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Abstract

Digital  Zenith Camera  Systems (DZCS) are dedicated  astronomical-geodetic  measurement 

systems for the observation of the direction of the plumb line. A DZCS key component is a 

pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. 

Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation 

with precision tilt  meters in opposite faces (180° instrumental rotation), and application of 

rigorous  tilt  reduction  models.  A  novel  concept  proposes  the  development  of  a  hexapod 

(Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 

30° to 60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of 

the  impact  of  the  rotation  angle  between  the  two  faces  on  the  accuracy  of  the  tilt 

measurement. The goal of the present study is the investigation of the expected accuracy of 

tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed 

on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in 

order to derive accuracy estimates for the tilt  determination as a function of several input 

parameters, and the results are validated against analytical error propagation.  As main result 

of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy 

by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt  

accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-

second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based 

DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. 

This provides supporting evidence for the feasibility of such a novel instrumentation.  The 

outcomes of our study are not only relevant to the field of DZCS, but also to all other types of 

instruments  where  the  instrumental  tilt  must  be  corrected.  Examples  include  electronic 

theodolites or total stations, gravity meters, and other hexapod-based telescopes.

Key words  Hexapod, tilt  measurement, tilt  meter, Digital Zenith Camera System (DZCS), 

Monte-Carlo simulation

1 Introduction

Zenith cameras are dedicated astronomical-geodetic telescopes for imaging of stars around the 

zenith  point  in  the sky.  Such instruments  are  operated  at  field stations  during night  time 

primarily to determine the direction of the vertical (plumb line). With a history of more than 

120 years, zenith cameras were used in the past, e.g., for geographic positioning (e.g., Runge 



1894),  for  observation  of  fluctuations  in  Earth’s  orientation  and  rotation  (e.g.,  McCarthy 

1976) and gravity field studies (e.g., Torge 2001). Nowadays,  zenith cameras –  equipped 

with digital imaging sensors (charge-coupled device, CCD) and other electronic sensors –  are 

deployed as digital  zenith camera system (DZCS) for highly-accurate determination of the 

gravity field (e.g., Hirt and Flury 2008, Hirt and Seeber 2008), or measurement of refraction 

anomalies (Hirt 2006).  For an overview of DZCS instrumental developments see, e.g., Bürki 

et al.  (2004), Hirt (2004), Kudrys (2007), Ogrizovic (2009), Hirt et al. (2010), Halicioglu et 

al. (2012), Abele (2012),  Hanada et al. (2012) and  Wang et al. (2014).

A modern DZCS generally features (1) a CCD-telescope combination for star imaging, (2) a 

Global Navigation Satellite System (GNSS) receiver for time tagging of the star images and 

(3) a pair of accurate tilt meters (Hirt et al. 2010). The pair of tilt meters is being operated in 

perpendicular orientation in order to (i) align the optical axis of the DZCS approximately with 

the direction of the vertical (instrumental levelling), and to (ii) record any residual tilt of the 

DZCS during  the  star  imaging.  This  allows  a  subsequent  mathematical  correction  of  the 

DZCS tilt.  To eliminate instrumental zero offsets, DZCS measurements are carried out in two 

opposite faces which usually differ by 180° in azimuth. For the rotation of the DZCS between 

the two faces, some form of rotational unit (bearing, turntable, with or without motorization) 

is traditionally used, and a tripod with three actuators or adjustable screws is deployed in most 

instruments for levelling of the telescope (e.g., Bürki et al. 2004, Hirt et al. 2010).

A  novel  concept  for  DZCS  instrumental  levelling  and  rotation  between  the  two-face 

measurements  was  recently  developed  and  presented  at  the  Geodetic  and  Geophysical 

Institute (GGI, Sopron) in collaboration with the Institute for Astronomy (Budapest),  both 

members  of  the  Research  Centre  of  Astronomy  and  Earth  Sciences  of  the  Hungarian 

Academy of Sciences. In this concept, both the rotational unit and the tripod of traditional 

zenith  camera  systems  are  replaced  by  a  hexapod.  Hexapods  or  Stewart-type  platforms 

(Stewart  1965)  are  platforms  with  three  pairs  of  actuators  (e.g.,  electromechanical  or 

hydraulic) offering six degrees of freedom in movement. They are routinely used in several 

industrial applications, ranging from flight simulators to medical surgery. While the use of 

hexapod platforms is not new in observational astronomy (e.g., Chini 2000, Koch et al. 2009, 

Pál  et  al.  2013,  Csépány et  al.  2014,  Vida  et  al.  2014),  its  use  in  geodetic-astronomical 

applications and incorporation into DZCS has not yet been proposed nor investigated.



