the intensity of the vibration can only be limited if the mechanical structure is
stiff enough or damped sufficiently. Therefore, it is to be treated with special care in the
case of fan blades made of cambered sheet metal plates because their eigenfrequency—due
to the moderate inertia of the cross-section and the resulting lower stiffness—is lower
compared to that of the profiled blades [25].
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Even though fans commonly operate with mechanical stresses far below the capacity
of their material—and thus the vibration of the fan blade due to resonance does not lead to
the fracture of the mechanical structure—, in the presence of the corresponding stresses,
which reach a maximum near the blade root, there can be a risk of fatigue fracture. These
stresses combine with the centrifugal ones; therefore, a mixed type, alternating stress
condition appears, which must be considered in the design of the fan.

Furthermore, the rotor may become imbalanced due to the deformation patterns
associated with each resonance frequency of the blade, forcing the shaft to bend, escalating
the initial imbalance and bending. If the excitation is sufficiently intense, resulting in a
vibration of large amplitude, one of the fan blades can rub into the duct walls leading to
rotor imbalance or the breaking down of the blades.

2.1. Analytical Treatment
2.1.1. Bending Modes

In order to provide a straightforward and comprehensive approach in preliminary
design, avoiding any need for numerical computation at the present phase of research
and as a solutions of Equation (3), the following analytically expressed eigenfrequencies
are considered for the bending modes of an arbitrary prismatic rod, as specified in the
literature [26]:

fB,i =
KB,i

l2

√
E I

A ρb
(6)

Namely, the simple analytical formula above can easily be extended to higher-order
bending modes by substituting the appropriate KB,i constant into Equation (6). The values
of KB,i for the first three bending modes are KB,1 = 0.560, KB,2 = 3.506 and KB,3 = 9.819,
respectively.

2.1.2. Torsional Modes

By solving the expression in Equation (5), the eigenfrequency for torsional modes can
be obtained using the analytical formula e.g., in [26], as follows:

fT,i =
i − 0.5

2l

√
G It

ρb Ip
(7)

In Equation (7) every variable can be determined—except It—by utilizing the material
and geometrical parameters of the blade. To calculate the It torsional constant for a flat
plate, the following relation is given in [26]:

It = Ktct3 (8)

where c is the chord length (width of the plate); t is the thickness (height of the plate); and
Kt is a mechanical constant which can be obtained from Figure 4.2 of [26] or calculated
applying the formula—being in accordance with the former literature—e.g., [36]. However,
the aforementioned alternatives for determining the torsion constant are related not to
a cambered but to a flat plate, inhibiting their direct application in our case study. To
overcome this problem, based on [36–38], the torsional constant of a thin-walled open tube
cross-section of uniform thickness can be expressed as:

It =
1
3

Ut3 (9)

where U is the length of the midwall perimeter, shown dashed later in Figure 5.
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2.2. Finite Element Method (FEM)

The FEM is a useful and generally accepted tool for solving engineering problems
numerically, such as the modal analysis of rotor blades [39–41]. The desired mechanical
characteristics can be computed by dividing an arbitrary mechanical structure into simple
geometric shapes and defining the material properties and governing connections among
these elements. In this study, the frequency analysis of a low speed axial fan blade is carried
out using a commercial FEM software program ANSYS Mechanical APDL 2019 R3.

2.2.1. Geometry, Materials, and Elements

In the present paper, the hub is assumed to be rigid in comparison to the fan blade,
thus all degrees of freedom of the blades at the hub, i.e., at the blade root, are constrained.
Therefore, only one segment of the axial flow fan composed of a single blade without a
hub part was examined. In accordance with the later investigated PVS-affected rotor blade
profile of the circular-arc-cambered plate of 8% relative curvature and the dimensional and
dimensionless values of Tables 3 and 5, the necessary geometrical characteristics for 3D
modeling are summarized in Table 1. The reason for choosing this blade profile geometry
will be explained in detail later in Section 3.2. For the FEM case study, the fan blade is
made of structural steel with a density of 7850 kg/m3, a Young’s modulus of 200 GPa, and
a Poisson’s ratio (νP) of 0.3.

Table 1. Blade geometrical and material parameters for the FEM case study.

l c t h ρb E νP

264 mm 120 mm 2.40 mm 9.60 mm 7850 kg/m3 200 GPa 0.30

According to the literature [30,39], SHELL 181 element is suitable for analyzing thin to
moderately-thick shell structures related to turbomachinery blades, such as wind turbine
and axial flow fan blades. Hence, this type of element is applied to model the fan blade
with 124 nodes in the axial direction and 256 nodes in the radial direction. Basically, SHELL
181 is a four-node element with six degrees of freedom at each node: translations in the x, y,
and z directions and rotations about the x, y, and z-axes. However, it should be mentioned
that the same solution could be obtained by using the 20-node Hex20 (SOLID 186) element
of Ansys Workbench 2019 R3.

2.2.2. Mesh Convergence

A mesh convergence study was performed to assure the optimum mesh number in
terms of computational accuracy. The first three bending (B) and torsional (T) eigenfrequen-
cies of the fan blade are computed in several mesh sizes (the element number varies from
258 to 507,904). By increasing the number of elements, the first bending eigenfrequency
increases slightly and then becomes nearly constant. For higher-order bending and the
torsional mode, similar effects can be observed. As shown in Figure 3, 31,744 elements are
appropriate to get a sufficiently accurate solution. Nevertheless, it should be mentioned
that even a model with a lower number of elements is sufficient for the third-octave band
prediction of the first bending eigenfrequency (see Appendix A).
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2.3. Comparison of the Results

In Table 2, the first three analytical bending (B) and torsion (T) eigenfrequencies
were calculated based on Equations (5), (7) and (8), and compared to the eigenfrequency
obtained by means of FEM. The first column indicates the vibration mode case under
discussion. In the second and the fourth columns, FEM and the analytical eigenfrequencies
are summarized, respectively. In the third and the fifth columns, the appropriate band
number of the third-octave band resolution is listed in accordance with Appendix A. The
“Discrepancy” column contains the relative discrepancy of f analytical in comparison to f FEM.

