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A B S T R A C T

Circulating tumor cells (CTCs) in the bloodstream are considered good indicators of the presence of a primary
tumor or even metastases. CTC capture has great importance in early detection of cancer, especially in
identifying novel therapeutic routes for cancer patients by finding personalized druggable targets for the
pharmaceutical industry. Recent developments in microfluidics and nanotechnology improved the ca-
pabilities of CTC detection and capture, including purity, selectivity and throughput. This article covers
the recent technological improvements in microfluidics-based CTC-capture methods utilizing the phys-
ical and biochemical properties of CTCs. We critically review the most promising hydrodynamic,
dielectrophoretic and magnetic force-based microfluidic CTC-capture devices.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Tumor cells can shed into the bloodstream at a very early stage
of primary tumor growth and these so called circulating tumor cells
(CTCs) may give rise to metastases at distant parts of the body [1].

Detecting the presence of viable CTCs therefore provides a good in-
dicator for the presence of malignant transformations [2]. Isola-
tion and analysis of CTCs is important to improve understanding of
their nature, and their ability to initiate metastases, and for effec-
tive development of next-generation cancer therapeutics [3–5].

Primary tumors are usually detected at the stage of clinical symp-
toms by the non-invasive means of imaging techniques, such as tra-
ditional radiography (X-ray), magnetic resonance imaging (MRI),
computed tomography (CT), and ultrasound, or with invasive biopsy
collection. For example, cells shed from a primary tumor can ac-
cumulate in the bone marrow (BM) [6], necessitating invasive BM
biopsy to see their presence and possibly to monitor the effect of a
therapy. CTC-detection technologies can help substitute an inva-
sive biopsy for a simple blood draw, also referred to as liquid biopsy
[7–9].

At present, CTC-detection methods are not routinely used by cli-
nicians to make therapeutic decisions, mostly because of the lack

Abbreviations: BM, Bone marrow; CTC, Circulating tumor cell; DEP,
Dielectrophoresis; EGFR, Epithelial growth factor receptor; EpCAM, Epithelial cell
adhesion molecule; HeLa, Cervical cancer cell line; HER, Human epidermal growth
factor receptor; LNCaP, Androgen-sensitive human-prostate adenocarcinoma cell;
mAb, Monoclonal antibody; MCF-7, Michigan Cancer Foundation-7 breast-cancer cell
line; MDA-MB-231, Breast-cancer cell line; NSCLC, Non-small cell lung cancer; OEC-
M1, Human oral squamous cancer cell line; PBS, Phosphate buffered saline; PC-3,
Human prostate-cancer cell line; SCLC, Small-cell lung cancer; SKOV-3, Ovarian cancer
cell line; SW-620, Colon adenocarcinoma cell line.
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of randomized data showing that therapies based on the CTC
numbers show improvement in prognosis [7]. The analytical valid-
ity of CTC-detection systems is crucial for their clinical accep-
tance, as emphasized in the guidelines recently published by the
US Food and Drug Administration (FDA) [10]. As of today, the only
FDA-approved CTC-detection method is the CellSearch System [11],
which is based on immunomagnetic detection of EpCAM positive
cells.

The most challenging part of effective CTC analysis is the cell-
capture design because of the extremely low abundance or rare-
event nature of these cells. For example, it is of great clinical
importance to enumerate quantitatively 0–10 CTCs per mL in whole
blood that also contains >109 erythrocytes and >106 leukocytes [12].
For sampling rare events in a large cell population, the following
should be considered:

(1) throughput, i.e. the number of cell identification or sorting
steps per unit time;

(2) recovery, in the sense of the number of target cells collect-
ed from the input sample; and,

(3) purity, which depends on the number of “interfering” cells
excluded from the analysis [13].

Microfluidic systems with small sample-volume requirement, fast
processing times, multiplexing capabilities and large surface area-
to-volume ratios offer an option for in-vitro cell sorting, detection
and single-cell analysis [14]. Based on these advantages, various
microfluidic platforms have been developed for rare-cell capture,
including CTCs [15]. Recent progress in microbiotechnology and
nanobiotechnology can also aid the development of more ad-
vanced CTC-detecting microfluidic devices [16].