In the concept of a hexapod-based DZCS, the CCD sensor/telescope and tilt meters will be 

mounted as ‘payload’ on top of the hexapod platform which – in our case – will be based on 

six identical electromechanical actuators. Allowing versatile motion and micrometer-precise 

positioning  by length  variation  of  the  actuators,  a  hexapod-based DZCS may offer  some 

interesting potential advantages over “conventional” DZCS. For instance, as a benefit of a 

hexapod-based DZCS, there will be one unified system deployed for all rotation and tilting of 

the system rather than a combination of two systems (motorized tripod and rotational unit). 

Given the high dynamic of hexapod platform positioning, a gain in speed for a DZCS two-

face measurement could be possible. As a further potential benefit, star tracking will become 

possible over short time intervals, enabling more accurate imaging in general and increasing 

the star count (capturing of fainter  stars) in particular.  By way of background, DZCS are 

normally operated as non-tracking instruments where stars are imaged as trails due to Earth’s 

rotation.  However, while a possible operation of a hexapod-based DZCS in tracking mode 

may  improve  the  astrometric  imaging,  accurate  tilt  measurements  may  become  more 

demanding, e.g,. due to accelerations that superimpose the actual tilt signal and have to be 

removed through filtering.

Different to a rotational unit that allows arbitrary rotation of the DZCS sensors, a hexapod is 

not capable of executing 180°-rotations. Instead, the maximum possible azimuthal rotation 

angle  between the two faces  is  – depending on the hexapod design – limited  to  a  range 

between about 30° to 60° which is equivalent to  ±15° to  ±30° in yaw rotation.  Thus, the 

geometry of the  two-face measurement  with hexapods will  be substantially  different  to  a 

conventional DZCS measurement in opposite faces (i.e., 180°). This immediately raises the 

question of the impact of the rotation angle between the two faces on the accuracy of the tilt 

measurement. 

The  goal  of  the  present  study  is  the  investigation  of  the  expected  accuracy  of  tilt 

measurements to be carried out on future hexapod-based DZCS, with special focus placed on 

the role of the limited rotation angle. The study is organised as follows. Section 2 briefly 

reviews our mathematical model for the accurate computation of the DZCS tilt  correction 

from tilt measurements in two faces. Section 3 then describes and applies a Monte-Carlo-type 

simulation in order to derive accuracy estimates for the tilt correction as a function of several 

parameters, among them the rotation angle between the two faces. This will a.) quantify the 

expected loss in tilt measurement accuracy when compared to the assumed-to-be-ideal 180° 



rotation, and b.) clarify if tilt measurements on hexapod-based DZCS can be expected to be 

sufficiently accurate at all (say few tenths of arc-seconds or better) for state-of-the-art DZCS 

field operation. Section 4 discusses the findings in view of the future construction of hexapod-

based DZCS and draws some conclusions.

The  relevance  of  the  findings  of  this  study  is  not  limited  to  the  discipline  of  geodetic 

astronomy and astronomic-geodetic  instrumentation such as DZCS. The relevance may be 

given  also  in  view of  all  other  types  of  instruments  where  the  instrumental  tilt  must  be 

corrected. Examples include but are not limited to instruments for angle measurements such 

as electronic theodolites or total stations, but also gravity meters (see, e.g., Torge 2001 for a 

description of these instruments). However, the models and investigations presented in this 

study may also prove useful in observational astronomy, where hexapod-based telescopes are 

being increasingly used (e.g., Koch et al. 2009; Pál et al. 2013), and highly-accurate (say few 

tenths of arc-seconds or better) tilt measurements appear not yet to be routinely applied.