Table 2. Geometrical and material parameters of the blade.

Mode f FEM
[Hz]

1/3 Octave
Band No.

f analytical
[Hz]

1/3 Octave
Band No.

Discrepancy
[%]

B,1 116.5 11 116.1 11 0.3
B,2 595.2 18 727.6 19 18.2
B,3 1146.7 21 2037.8 23 43.7
T,1 140.1 11 117.4 11 19.4
T,2 472.8 17 352.1 15 34.3
T,3 949.6 20 586.9 18 61.8

From Table 2, it can be observed that the analytical treatment for the first bending
(B,1) eigenfrequency is in good agreement with the FEM result. Nevertheless, for the
higher-order bending and the torsional modes, the relative discrepancy between analytical
and FEM results becomes greater and tends to increase with the increasing of the order of
the modes. A possible explanation for this is the partial violation of the briefly presented
Euler–Bernoulli thin beam theory. Hence, the AR of the beam is equal to 2.2; namely, the
beam is not considered to be slender (AR > 10).

Although there have been alternative methodologies to obtain a more accurate an-
alytical prediction for short beams (AR < 10), e.g., Timoshenko’s beam theory [31], the
present paper focuses on Euler–Bernoulli’s beam theory, due to the following reasons.
(a) On the one hand, the authors aim to create a closed analytical formula with the most
straightforward possible analytical description in mind. (b) On the other hand, as shown
in [31,42], the relative discrepancy between the analytical first bending eigenfrequencies,
calculated based on the two different theories, is less than 5–10%, which, fitting for point
(a), is considered to be an acceptable approximation. Based on this and the highlighted role
of the first bending mode detailed in Section 3.1, the confirmation of the analytical model
by FEM is of primary significance for the first bending mode only and is of secondary
importance for the other modes.

Despite the simplification assumption discussed at the beginning of the chapter (un-
twisted and non-rotating fan blade), supplementary FEM case studies were carried out
for the twisted and rotating blade as well. The FEM results demonstrated that both the
blade twisting and the presence of a centrifugal force field have a bending eigenfrequency-
reducing effect, providing an upper estimation for the first bending eigenfrequency of the
blade. As the later calculation example illustrates, even in the case of the untwisted and
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stationary fan blade, only impractically low tip speeds would result in the coincidence of
the first bending eigenfrequency and PVS frequency. Therefore, the simplified fan blade
model applied by the present authors can be considered as a pessimistic design scenario.

3. Blade Mechanics: An Exemplary Case Study
3.1. The Importance of the First-Order Bending Mode

The risk in fan operation due to blade vibration is simultaneously viewed in the
present paper from the following two perspectives, which are related to each other. (a) The
risk of instantaneous reduction of the gap between the blade tip and the casing. From
the perspective of the tip gap reduction, the vibration modes exhibiting monotonously
increasing deformation amplitude along the blade height are considered the riskiest. These
are the first bending and first torsional modes. (b) The risk of instantaneous rotor imbalance.
This occurs in cases when the weight point of the entire blade is displaced in the transversal
direction from its original position, fitting on the (approximately) radial blade stacking line,
for which the rotor has originally been balanced. From the perspective of rotor imbalance,
none of the torsional modes are considered to be risky, as they tend to leave the weight
point of the entire blade (approximately) in its original position. In addition, according to
their wavy vibration pattern, higher-order bending modes are considered to exhibit only a
moderate transversal displacement of the blade weight point.

Therefore, among the various vibrational modes caused by PVS excitation, the first
bending mode is judged to be the most critical, and the higher-order bending modes and
torsional modes are considered of secondary significance. Consequently, out of the an-
alytical solutions in Equation (5), the “first-order bending mode” is taken herein as an
illustrative example of the analytical treatment elaborated upon by the authors. Neverthe-
less, the reasonability of this choice is justified and supported by the subsequent examples,
as follows.

The impact of PVS on both noise and vibration is presumed by the present authors
to be pronounced when extensive and coherent vortices are shed with uniform frequency
along a dominant portion of the blade span. In this case, PVS is assumed to exhibit pressure
fluctuations over the blade suction and pressure surfaces, causing chord-normal forces.
Assuming spanwise and spatially coherent shed vortices, the resultant fluctuating forces
are in phase over the entire span. Furthermore, PVS and the associated forces may occur
farther upstream of the TE (cf. [12]). Such a PVS-induced excitation likely triggers the
first-order bending mode.

An upstream stator, e.g., the nearly radially aligned supporting struts located upstream
of the rotor, is able to cause wake-blade—also known as “rotor-stator”—interaction, in
which the upstream wakes of the stator are swept downstream into the axial flow fan blade-
row. The wakes are parallel with the relative velocity (w), thus the interaction manifests
itself as a nearly simultaneous, spatially coherent aerodynamic excitation along the entire
blade span. Hence, the fan blades are acted by chord-normal fluctuating force, resulting in
a spatially coherent bending moment rather than torsional.