Molecular profiling of CTCs can provide valuable information
about genetic mutations and can identify therapeutic targets for per-
sonalized treatment [17–19]. For example, in primary breast cancer,
human epidermal growth factor receptor-2 (HER2) is an impor-
tant treatment target, so presence of HER2-positive CTCs could be
a good indication for anti-HER2 treatments. Even in case of a HER2-
negative primary tumor verified by tissue biopsy, it might be rea-
sonable to use anti-HER2 treatment if HER2-positive CTCs are found.
Independent of the HER2 status of the primary tumor, the number
of HER2-positive CTCs usually correlates with decreased disease-
free survival and decreased overall survival [20]. Large prospec-
tive clinical trials have already been running to prove the efficiency
of anti-HER2 therapy based on the presence of HER2-positive CTCs
[21]. Another therapeutic target is the epithelial growth factor re-
ceptor (EGFR) in non-small cell lung cancer (NSCLC) patients.
Maheswaran et al. identified a mutation in EGFR by genotyping of
CTCs that cause drug resistance in NSCLC patients against EGFR-
inhibitor drugs [22]. Monitoring the tumor genotypes during lung-
cancer patient treatment, CTCs may provide information about
possible acquired resistance against EGFR-inhibitor drugs, so as to
help clinicians in therapeutic decision making.

In this article, we review the new advances and the state of the
art of the most commonly used CTC-capture methods for down-
stream analysis utilizing hydrodynamic, dielectrophoretic and mag-
netic forces to provide an adequate number of these important
marker cells for use in biomedical and clinical applications and de-
velopment of next-generation therapeutics.

2. The hydrodynamic approach to rare-cell capture

Hydrodynamic cell-capture methods in microfluidic settings
greatly depend on the interaction between the species of interest
and the microfluidic channel walls, and the sample-fluid matrix. In
this section, we discuss label-free hydrodynamic capture methods
that are based on size, shape and cell deformability. The cell-wall

interaction can be further divided into continuous wall (channels)
and discrete wall (obstacles) [23]. In a continuous wall, the
microfluidic channel has a flat surface and the flow fractionation of
cells is controlled by pressure [24] or tuned by electroosmotic flow
[25]. In the discrete wall, the obstacles are usually posts and/or ridges.
Through a periodic array of µm-scale posts, with each row of posts
shifted horizontally with respect to the previous row, cells above
a critical size cannot be carried by the net vertical flow but are lat-
erally displaced at each row. This lateral displacement is also af-
fected by the deformability of the cells. The critical size can be
calculated from the geometrical parameters of the posts (i.e. diam-
eter, gap between posts, and row shift) [26].

Based on the dominant forces, hydrodynamic separation can be
further classified into laminar-based, inertia-based and biomimetics-
based flows [23].

In laminar-flow-based microfluidics where only the viscous force
is dominant (Re < 1), a cell follows a path that goes through its center
of mass. With carefully-designed flow in a pinched segment of the
microchannel, the cells can be positioned in such a way that the cells
of different sizes follow different paths and are consequently sepa-
rated by size [27]. At higher Reynolds number (1 < Re < 100), the in-
ertial force becomes the dominant separation force [28].

Biomimetics-based microfluidic devices have biologically in-
spired structural designs that can mimic physiological processes or
use biological principles (e.g. blood flow in microcirculation). A good
example is a microfluidic device that was developed to separate blood
cells using biomimetics [29]. The microchannels were designed so
that they mimicked microcirculation and enhanced the lateral mi-
gration of leukocytes. The average diameter of leukocytes is in the
range 10–12 μm [29] and the diameter of erythrocytes is 6.2–8.2
μm [30]. The red blood cells (erythrocytes) were concentrated in
the center of the microchannel, while the white blood cells (leu-
kocytes) laterally migrated to near the microchannel walls. The
biomimetics-based microfluidic device can achieve a 34-fold en-
richment of the leukocyte-to-erythrocyte ratio [29].

Microfiltration is another useful technique for size-based rare-
cell trapping. Membrane microfilters are designed with well-
defined pores to restrict passage for cells above a critical size. Similar
to other types of filtration methods, any particulates commensu-
rable with the pore size can cause clogging. The usual size of a CTC
is >8 μm, which is greater than 90–95% of the largest blood-cell pop-
ulation, erythrocytes (red blood cells) [31,32]. Zheng et al. [33]. de-
signed a membrane microfilter with 11-μm circular pores and tested
it with a prostate-cancer cell line (LNCaP) diluted in human-blood
samples from healthy donors. With the average size of LNCaP cells
of 17 ± 1.5 μm, the recovery rate of membrane filtration was
87.3 ± 7.0%. An improved 3D microfiltration approach was pre-
sented by the same authors with the goals of minimizing the stress
on the cell membrane and sustaining cell viability with the same
recovery rate [34].