2 Tilt measurements and mathematical models

For the tilt measurement on a DZCS, a pair of tilt meters (two one-axis systems or one two-

axes  system)  is  mounted  in  (approximately)  perpendicular  orientation  next  to  the  CCD-

telescope. In the ideal case the two tilt sensors and the optical axis of the CCD camera defines 

a rectangular frame which is oriented to the plumb line by means of the tilt sensors. The tilt 

(misalignement)  of the CCD-telescope with respect to  the plumb line is  measured  in two 

spatial directions which we denote here with 1n  and 2n  (Fig. 1a).  In practice, tilt readings are 

always  subject  to  some  unknown  offset  n∆  (also  known  as  normal  point  in  surveying 

terminology) which can change as a function of time, depending on factors such as changes in 

ambient temperature, humidity or pressure (e.g., Hirt and Kahlmann 2004). To determine and 

remove the unknown offsets ( 1n∆  and  2n∆ ), tilt measurements must be carried out in two 

instrumental faces (denoted with I and II).

Measurements in different instrumental faces become feasible through azimuthal rotation of 

the CCD-telescope by some rotation angle  α  (Fig 1a). Conventional DZCS measurements 

are carried out in opposite faces (i.e.,α = 180°), and the offsets can be conveniently removed 

through simple averaging of the tilt readings in the two faces.  Because the rotation angle α  

will significantly deviate from 180° for hexapod-based DZCS (say α = 30° to 60°), rigorous 



mathematical models (Hirt 2008) are used here that account for α  in the reduction of the tilt 

measurements.  Based  on practical  experiences,  we  assume  that  the  tilt  meters  cannot  be 

mounted  exactly in  perpendicular  orientation.  The  shearing  parameterε  is  therefore 

introduced to account for any misalignment of the two sensors from a 90° angular difference 

between the two measurement axes (Fig. 1a). Typically, the shearing ε  is close to 90°, e.g., 

89.4°, which is why power series expansions could be used where trigonometric functions of 

ε  appear in the sequel.

 

Figure 1. Panel a: Observation space for two-axes tilt measurements on a rotating platform. 

Black: measurement axes in face I, red:  measurement axes in face II (situation after rotation 

by angleα . In the observation space, the two axes are assumed to be sheared by angle  ε . 

Panel b: Solution space with exactly perpendicular axes. Note that the direction of the first 

axis of the system 1n  in face I is identical in both panels.

In the general case of tilt measurement on a DZCS, a set of two tilt readings ( 1
In , 2

In ) is thus 

taken  in  face  I,  and  another  set  in  face  II (tilt  readings  1
IIn ,  2

IIn ),  cf.  Fig  1a.  The  four 

observations form the observation vector in the observation space
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which is the input for the computation of the unknown CCD-telescope tilt ( 1*n ,  2*n ) – also 

denoted  here  as  tilt  correction  –  and  the  unknown  sensor  offsets  ( 1n∆ ,  2n∆ ).  The  tilt 

corrections ( 1*n ,  2*n ) are free from the sensor offsets and refer to the orthogonal coordinate 

system  shown in  Fig.  1b.  The  two  spatial  directions  in  the  solution  space  (Fig.  1b)  are 

rigorously perpendicular (the shearing is removed),  with the measurement axis of the first 

direction ( 1n ) being identical in Figs. 1a and 1b.  The vector of unknowns reads:
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The observations l and unknowns x  are connected via the design matrix A which is set up as 

a function of the rotation angle α  and the shearing  ε  between the measurement axes (Hirt 

2008):

A =

1 0 1 0

cos sin 0 1

cos sin 1 0

cos( ) sin( ) 0 1

ε ε
α α

α ε α ε

 
 ÷
 ÷
 ÷
 ÷+ + 

 (3)

The design matrix connects observations and unknowns linearly

=l Ax , (4)

allowing calculation of the vector of unknowns  x  via left-multiplication with the inverse 

design matrix:

-1x = A l   (5)



It  is clear that the design matrix  A becomes singular and Eq. 5 cannot be solved for the 

unknowns if there is no rotation (α =0°) between the two faces (compare the first and third 

row in Eq. 3). The design matrix becomes more stable as the rotation angle α  increases, with 

optimum conditions assumed for the opposite-faces situation (α =180°). If tilt was measured 

in  more  than two instrumental  faces  (e.g.,  each differing by 120°) in  azimuth,  the model 

would be over-determined, requiring e.g., least-squares or other adjustment techniques (e.g., 

Moritz 1980). Because DZCS measurements in general and tilt measurements in particular are 

usually conducted in the two faces, the over-determined case is not further dealt with in this 

paper.