In addition, in [25] as a general approach, the frequency of the first bending mode
of the blades is to be kept far away from the frequencies of excitation. As it was just
mentioned, elements located upstream of the rotor—supporting struts and inlet guide
vanes—cause rotor–stator interaction as aerodynamic excitation to the rotor blades, occur-
ring at a frequency of rotational frequency multiplied by the number of upstream elements.
On the other hand, such excitation effects correspond to rotor imbalance (“shaker effect”)
appearing as mechanical excitation at the rotational frequency of the fan.

Moreover, as illustrated in [5], the fluctuation of chord-normal force due to PVS may
lead to a variance of the lift coefficient in the order of a magnitude of ±10 percent of the
temporal mean value. As demonstrated in [35], the varying component of lift force causes
a bending moment on the blade. When extensive and coherent vortices are shed with
uniform frequency along a dominant portion of the blade span, they represent spatially
coherent elemental aerodynamic excitation forces, being in phase over the elemental blade
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sections, and thus, integrated into a pronounced overall bending moment. The phase
identity of the elemental excitation forces along the blade span matches with the phase
identity of blade deformation in the first bending mode of the blade, if the frequency of
PVS matches with the eigenfrequency related to the first bending mode.

3.2. Eigenfrequency

In order to build up a straightforward model for the interaction of the blade and the
fluctuating aerodynamic force due to PVS, some simplifications must be introduced. First
of all, a circular-arc-cambered plate of 8% relative curvature is chosen as a blade profile for
several reasons:

(a) At moderate Reynolds numbers and angles of attack (α), the cambered plate produces
reasonably high CL, that is comparable with an airfoil profile, i.e., RAF-6E [43], thus
enabling the design of blades of relatively high specific performance, i.e., utilizing the
loading capability of the blade sections.

(b) At 8% relative curvature, the lift-to-drag (LDR) is near the maximum among the
cambered plates of various relative camber, thus enabling the design for reasonably
high efficiency [44].

(c) In accordance with the aforementioned practical aspects, it is a cambered plate of
8% relative camber for which hot-wire measurement data are made available by the
present authors on PVS at different free-stream velocities and angles of attack [13]. As
per the illustration, Figure 4 shows CL, CD, and LDR values as a function of the angle
of attack for the 8% cambered plate.
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Secondly, the fan blade is presumed to consist of geometrically identical blade sections
along the full span. This means that the blade chord c, plate thickness t, and height of the
camber line h are constants (Figure 5). The measurement data presented by [44] and shown
in Figure 4, are related to a relative thickness (t/c) of 2%. This value is representative in fan
manufacturing; therefore, t/c is fixed at 2% for the present investigations.



Int. J. Turbomach. Propuls. Power 2022, 7, 2 10 of 23Int. J. Turbomach. Propuls. Power 2022, 7, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 5. Circular-arc-cambered plate (8% relative camber). 

Finally, as discussed earlier, it is assumed that all degrees of freedom of the blades at 
the hub, i.e., at the blade root, are constrained. This is a reasonable approximation; e.g., if 
sheet metal blades connect to the hub with a welded joint, or, in the case of polymer ma-
terial, if the entirety of the hub and blading assembly is injection-molded as a single prod-
uct. The simplifications above enable us to model the blade as a cantilever beam (or 
clamped beam) subjected to free vibration. In accordance with Section 3.1, the lowest ei-
genfrequency, related to the first-order bending mode, can be calculated as follows: 

b
2B,1

56.0
ρ
E

A
I

l
f =  (10) 

The last term on the right-hand side of Equation (10), as the square root of the specific 
modulus E/ρb, is termed herein the wave propagation speed, and denoted as ab. This is 
actually the acoustic wave propagation speed in a long one-dimensional fictitious beam 
made of the blade material. The resultant swinging pattern is shown in Figure 6. 

 
Figure 6. Cantilever beam subjected to free vibration (perpendicular to the blade chord). 

3.3. Second Moment of Area 
The purpose of the present section is to demonstrate how the I/A term can be related 

to the basic geometrical characteristics of the circular-arc-cambered plate blade (c, h/c, t/c), 
creating a direct relationship between the first eigenfrequency and the geometrical param-
eters of the blade. However, no closed analytical relationship exists in the literature for 
such purpose. Therefore, an alternative method must be found to express the second term 
of the right-hand side of Equation (10) with the use of blade geometrical parameters, such 
as c, h, and t. As a first step, the second moment of area of a cambered plate and a flat plate 
with same geometrical parameter (t, c) were compared to each other.  

The quotient of the second moment of area and the cross-section, in case of a flat plate 
is: 

( ) 12)()12/( 23
flat tctctAI ==  (11) 

For a cambered plate it is: 

( ) ( ) c)c, h(t K KAIKAI // where, 11flat1cambered ==  (12) 

Icambered was obtained for the cambered plate-section using an analytical integration 
process known from basic solid-state mechanics [45]. As background information for the 
reader, the values of K1 are presented in Figure 7 for representative relative thickness and 
relative camber (h/c) values. For the fitted curves in Figure 7, K1 was calculated for fixed 
t/c values for uniform steps of 0.01 h/c over the entire h/c range. In the blade design pre-
sented later, K1 (t/c = 0.02; h/c = 0.08) = 18.07 was used, in accordance with the previously 
selected blade geometrical parameters. 

Figure 5. Circular-arc-cambered plate (8% relative camber).