Microcavity arrays represent another special technique for size-
based capture of CTCs, as shown in Fig. 1. The microcavity-based
microfluidic device was tested with peripheral blood from healthy
donors spiked with MCF-7 and SW-620 tumor cells. Microcavity sizes
were varied in the range 8–11 μm. The recovery rates for MCF-7 cells
(diameter 22.5 μm) remained almost constant with different
microcavity sizes at a level >90%. For the smaller tumor cells of SW-
620 (diameter 11.6 μm), the maximum recovery rate of 88% was ob-
tained using the average microcavity diameter of 9.1 μm [35]. A
rectangular type of microcavity array was also developed for effec-
tive capture of SCLC cells using microcavities with 5–9 μm width
and 30 μm length [36]. For SCLC cells, the recovery rate was ~80%.

Hydrodynamic lifting was recently developed by Geislinger et al.
for blood-cell separation [37]. The principle of the method was the
utilization of non-inertial hydrodynamic cell-wall interaction [i.e.
at very low Reynolds numbers (Re < 1), no inertial effects occur and
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the hydrodynamic lift (as a purely viscous effect) can provide ad-
equate cell separation] [38]. As shown in Fig. 2, the cells in the sample
flow enter through a smaller inlet channel to the chamber where
the sample flow is hydrodynamically focused by a perpendicular
sheath flow. The square cross-section of the sheath flow and sample
inlets were 110 μm × 110 μm and 110 μm × 30 μm (y- and z- direc-
tions), respectively. The main parameters that influenced the lateral
lift velocity were cell size and deformability. The cell radius con-
tributed cubically and cell deformability linearly to the lift veloci-
ty, respectively. This lab-on-a-chip system design could also separate
CTCs from blood samples.

The selectivity of hydrodynamic lifting-based cell sorting was
further enhanced by the application of spiral geometry. In this case,
the dominant inertial force and a secondary rotational flow-field per-
pendicular to the original flow direction (Dean flow) cause the
smaller particles to migrate in the direction of the outer half of the

channel and the bigger particles migrate towards the inner channel
wall [39,40]. This technique, referred to as Dean flow field fraction-
ation, can be applied to separate CTCs from blood cells with high
selectivity, based on their size differences [41]. Using double spiral
geometry (Fig. 3), the separation efficiency at the inner outlet of the
microchannel was found to be 98.72% for a binary test mixture of
5-μm and 15-μm diameter polystyrene particles [42]. After the prom-
ising test results, experiments were conducted with 20× diluted
human blood drawn from healthy volunteers and spiked with HeLa
cells (tumor-to-blood cell ratio 8 × 10−7). At 60 mL/h flow rate, the
separation efficiency for HeLa cells was 90.546 ± 3.41% with through-
put of 2.5 × 108 cells/min. Please note that the separation efficien-
cy was defined as the ratio of the number of one cell type collected
at the desired outlet (the inner outlet for HeLa cells or the middle
outlet for blood cells) to the total number of this kind of cell at all
outlets.

Fig. 1. Size-selective microcavity array-based CTC-recovery device (a) CTC detection. (b) Photograph of the size-selective microcavity array. (c) Photograph of the CTC-
recovery device equipped with the array. (d) Scanning electron microscope (SEM) image of MCF-7 cells trapped by the microcavity array. The microcavities were 9 μm in
size, with a 60 μm pitch. (© American Chemical Society [35]).

Fig. 2. Hydrodynamic lifting-based microfluidic device. Large arrows indicate the fluid flows. Cells separate in the z direction of the microchannel. (© American Institute of
Physics [37]).
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3. Affinity-based methods

Although recent developments in the field considerably in-
creased the separation efficiency of hydrodynamic label-free
methods, the maximum capture yield was still only around 90%. To
improve capture efficiency, special microposts were formed by pho-
tolithography in the channels of microfluidic devices and coated with
CTC-specific antibodies, such as anti-EpCAM [43]. The two essen-
tial parameters that determined the efficiency of cell capture in an
affinity-coated microfluidic device were:

(1) flow velocity, because it influenced the duration of cell–
micropost contact; and,

(2) low shear force to ensure maximum cell–micropost attach-
ment, which depends on the micropost distribution in the
microchannel [44].

A geometrically-enhanced affinity-based microfluidic device re-
portedly captured 97 ± 3% of spiked LNCaP cells from PBS [45]. The
local topographical interaction can be enhanced by 3D
nanostructured cell-capture substrates. Densely-packed nanopillars
were prepared with diameters of 100–200 nm using wet chemical
etching, followed by coating with the relevant antibody (anti-
EpCAM). Cell-capture experiments were performed by employing
different nanopillar lengths in the range 4–20 μm. It was reported
that the capture yield for EpCAM-positive cells increased with
nanopillar length [46]. Optimal capture yield was attained when the
nanopillar lengths were comparable with the cell-protrusion lengths
of the CTCs [47].