In  practical  applications,  numerical  estimates  for  the  rotation  angleα  are  obtained  as 

difference of the astronomical azimuths of the CCD star images in face  I  and  II. In case a 

rotation unit (e.g., bearing) is deployed in the DZCS, an angle sensor might be alternatively 

installed  and  used  to  provide  information  on  α .  For  the  hexapod-based DZCS (without 

bearing), the rotation angle α  could be worked out as a function of the length variation of the 

six  actuators  between  the  two  faces  and  the  hexapod’s  constructive  constants  (e.g.,  leg 

separation), cf. Conti et al. (1998). 

Numerical values for the shearing parameter  ε  are determined with the so-called celestial 

calibration  procedure  whereby  tilt  measurements  are  compared  against  angles  from  star 

images. To increase the sensitivity for the determination of ε , the DZCS is deliberately tilted 

in all sky directions by about 100-120“ with respect to the plumb line (see Hirt 2004, Hirt et  

al.,  2010 for details).  In the future, this procedure might be augmented (or replaced) by a 

hexapod-based in-situ-calibration of the tilt sensors. Comparison of tilt values derived from 

measured leg lengths with measured tilt values in a least-squares sense should be capable of 

providing accurate estimates for the shearing ε , and also of the tilt sensor’s scale factors.

3 Monte-Carlo (MC) simulation

3.1 Idea and scheme

The Monte-Carlo (MC) simulation (e.g.,  Metropolis and Ulam 1949, Rubinstein and Kroese 

2007)  is  a  statistical  simulation  method  which  can  be  used  to  study  the  behaviour  of 



mathematical models or physical systems. The basic idea is the generation of sequences of 

random input values, which are propagated through some formalism (here the mathematical 

model for tilt measurements, Section 2). This yields output sequences of a certain statistical 

distribution,  which  is  then  interpreted  and  further  analysed,  e.g.,  in  terms  of  standard 

deviations. As an advantage of the MC technique over classical numerical or analytical error 

propagation  techniques,  many different  scenarios  can  be  easily  investigated  with  the  MC 

simulation.  The  MC  technique  is  chosen  in  the  sequel  as  the  most  versatile  statistical 

simulation tool to propagate uncertainties for all quantities involved through the tilt reduction 

model  without  simplifications.   The  robustness  of  results  is  ensured  through  choosing 

sufficiently  large  sample  sizes  (e.g.,  1000  repetitions  in  each  simulation).  For  validation 

purposes,  analytical  error  propagation  is  applied  (albeit  with  some  simplifications)  in 

Appendix A, providing a valuable mutual check on the outcomes of the MC simulation.



Figure 2. Flow diagram for the MC-simulation of tilt accuracy.  White boxes indicate the 

operations applied.

We follow the MC simulation scheme shown in Fig. 2 to investigate the accuracy  1*( )nσ , 

2*( )nσ  of the CCD-telescope tilt as a function of (1) the tilt  1*n ,  2*n  itself, (2) the accuracy 

1( )Inσ  , 2( )Inσ ,  1( )IInσ  and 2( )IInσ  of the tilt readings 1
In  , 2

In  , 1
IIn  and  2

IIn , (3) the shearing 

ε  and (4) related accuracy ( )σ ε , and importantly, (5) the rotation angle α  between the two 

faces and (6) its accuracy ( )σ α . The simulation results are insensitive for the sensor offsets (

1n∆ , 2n∆ ).