Finally, as discussed earlier, it is assumed that all degrees of freedom of the blades at
the hub, i.e., at the blade root, are constrained. This is a reasonable approximation; e.g.,
if sheet metal blades connect to the hub with a welded joint, or, in the case of polymer
material, if the entirety of the hub and blading assembly is injection-molded as a single
product. The simplifications above enable us to model the blade as a cantilever beam
(or clamped beam) subjected to free vibration. In accordance with Section 3.1, the lowest
eigenfrequency, related to the first-order bending mode, can be calculated as follows:

fB,1 =
0.56

l2

√
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A

√
E
ρb

(10)

The last term on the right-hand side of Equation (10), as the square root of the specific
modulus E/ρb, is termed herein the wave propagation speed, and denoted as ab. This is
actually the acoustic wave propagation speed in a long one-dimensional fictitious beam
made of the blade material. The resultant swinging pattern is shown in Figure 6.
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3.3. Second Moment of Area

The purpose of the present section is to demonstrate how the I/A term can be related
to the basic geometrical characteristics of the circular-arc-cambered plate blade (c, h/c,
t/c), creating a direct relationship between the first eigenfrequency and the geometrical
parameters of the blade. However, no closed analytical relationship exists in the literature
for such purpose. Therefore, an alternative method must be found to express the second
term of the right-hand side of Equation (10) with the use of blade geometrical parameters,
such as c, h, and t. As a first step, the second moment of area of a cambered plate and a flat
plate with same geometrical parameter (t, c) were compared to each other.

The quotient of the second moment of area and the cross-section, in case of a flat
plate is:

(I/A)flat = (ct3/12)/(ct) = t2/12 (11)

For a cambered plate it is:

(I/A)cambered = K1(I/A)flat, where K1 = K1(t/c, h/c) (12)

Icambered was obtained for the cambered plate-section using an analytical integration
process known from basic solid-state mechanics [45]. As background information for the
reader, the values of K1 are presented in Figure 7 for representative relative thickness and
relative camber (h/c) values. For the fitted curves in Figure 7, K1 was calculated for fixed t/c
values for uniform steps of 0.01 h/c over the entire h/c range. In the blade design presented
later, K1 (t/c = 0.02; h/c = 0.08) = 18.07 was used, in accordance with the previously selected
blade geometrical parameters.
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where Kb = Kb (t/c = 0.02; h/c = 0.08) = 1.23 is the blade mechanics coefficient. Case studies
considering other t/c and h/c values can be carried out using Figure 7.

4. PVS-Affected Rotor: An Exemplary Case Study

The aim of this section is to outline a design case study, resulting in a rotor suspected
to be unfavorable in terms of noise and vibration due to PVS. Although several unfavorable
design cases of such kind can be intentionally generated, this paper intends to present
a single, representative design example. The resultant rotor will be termed herein the
PVS-affected rotor. Such a design aims to serve as a basis for the realization of a case
study rotor that is expected to exhibit remarkable and experimentally well-detectable
narrowband signatures of PVS. By such means, the orders of the magnitude of harmfulness
of PVS-related effects are to be quantified in future experiments on the PVS-affected rotor,
in comparison with other rotors of comparative design. The features of the PVS-affected
rotor are as follows:

(a) The rotor blading tends to exhibit a PVS of spanwise constant frequency, and thus,
is theoretically presumed to realize large-scale, spatially coherent vortices over the
dominant portion of the blade span. Such coherent vortices are assumed to cause
spatially correlated, narrowband noise, as well as mechanical excitation over the
dominant part of span at a given frequency. The condition of spanwise constant PVS
frequency is therefore applied herein in a pessimistic aspect, although it is noted that
the signature of PVS noise was observed by [19] even when PVS was confined to ~10%
span near the tip of a single blade.

(b) The latter is presumed to provoke blade vibration, if the frequency of PVS coincides
with the frequency of the first bending mode of blade vibration.

4.1. Aerodynamics: Blade Design

To be able to design a fan for which the spanwise constancy of PVS frequency is
fulfilled—thus satisfying Equation (14), presented later—first, typical dimensionless design
and geometrical characteristics, representative of propeller-type fans, were systematically
gathered and summarized in Table 3. Here, the authors stress that, in order to guarantee the
validity of Equation (9), the blade chord along the blade span was fixed, so c(rb) = constant.
The tendency toward keeping the chord constant along the span in the blade design
is supported by the literature examples of [19,20]. Based on the well-known Cordier
diagram [46] for turbomachines of favorable efficiency, axial flow fans have the specific
diameter and the specific speed within the approximate ranges of 1 ≤ δ ≤ 1.5 and 2 ≤ σ ≤ 3,
respectively. These ranges correspond to the global total pressure rise coefficient and flow
coefficient within the ranges of 0.05 ≤ Ψt ≤ 0.25 and 0.1 ≤ Φ ≤ 0.5, respectively. Thus,
values in Table 3 fit to the Cordier diagram well. Regulation 327/2011/EU5 issued energy
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efficiency requirements regarding fans in the EU [47], driven by motors with an electric
input power between 125 W and 500 kW. According to this, the target total efficiency of an
axial fan is 0.5 ≤ ηt ≤ 0.6 depending on the arrangement and input power. Considering
a more economical operation, we are moving toward higher efficiency levels; therefore,
ηt ≈ 0.7 is chosen.