To enhance antibody–CTC interaction, a special hydrogel was de-
veloped. A degradable alginate biopolymer coating enabled gentle,
efficient release of antibody-captured cells from the microfluidic
device. The bottom of the microfluidic channel was coated with the
antibody (anti-EpCAM)-functionalized alginate biopolymer. PC-3 cells
were spiked into whole blood from a healthy donor and captured
in the microfluidic device. After the capture, alginate lyase was
pushed through the microfluidic channel, degrading the hydrogel
(alginate biopolymer) and releasing the captured cells [48]. The ad-
vantage of this approach was that this hydrogel coating mini-
mized non-specific interactions and enabled highly efficient release
of the isolated cells (99% ± 1%) following hydrogel dissolution without
any effect on cell viability.

A good example of the combination of hydrodynamic and affinity-
based cell capture was published by Stott et al. [49]. Their
herringbone-chip design enabled passive mixing of blood cells
through the generation of microvortices that significantly

increased the number of interactions between target CTCs and the
antibody-coated chip surface. The herringbone chip was tested with
the PC-3 prostate cancer cell line. The whole blood from healthy
donors was spiked with PC-3 cells at a concentration of 500 cells�mL.
The capture efficiency was 91.8 ± 5.2% for the spiked PC-3 cells.

4. Dielectrophoretic capture

Dielectrophoresis (DEP) is a phenomenon by which a subject (e.g.
cell) is forced to move by the application of divergent electric field
gradients due to polarization forces. DEP forces depend on differ-
ent factors, such as cell-membrane and cytoplasm-charge proper-
ties, and size. The electric field induces charges within the cell,
forming dipoles. If the cell is more polarizable than the suspend-
ing medium, it is attracted towards the regions of higher electric
fields, and the motion is called positive DEP. Conversely, if the cell
is less polarizable than the suspending medium, it is repelled from
the regions of higher electric field, and the motion is called nega-
tive DEP [50,51].

DEP techniques can also be distinguished by microelectrode type.
Metallic microelectrodes with various geometries can be used {e.g.
interdigitated [52], castellated [53], oblique [54], spiral [55], circu-
lar [56], ring shape [57], and wedge shape [58], that are patterned
on a microfluidic wafer using conventional lithography
techniques}.

Contactless DEP (cDEP) was developed for cell manipulation and
sorting [59] so that the conventional metallic microelectrodes were
replaced by fluidic electrode channels, filled with high-conductivity
fluids. Application of this technique, eliminated problems (e.g. bubble
formation and electrode-sample contamination) [60] and de-
creased fabrication costs.

Davis and co-workers recently developed a high-throughput
continuous-flow DEP microfluidic device, named ApoStream [61],
where an AC electric field was applied to the sample within opti-
mized flow-path regions. The floor of the flow chamber comprised
a flexible polyimide film sheet with electroplated copper and gold
electrodes. An acrylic sheet formed the ceiling and a gasket the side
walls. The sample was injected through a port located at the floor
of the flow chamber at the same upstream end as the elution buffer.
Cancer cells were collected through another port located down-
stream from the sample inlet port (Fig. 4).

With the setting shown in Fig. 4, the average recovery of SKOV-3
and MDA-MB-231 cancer cells, spiked into 12 × 106 peripheral blood
mononuclear cells obtained from normal human-donor blood, was
75.4% ± 3.1% (number of samples was 12) and 71.2% ± 1.6% (number
of samples was 6), respectively. These percentage values were much

Fig. 3. (a) Microfluidic cell sorter containing a six-loop double-spiral microchannel. (b) Picture of the assembled cell sorter. (© American Institute of Physics [42]).
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higher than in other reports using the DEP method [52] and the vi-
ability of the captured MDA-MB-231cancer cells was greater than
97.1%.

Lee and co-workers developed a high-purity CTC-isolation tech-
nique based on optically-induced DEP (ODEP) [62], which fea-
tured a sandwich structure with top and bottom layers made of
indium-tin-oxide (ITO) glass, and the bottom layer had a photo-
conductive coating (hydrogenated amorphous silicon). Between these
layers, there was a liquid layer containing the sample. An alternating-
current (AC) voltage was first applied in the ODEP system to produce
a uniform electric field. After optical illumination, electron-hole pairs
were generated in the photoconductive layer, causing significant in-
crease in the conductivity of the bottom layer. This phenomenon
allowed the applied voltage to drop across the liquid layer, produc-
ing a locally non-uniform electric field at the illuminated regions
[63]. With this method, the recovery rate was 76–83% for PC-3 cells,
and 61–68% for OEC-M1 cells with ~95% viability [62]. The viabil-
ity of the captured CTCs also depended on the applied voltage and
the frequency of the DEP field, so DEP operation conditions needed
to be carefully optimized to avoid collection of non-viable cells
[64,65]. A low-intensity, intermediate-frequency alternating elec-
tric field (100–300 kHz) might have an inhibitory effect on the
growth rate of a variety of human-tumor cell lines [66].