The accuracy simulation starts by assigning numerical values to the CCD-telescope tilt ( 1*n , 

2*n ), the sensor offsets ( 1n∆ , 2n∆ ), the shearing  ε  and rotation angle α , before applying the 

forward transformation (Eq. 4) to obtain the tilt meter readings ( 1
In  , 2

In  , 1
IIn  , 2

IIn ) the two 

sensors would measure if observation errors were absent. Regarding the numerical values, we 

make the following choices:

• The telescope tilt ( 1*n , 2*n )  with respect to the plumb line is generally kept below 10“ 

(arc  seconds)  in  DZCS  field  applications.  However,  the  telescope  tilt  can  be 

substantially larger, at the level of 100“ when the DZCS is celestially calibrated. Both 

scenarios are simulated. 

• The tilt values ( 1*n , 2*n )  do not depend on the sensor offsets ( 1n∆ , 2n∆ ). Given the 

simulated tilt accuracy is insensitive for ( 1n∆ ,  2n∆ ), we choose arbitrary numerical 

values of 1n∆  = -5“ and 2n∆  = +2“.

• The shearing ε is generally close to 90°. Here we chose a value of 89.4°, which reflect 

results from DZCS calibrations (Hirt 2004).

• The rotation angle α is tested over a range from 1° to 180°, which covers the expected 

range for hexapod-based rotations (30° to 60°), while giving a complete picture of the 

role of α  on the tilt accuracy.

In the next step, the stochastic models are defined for the observations l (Eq. 1) and for the 

rotations α ,ε .  We assume Gaussian noise distribution for all six quantities. 

• From practical experiences with high-resolution tilt meters, an observational accuracy 

of 0.04-0.05“ can be reached in field applications (Hirt and Kahlmann, 2004, Hirt et 

al., 2010). A value of 0.05“ is assigned to the noise generator that produces sequences 

of random errors e = ( 1
Ie ,  2

Ie  , 1
IIe  , 2

IIe ) which follow the Gaussian distribution with 

the specified observational accuracy (Fig. 2). The vector of noisy observations  l% is 

then obtained through addition of random errors e to the error-free tilt meter readings l 

(cf. Fig. 2). As noise generator, Matlab’s randn-function is used. 



• In a similar manner, Gaussian random noise is generated and added to the shearing ε  

and rotation angle α , yielding noisy values ε%and α%. The shearing ε  is assumed to 

be known with a standard deviation  ( )σ ε  = 0.05°, and the rotation angle  α  with a 

standard deviation ( )σ α  = 0.02° (values from Hirt 2004). 

We note  that  in  the  parameters  α  and  ε  are  determined  via  astronomical  measurement 

procedures  (rotation  angle  as  difference  between  the  astronomical  azimuths  of  the  CCD 

sensor in both faces, shearing via the celestial calibration). A further increase in accuracy may 

become possible through the development of a hexapod-based calibration procedure (ε ), and 

the determination of the rotation angle α  from the actual hexapod leg lengths.

As central  step  of  the  MC simulation,  the  backward-transformation  (Eq.  5)  is  applied  to 

calculate  noisy  estimates  for  the  telescope  tilt  ( 1*n%,  2*n% )  from  l%,  ε%and  α%.  This  step 

“propagates” the generated noise from the observation space (vector l) into the solution space 

(vector x). The noisy telescope tilt ( 1*n%, 2*n% ) is then compared with the initial error-free values 

( 1*n , 2*n ), yielding residuals

1* 1* 1*

2* 2* 2*

n n n

n n n

δ
δ

= −
= −
%

%
  . (6)

The  described  procedure  is  repeated  q times  (here:  q  = 1000,  which  was  found  to  give 

statistically stable results from comparisons with other q-values, e.g., 100), giving sequences 

of residuals which are used to calculate standard deviations for the tilt corrections ( *
1n , *

2n )

2
1*

1*

( )
( )

n
n

q

δ
σ = ∑  (7)

2
2*

2*

( )
( )

n
n

q

δ
σ = ∑ .

Exemplary histograms of the generated noise for the tilt observations l and rotations α ,ε  are 

shown in Fig. 3a – c, and histograms for the derived telescope tilt ( 1*n%,  2*n% ) in Fig. 3d. The 



data shown in Fig 3d is used to calculate the standard deviations  1*( )nσ , 2*( )nσ  for further 

analysis.