Table 3. Geometrical and material parameters of the blade for the PVS-affected rotor.

c/Dtip ν AR Ψt Φ N ηt δ σ

0.133 0.415 2.22 0.143 0.309 5 0.700 1.11 2.39

The first two parameters as well as N in Table 3 define the blade solidity from hub
to tip. When calculating the solidity (c/s), it is found that it is below 0.7 along the entire
radius of the blade even at the hub, as can be observed in Figure 8. Therefore, according
to [46] measurement data on isolated blade profiles—such as data included in Figure 4 in
the case of a 8% cambered plate—can be applied in the present design of the PVS-affected
rotor. In addition to the aerodynamic data in Figure 4, the empirical data on PVS in [5,13]
are also related to isolated profiles, thus fitting to the low-solidity approach utilized herein.
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A nearly constant value of St* ≈ 0.19 was found for a 8% cambered plate for various 
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campaign [13]. Keeping the uncertainty of the measurement-based St* data in mind, this 
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Figure 8. Blade solidity as a function of dimensionless radius (R = r/rtip).

In what follows, preliminary design efforts are made for obtaining a rotor blading
exhibiting PVS of spanwise constant frequency in order to fulfill the pessimistic condi-
tion outlined at the end of the Introduction. The PVS frequency can be expressed from
Equation (2) as follows:

fPVS(rb) = St∗
U0(rb)

b(rb)
= const (14)

A nearly constant value of St* ≈ 0.19 was found for a 8% cambered plate for various
Reynolds numbers and angles of attack in the present authors’ previous measurement
campaign [13]. Keeping the uncertainty of the measurement-based St* data in mind, this
value is in fair agreement with the literature-based data in Equation (2). St* = 0.19 was used
for the calculation presented in the paper. In order to clarify the trend of the free-stream
velocity, the velocity vectors are shown in Figure 9. Based on Figure 9, the square of the
free-stream velocity can be written as follows [46]:

U0
2(rb) = cx

2(rb) +

(
u(rb)−

∆cu(rb)

2

)2

(15)

where cx is the axial velocity component; u is the circumferential velocity; and ∆cu is the
increase of tangential velocity due to the rotor.
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From Equation (15) the square of the dimensionless free-stream velocity can be ex-
pressed as follows:

U0
2(rb)

utip
2 = ϕ2(R) +

(
R − ψt,is(R)

4R

)2
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where W is the dimensionless free-stream velocity; ϕ = cx(rb)/utip is the local flow coefficient;
R is the dimensionless radius; and ψt,is is the local isentropic total pressure rise coefficient.
As a brief approximation, the circumferential velocity u, representing a solid body rotation,
dominates in U0. Therefore, U0 tends to approximately linearly increase with R. In a refined
calculation, presented later, cx/utip and ∆cu/utip are taken into account when obtaining U0.

In order to provide a spanwise constant f PVS, b(rb) tends to increase along the span by
such means that its increase matches with the spanwise increase of U0.

According to [5], the distance between vortex rows normalized by the blade chord is:

b(rb)

c
= K∗ Θ(rb)

c
(17)

where K* ≈ 1.2 is an empirical coefficient [5] and Θ is the momentum thickness of the blade
wake. According to [17,48] the drag coefficient can be written as:

CD(rb) =
2Θ(rb)

c
(18)

Thus b can be expressed as follows:

b(rb) = c K∗ CD(rb)

2
(19)

From Equation (19) it can be observed that a spanwise increase of b can be achieved via
spanwise increase of CD. Based on Figure 4, CD(Rmid) = 0.032 is chosen, which corresponds
to α = 6.8◦. In the design of the PVS-affected rotor, the following range of CD(R) was used:
0.0196 ≤ CD ≤ 0.0410. Furthermore, as Figure 4 illustrates, the CD data within the design
range are assigned to α data, and via such assignment, they also determine the design range
for the local lift coefficient CL(α). Therefore, the lift-to-drag ratio LDR(α) = CL/CD data are
also obtained for the entire design range, incorporating the data at Rmid. Thus, each of
CD(Rmid), CL(Rmid), and LDR(Rmid) are available; these quantities will play an important
role in the further investigation of the PVS-affected rotor, as presented later.

Iterative Method

In order to provide a spanwise constant f PVS, the nearly linear spanwise increase of
U0 is matched in blade design with the spanwise increase of CD. To be able to design
such a fan, an iterative method is elaborated as follows, using the data in Table 3 as the
basis. Using Equation (16) as an initial guess, the increase of tangential velocity due to
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the rotor is neglected; therefore, W(R) is calculated from only the local flow coefficient
ϕ = cx(rb)/utip and the dimensionless radius corresponding to the rigid body rotation. In
the present methodology, uniform axial inlet condition is assumed, cx(rb)/utip = constant.
Furthermore, based on [46] as an approximation, the change of meridional—i.e., axial—
velocity is neglected through the rotor. The above implies that spanwise constant axial
velocity is presumed, as a brief approximation.

As a next step, based on the value of W(Rmid)/CD(Rmid), the drag coefficients are
determined along the blade span. As described earlier, the CD(R), α(R) and CL(R) data are
assigned to each other, via Figure 4. As a next stage of the design, ∆cu/utip is expressed
from the simplified work equation of an elemental rotor:

c
s(rb)

CL(rb) ∼=
2∆cu(rb)

U0(rb)
(20)

where s = 2rbπ/N is the blade spacing. With the knowledge of ∆cu(R)/utip, the local
isentropic total pressure rise coefficient ψt,is(R) is expressed from the Euler equation of
turbomachines:

∆pt,is(rb) = ρau(rb)∆cu(rb) (21)

here ∆pt,is is the isentropic total pressure rise, and ρa is the density of air. This computed
ψt,is(R) is then substituted into Equation (16) for calculating a new approximation of W(R)
in the next iteration loop. Fast convergence is obtained in two to three iteration loops. The
results are judged to be converged if the relative difference in ψt,is(R) for the consecutive
iteration steps becomes less than 2%.