5. Magnetic trapping

Magnetic-trapping techniques utilize magnetic particles with
magnetic-field manipulation. Magnetic particles are typically sized
in the range of several nanometers to a couple of micrometers and
they have a magnetic core and a non-magnetic coating that can be

chemically modified [15,67]. In microfluidic systems, both perma-
nent magnets and/or electromagnets can be used. Passive magnet-
ic [68] elements or electromagnets [69,70] are usually assembled
in the wall of the microchannels to trap the magnetic particles at
the surface of the microchannel.

Effective capture of MCF-7 breast-cancer cells in a microfluidic
chip with self-assembled protein-coated magnetic beads was dem-
onstrated by Sivagnanam et al. [71]. The beads were patterned in
situ inside a sealed microfluidic channel by magnetic-field-assisted
electrostatic self-assembly and grafted by 5D10 monoclonal anti-
bodies. The capture efficiency of the system for MCF-7 cells was
85 ± 10%.

Superparamagnetic beads were also utilized for magnetic cell
capture. In the so-called Ephesia system, these beads self-assembled
in a microfluidic channel into an array of magnetic traps prepared
by microcontact printing. This approach combined the advantages
of microfluidic cell sorting, notably the application of a well-
controlled, flow-activated interaction between cells and beads, and
immunomagnetic sorting. The superparamagnetic beads were an-
tibody (anti-EpCAM)-coated for CTC capture [72]. Under a moder-
ate external magnetic field, dipole-dipole interactions between the
magnetic bead particles formed chains aligned along the electric field
direction forming nanopillar-like structures [73]. The principle of
this technology is depicted in Fig. 5. Cell-capture yield reached 94%
with this approach.

Another interesting approach is the utilization of magnetophoretic
mobility [i.e. the motion of particles in a viscous medium induced
by a magnetic field on a particle or cell of magnetic or magnetiz-
able material (e.g. magnetically-labeled cells)] [74]. Murthy and co-
workers developed a continuous-flow, magnetophoretic, microfluidic,

Fig. 4. A continuous flow dielectrophoresis (DEP) microfluidic cell-sorting device. (© American Institute of Physics [61]).
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rare-cell-capture device with the principle of applying a laminar flow
in the y-direction and a magnetic field in the x-direction, so the
magnetically-tagged cells moved from the outside sample streams
to the center collection stream (Fig. 6) [75]. To test the capability
of the set-up, 50 MCF-7 cells were spiked into 1-mL blood from
healthy volunteers. The blood samples were then mixed with Dynal
MyOne anti-EpCAM-functionalized magnetic beads and applied. The
capture efficiency was greater than 85% with purity over 90% [75].

An interesting approach with a negative CTC-enrichment tech-
nique was also developed utilizing the combination of viscous flow
and magnetic force to facilitate the recovery of unlabeled cells (CTCs)
from whole-blood samples obtained from cancer patients [76,77].
The method was based on removal of erythrocytes by lysis fol-
lowed by the magnetic separation of immunomagnetically-labeled
(with CD45 antibody) leukocytes. After the magnetic separation, the
remaining cells were considered mostly CTCs.

6. Conclusions and future prospects

Recent advances in nanotechnology and microfluidics have made
possible the design and the implementation of highly-reliable CTC-
capture platforms with excellent yield and selectivity for the most
common types of cancer cell. Capture systems with high through-
put, rapid processing times and minimal false-positive rates are
highly desirable in the medical and diagnostic fields to monitor pro-
gress during cancer therapy and, more importantly, for early cancer
detection. Molecular profiling of CTCs can also help to identify new
targets and so can aid development of novel therapeutic agents. For
wider acceptance, the capabilities of CTC targeting microfluidic de-
tection and capture devices should be demonstrated on a large
variety of cancer types. In addition, for proper regulatory approv-
als, the analytical validity of the CTC assay should be rigorously tested
based on Clinical Laboratory Improvement Amendments (CLIA) or
Good Laboratory Practice (GLP) standards.

We expect that, in the near future, once such microfluidic CTC
detection and capture devices are approved by the regulatory agen-
cies, they will quickly find their way for routine use in personal-
ized therapeutics for cancer patients.
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