Figure 3.  Histograms of sample  data  from the MC-simulation  for  α =60°.  Panels  a  – b: 

histograms of the noise for the tilt measurements (in arc-seconds), panel c: histograms of the 

noise for the shearingε  and rotation angle α , panel d: histograms of noisy telescope tilt ( 1*n%, 

2*n% ).

3.2 Results 

Figure  4 shows the  Monte-Carlo  simulated  standard  deviations  1*( )nσ , 2*( )nσ  for  the  tilt 

corrections ( 1*n ,  2*n )  as  a  function  of  the  rotation  angleα .  The  accuracies  for  both 

components of the tilt corrections are practically identical, and both deteriorate as the rotation 



angle α  becomes smaller.  The deterioration of the standard deviations 1*( )nσ  as a function 

of the rotation angle α  can be well modelled through a best-fitting (in a least-squares sense) 

analytical function

1( )fitnσ ∗ =   0.0353“ ( )1sin 0.5α−× ≈

                 1*( )nσ ( )11
sin 0.5

2
α−× (8)

which has been intuitively found based on the MC-results. The best-fitting analytical function 

is  also  shown in  Fig.  4  (note  that  a  very similar  fit  is  obtained  for 2*( )nσ ).  With  some 

simplifications of the tilt model (Eqs. 3-5), the Eq. (8) can also be derived analytically (see 

appendix A).

From  Fig. 4, the accuracy 1*( )nσ , 2*( )nσ  for the tilt corrections is about 0.036“ when the tilt 

readings are taken in opposite faces with an observational accuracy of  1( )Inσ  =  2( )Inσ  = 

1( )IInσ  =  2( )IInσ  = 0.05“. This corresponds to a gain in accuracy by factor of about  2 , 

which is plausible given that the two components ( 1*n , 2*n )  of the tilt corrections are based 

on four observations l = ( 1
In ,  2

In  , 1
IIn  , 2

IIn ). 



Figure 4. Simulated accuracy of tilt corrections ( 1*n , 2*n ) as a function of the rotation angle 

α between instrumental faces.  Simulation results is based on following parameters: ( 1*n , 2*n ) 

= (-10“, 10“),  ε = 89.4°,  1( )Inσ  =  2( )Inσ  =  1( )IInσ  =  2( )IInσ  = 0.05“,  ( )σ ε  = 0.05° and 

( )σ α  = 0.02°.

For a reduced rotation angle α  of 60°, the standard deviations 1*( )nσ , 2*( )nσ  are at the level 

of  0.07“,  which  corresponds  to  a  deterioration  by  factor  ~2  when  compared  to  the 

conventional opposite-faces situation. A rotation angle of 30° further reduces the accuracy by 

another factor of ~2 to ~0.13-0.14“. A tilt  correction accuracy at  the 0.1“-level requires a 

rotation angle of about 40-45° or larger (Fig. 4).

Further insight into the expected accuracy of tilt  corrections  on a hexapod is obtained by 

varying the instrumental tilt ( 1*n ,  2*n ). While the tilt of the DZCS telescope is usually kept 

below 10“ during observation (this may require re-levelling if the DZCS is being operated at 

unstable sites), the tilt can be as large as 100-120“ during celestial calibration of the DZCS tilt 

sensors. Figure 5 shows the simulated standard deviations 1*( )nσ , 2*( )nσ  as a function of the 



instrumental tilt ( 1*n , 2*n ), and for the three casesα  = 30° (top), α  = 60° (centre), and α  = 

180° (bottom). 

The panels reveal that the standard deviations 1*( )nσ , 2*( )nσ  may depend on the amplitudes 

of tilt corrections themselves to some certain extent. This behaviour reflects the propagation 

of the shearing parameter’s and rotation angle’s standard deviations ( )σ ε  and ( )σ α  into the 

standard  deviations  1*( )nσ , 2*( )nσ  of  the  instrumental  tilt.   Fig.  5  shows that  this  effect 

diminishes for small tilt values (say few 10s of arc-seconds), while it becomes spurious when 

the instrumental tilt is large, at the level of 100“. In the latter case, a deterioration in accuracy 

by a factor of ~2 becomes visible when the rotation angle is 30° or 60°.  