A feature of the iterative method is that ψt,is(R) and α(R) are actually the results of
the design process. The spanwise distributions of the calculated quantities are shown
in Figure 10, where γ(R) is stagger angle measured from the circumferential direction.
Annulus-averaging of ψt,is(R) represents the global isentropic total pressure rise obtained
as Ψt/ηt, using the data in Table 3.
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Figure 11 represents the proportionate three-dimensional model of the designed
PVS-affected fan. The rotor has a realistic, common geometry, as it is representative of
propeller-type axial flow industrial fans. The blade geometry is in accordance with the
fact that, as a manufacturing simplification, low-speed axial fan blades of cost-effective
manufacturing can be made from a plate of spanwise constant chord, as they are rolled in
such a way that spanwise constant camber and moderate twist occur.
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4.2. Mechanically or Acoustically Unfavorable Design Cases

In order to set up mechanically unfavorable design cases, representing a coincidence
of the frequency of PVS with the frequency of the first bending mode of blade vibration, it
is necessary to express U0 and b in Equation (14). However, b was previously expressed,
as shown in Equation (17). Therefore, it is only necessary to deal with U0. Based on
Equations (20) and (21), the free-stream velocity is written as follows:

U0(rb) =
2∆pt,is(rb) s(rb)

ρau(rb) c CL(rb)
(22)

Thus, the PVS frequency can be expressed from Equations (14), (19) and (22):

fPVS(rb) = St∗
2∆pt,is(rb)

ρa c CL(rb)

s(rb)

u(rb)

2
K∗CD(rb) c

(23)

With the use of s(rb)/u(rb) = (2 rbπ/N)/(2 rbπn) = 1/(nN) and CD = CL/LDR, Equation (23)
is written as follows:

fPVS(rb) = St∗
2∆pt,is(rb)

ρac CL(rb)

1
N n

2 LDR(rb)

K∗CL(rb) c
(24)

where N is the blade count and n is the rotor speed. The right-hand side of Equation (24)
can be rearranged according to Equation (25) in the following way: In the first term, the
global aerodynamic performance characteristics are grouped. The second term represents
the operational condition of the rotor. In the third term, the basic parameters of the blade
geometry are gathered. The fourth term represents the aerodynamics parameters of the
elemental blade section. Finally, the last term incorporates the empirics and coefficients.

fPVS(rb) =
∆pt,is(rb)

ρa

1
n

1
N c2

LDR(rb)

C2
L(rb)

4 St∗

K∗ (25)

In order to obtain generalized conclusions and trends, dimensionless quantities and
groups must be introduced. It should be emphasized that PVS frequency is constant along
the blade span due to the presented fan design method. Therefore, any characteristic taken
at an arbitrary rb radius can be replaced by the same characteristic taken at Rmid. Further-
more, as a brief approximation ηt(rb) = ηt(Rmid) ≈ constant is presumed. With respect to
the foregoing, the first term on the right-hand side of Equation (25) can be expressed:

∆pt,is(rb)

ρa
=

∆pt,is(Rmid)

ρa
=

∆pt(Rmid)

ρaηt(Rmid)
=

Ψt(Rmid)

ηt

u2
tip

2
(26)



Int. J. Turbomach. Propuls. Power 2022, 7, 2 16 of 23

where utip = Dtipπn is the tip circumferential speed. The second and the third terms are
written as follows:

1
n

1
c2N

=
1
n

1
Dtipπ

Dtipπ
1

c2N
=

1
utip

stip
1
c2 (27)

Thus Equation (25):

fPVS(Rmid) =
Ψt(Rmid)

ηt

u2
tip

2
stip

utip

1
c2

LDR(Rmid)

C2
L(Rmid)

4St∗

K∗ =
Ψt(Rmid)

ηt(Rmid)

utipstip

c2
LDR(Rmid)

C2
L(Rmid)

2 St∗

K∗ (28)

As it is outlined previously, the mechanically unfavorable design case is considered
when the spanwise constant PVS frequency coincides with the first bending eigenfrequency
of the fan blade, posing an increased risk of blade resonance:

fPVS = const = fB,1 (29)

If Equations (28) and (13) are substituted in the right-hand side and the left-hand side
of Equation (29), respectively, the following equation is obtained:

Ψt(Rmid)

ηt(Rmid)

utip stip

c2
LDR(Rmid)

C2
L(Rmid)

2 St∗

K∗ =
0.56

l2 Kbt ab (30)

After rearrangement, Equation (30) can be written in the following as dimensionless, from:

utip

ab
=

ηt(Rmid)

Ψt(Rmid)

t
c

( c
s

)
tip

1
AR2

C2
L(Rmid)

LDR(Rmid)
Kb

0.56 K∗

2St∗
(31)

Equation (31) provides a means for calculating the critical utip/ab velocity ratio for
which PVS results in blade resonance, if the nondimensional characteristics—valid for an
entire PVS-affected rotor family under survey—are substituted into the right-hand side of
the equation. With knowledge of the blade material, ab can be obtained (cf. Equation (10)
and the paragraph below), and thus, the critical utip value can be computed. Hence, critical
rotor diameter X rotor speed data couples can be discovered for an entire rotor family,
consisting of rotors of various diameters and speeds.

If the rotor diameter and the nominal rotor speed are fixed for further defining a
specific case study, the resultant, nominal utip value can be compared to the aforementioned
critical one. Thus, it can be judged whether a risk of blade resonance may occur by changing
the rotor speed, e.g., via a frequency converter. Furthermore, if the rotor diameter and the
rotor speed are fixed, all dimensional quantities can be calculated, with the knowledge
of nondimensional data in Table 3 as well as on the right-hand side of Equation (25).
This makes possible the calculation of f PVS, using Equation (25), for acoustics evaluation.
By such means, the third-octave band incorporating PVS can be identified and critically
evaluated. For this purpose, the A-weighting graph [49] is to be considered. The plateau of
the A-weighting graph represents the most sensitive part of the human audition. Keeping
f PVS away from this plateau in blade design, by selecting the appropriate operational and
geometrical characteristics, gives a potential for moderating the impact of fan noise on
humans. If such design intent cannot be realized for modifying f PVS, the PVS phenomenon
in itself is to be suppressed, necessitating modifications in the blade layout, e.g., boundary-
layer tripping. However, such modifications are to be treated with criticism, as, e.g.,
boundary layer tripping may undermine the performance of the fan [3]. Such undesired
effects justify the present intent by the authors to accept the occurrence of PVS but “mistune”
it toward uncritical frequencies by simple preliminary design means, as a first approach.
Such mistuning, being beneficial from both vibration and noise points of view, is to be
performed in the preliminary blade design by the negation—i.e., avoidance—of the worst-
case design and operational scenarios represented by PVS-affected rotors. For this reason,
setting up guidelines for the worst-case design scenarios is of practical value.
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5. Calculation Example for the Designed Rotor

First, based on Equation (31) and data in Table 3, as it is specific to the PVS-affected
rotor designed herein, the critical tip speeds are computed for various blade materials,
which means different values of ab in terms of the calculation process. The calculated values
are summarized in Table 4.

Table 4. Critical rotor tip speeds.

Steel Aluminum Polycarbonate

ab [m/s] 5000 5100 1350
utip,crit [m/s] 1.80 1.83 0.49

The methodology presented herein provides a means for simply checking whether
PVS may cause a risk at all from a blade resonance point of view. Based on Table 4, it
can be concluded that in the present case study, the critical tip speed is sufficiently low to
make these cases irrelevant for the blade resonance point of view of the first-order bending
mode (Figure 6). Namely, only impractically low rotor diameters D and/or rotor speeds n
would result in coincidence of the f PVS and f B,1 [Equation (10)] values for the presented
case study. Furthermore, the lower the tip speed, the lower the fluctuating force causing
vibration. However, the risk of blade vibration cannot be excluded for other design cases,
characterized by modified data in Table 3 and for other—i.e., higher-order bending, as
well as torsional—modes of vibration. Therefore, an important future task—as part of the
ongoing research project—is to systematically explore risky cases (operational, geometrical,
and material characteristics) from the resonance point of view. The methodology presented
herein can be generally applied for such systematic studies.

The reader is reminded that the mechanical effect of the blade twist is neglected herein,
cf. Section 2. With consideration of the blade twist, the first bending eigenfrequency would
be less, thus reducing the impractically low critical tip speed even further.

As the second part of the calculation example, the rotor diameter and rotor speed are
fixed as follows: Dtip = 0.900 m, n = 1450 1/min. Such values are relevant in industrial
ventilation. They result in utip = 68.3 m/s. Considering data in Table 4 as well as previously
fixed further parameters, the additional quantities required to calculate the PVS frequency,
according to Equation (28), are derived. The values of the computed quantities are presented
in Table 5.

Table 5. PVS frequency for a five-bladed, n = 1450 1/min axial flow fan.

Dtip c CL (Rmid) LDR (Rmid) stip f PVS

0.900 m 0.120 m 1.30 43.5 0.565 4520 Hz

The calculated PVS frequency falls within the third-octave band of the middle fre-
quency of 5 kHz. Thus, it approximates the plateau of the A-weighting graph. Therefore,
the related noise may cause increased annoyance for a human observer. However, by mod-
ifying the design parameters, the axial fan can be redesigned to keep the PVS frequency
away from the plateau of the A-weighting graph, based on the presented computation.
The systematic exploration of the advantageous parameter modifications, while finding
reasonable compromises with other design perspectives, is also a future task.

Based on Table 2, for the first bending eigenfrequency of the designed blade, the
following value is calculated: f B,1 = 116 Hz. For the sake of completeness, the following
mandatory engineering investigation is to be performed. On the one hand, is to be checked
whether the computed eigenfrequency is sufficiently far from the nominal rotational fre-
quency. The rotational speed n = 1450 1/min, which corresponds to 24 Hz, is thus ≈ 20% of
the first bending eigenfrequency, which is satisfactory.

On the other hand, as mentioned in Section 3.1, elements located upstream of the rotor
may lead to rotor–stator interaction, occurring at a frequency of rotational frequency n
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multiplied by the number of upstream elements. Therefore, it is necessary to examine for
which number of upstream elements (e.g., support strut, inlet guide vane) the computed
eigenfrequency would coincide with the excitation frequency of the rotor–stator interaction.
As f B,1 ≈ 5 × 24 Hz = 120 Hz, the critical element number is five, which should be avoided
by all means. For example, upon demand, the application of three fan-supporting struts
upstream of the rotor fulfills this condition.

6. Conclusions and Future Remarks

Based on the semi-empirical model in literature, the pessimistic design condition of
spanwise constant PVS frequency is determined from an aerodynamic approach. To fulfill
this condition, an iterative fan design method was elaborated, resulting in a design case
study of a PVS-affected rotor. The frequency of PVS was computed with the knowledge
of the global operational and geometrical characteristics of an axial fan. A calculation
process for determining the eigenfrequency related to the first bending mode of vibration
of a circular-arc-cambered plate blade was presented. By combining these two approaches,
guidelines can be formulated, already in the preliminary design phase, for the following.

(a) The critical tip speed that may cause resonance can be estimated for various blade
materials, according to Equation (31).

(b) On the basis of (a), the critical rotor speed n can be calculated for axial fans of known
diameter. Thus, it can be judged whether a risk of blade resonance may occur by
changing the rotor speed.

(c) The expected PVS frequency can be determined by knowing the rotor speed of the
fan. Therefore, the adverse acoustic effect of PVS can be forecasted on the basis of the
A-weighting graph.

As a future objective, opposing the pessimistic design scenarios, redesign efforts are to
be made for moderating/avoiding blade resonance and/or noise annoyance. Such efforts
incorporate actions against the constancy of PVS frequency along the span. Systematic
redesign scenarios as well as comparative experiments—also incorporating pessimistic,
PVS-affected rotor cases—will be realized in the future for validating the methodology
presented herein. The design aspects related to PVS are to be investigated in the future via
studies on 2D—i.e., rectilinear—blade models as well as on truly 3D rotor blade geometries—
unavoidable for full consideration of realistic rotor flow effects—by the concerted means
of computational fluid dynamics (CFD), analytical mechanics, finite-element mechanical
computations, and experimentation. Such studies will also serve as the exploration of the
effects of assumptions and simplifications made in the method presented herein.
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Abbreviations

The following abbreviations are used in this manuscript:
Latin Letters
A Cross-section [m2]
ab Wave propagation speed = (E/ρb)1/2 [m/s]
AR Aspect ratio = l/c [-]
b Transversal dist. between vortex rows [m]
c/s Blade solidity [-]
D Rotor diameter [m]
dTE Trailing edge thickness [m]
E Young modulus [Pa]
F Characteristic function
f Dominant frequency [Hz]
g Lateral displacement [m]
G Shear modulus [Pa]
h Maximum height of the camber line [m]
h/c Relative camber [-]
i Order number, e.g., 1, 2, 3 etc.
I Second moment of area [m4]
Ip Polar moment of area [m4]
It Torsional constant [m4]
K* Empirical coefficient ≈ 1.2 [-]
K1 Preliminary design constant [-]
Kb Blade mechanics coefficient [-]
Kt Mechanical constant [-]
KB,i Bending mode constant [-]
c Blade chord length [m]
cx Axial velocity component [m/s]
CD Drag coefficient [-]
CL Lift coefficient [-]
l Blade span [m]
LDR Lift-to-drag ratio = CL/CD [-]
N Blade count [-]
n Rotor speed [1/s]
R Dimensionless radius = r/rtip [-]
r Radial coordinate [m]
Rec Reynolds number = c U0 /νa [-]
s Blade spacing = 2rπ/N [m]
St Strouhal number [-]
St* Universal Strouhal number [-]
t Profile thickness [m]
t/c Relative thickness [-]
u Rotor circumferential velocity [m/s]
U0 Free-stream velocity = (w1 + w2)/2 [m/s]
U Length of midwall perimeter [m]
w Relative velocity component [m/s]
W Dimensionless free-stream velocity [-]
v Absolute velocity component [m/s]
x, y, z Cartesian coordinates [m]
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Greek Letters
α Angle of attack [◦]
βil Vibration constant ≈ (2i − 1)π/2
γ Stagger angle [◦]
δ Specific diameter [-]
ζ Rotation angle [rad]
∆cu Increase of tangential velocity [m/s]
∆pt,is Isentropic total pressure rise [Pa]
η Efficiency [-]
Θ Momentum thickness of blade wake [m]
ν Hub-to-tip ratio [-]
νa Kinematic viscosity of air [m2/s]
νP Poisson’s ratio [-]
ρ Density [kg/m3]
σ Specific speed [-]
τ Time [s]
ϕ Local flow coefficient [-]
Φ Global flow coefficient [-]
ψ Local pressure rise coefficient [-]
Ψ Global pressure rise coefficient [-]
Subscripts and Superscripts
1 Rotor inlet
2 Rotor outlet
a Air
b Blade
B Bending
crit Critical
i Order-number i.e., 1, 2, 3
is Isentropic
mid Mid-span position
n Order-number i.e., 1, 2, 3
PVS Profile vortex shedding
t Total
T Torsional
TE Trailing edge
tip Blade tip
Abbreviations
2D Two-dimensional
3D Three-dimensional
B Bending mode
CG Center of gravity
CFD Computational fluid dynamics
PVS Profile vortex shedding
T Torsional mode
TE Trailing edge
VS Vortex shedding
FEM Finite element method
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Appendix A

Table A1. Third-octave band.

Band No.
Lower Band Limit Center Frequency Upper Band Limit

(Hz) (Hz) (Hz)

1 11.2 12.5 14.1
2 14.1 16 17.8
3 17.8 20 22.4
4 22.4 25 28.2
5 28.2 31.5 35.5
6 35.5 40 44.7
7 44.7 50 56.2
8 56.2 63 70.8
9 70.8 80 89.1
10 89.1 100 112
11 112 125 141
12 141 160 178
13 178 200 224
14 224 250 282
15 282 315 355
16 355 400 447
17 447 500 562
18 562 630 708
19 708 800 891
20 891 1000 1122
21 1122 1250 1413
22 1413 1600 1778
23 1778 2000 2239
24 2239 2500 2818
25 2818 3150 3548
26 3548 4000 4467
27 4467 5000 5623
28 5623 6300 7079
29 7079 8000 8913
30 8913 10,000 11,220
31 11,220 12,500 14,130
32 14,130 16,000 17,780
33 17,780 20,000 22,390
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