Figure 5. Simulated accuracy of tilt corrections ( 1*n , 2*n ) as a function of the instrumental tilt 

1*n ,  2*n . Top: Rotation angle = 30°, Centre: rotation angle = 60°, Bottom:  rotation angle = 

180°, left column:  1*( )nσ , right column:  2*( )nσ . Simulation results are based on following 

parameters: ε = 89.4°,  1( )Inσ  = 2( )Inσ  = 1( )IInσ  = 2( )IInσ  = 0.05“, ( )σ ε  = 0.05° and ( )σ α  

= 0.02°. All units in arc-seconds.

By way of comparison, the conventional case (α  = 180°) shows that the standard deviation 

1*( )nσ is practically independent from the instrumental tilt ( 1*n , 2*n ) over the whole range of 

tilt values shown. Different to this, 2*( )nσ  is independent from 1*n , but does depend on 2*n , 

with a decrease in accuracy by factor 2-3 visible for 2*n - values at the level of 100“. This is 

related to the uncertainty of the shearing parameter ( )σ ε  which propagates into 2*n  (but not 

1*n )  when  observations  are  taken  in  opposite  faces.  Irrespective  of  the  rotation  angle 

investigated, the standard deviations are found to be invariant of the instrumental tilt if the 

DZCS telescope is well levelled (say better than 10“). 

4 Discussion and conclusions

Other  than  conventional  DZCS,  the  proposed  hexapod-based  DZCS  is  not  capable  of 

observing in opposite instrumental faces. Instead, the rotation angle of hexapod-based DZCS 

is limited to about 30-60°. A Monte-Carlo simulation study was performed to investigate the 

achievable accuracy for tilt corrections when the rotation angle is less than 180°. Statistical 

analysis of the tilt correction’s accuracy as a function of the rotation angle revealed a loss in 

accuracy by factor of ~2 for 60°-rotation, and a factor of ~4 for 30°-rotation in comparison to 

the conventional 180° rotation between opposite instrumental faces. This corresponds to a 

decrease in accuracy from about 0.03-0.04“ (rotation angle of 180°) to 0.07“ (rotation angle 

of  60°).  For  today’s  high-precision  DZCS observations,  it  is  reasonable  to  require  a  tilt 

correction accuracy at the 0.1“-level or better. Our simulation shows that this requirement can 

be met with hexapod-based DZCS if the rotation angle is at least 40-45°, and ~0.05“-accurate 

tilt meters are deployed.



Further to this, the MC-simulation study demonstrates that there is no loss in accuracy at all 

for rotation angles ranging between ~150° to 180° compared to the opposite-faces situation. 

Thus,  when using platforms with bearings  or turntables,  exact  180°-rotations  between the 

instrumental faces are not required for optimum accuracies as long as the rotation angle is 

known  with  few  0.01°  accuracy  and  taken  into  account  in  the  reduction  of  the  tilt 

measurements (Section 2). 

As a general conclusion of our study, a hexapod-based DZCS can be expected to be a suitable 

platform  for  accurate  tilt  measurements.  While  the  accuracy  for  the  instrumental  tilt 

corrections will be worse in comparison to conventional opposite-face DZCS measurements, 

a satisfying accuracy level of 0.1“ or better will be reachable on hexapod-based DZCS. As 

such, our study provides supporting evidence for feasibility of such a novel instrumentation. 

These findings are not only relevant for the future development of hexapod-based DZCS, but 

also for the possible operation of other sensors (e.g., gravity meter) along with accurate tilt  

meters on hexapod platforms.  Irrespective of the hexapod payload, a hexapod platform is 

expected to allow accurate determination of the platform tilt from measurement in two faces.

Postscript

A  hexapod-based  DZCS  is  now  under  development  at  the  MTA  (Magyar  Tudományos 

Akadémia) Research Centre for Astronomy and Earth Sciences, based on a modified version 

of the Fly’s Eye hexapod described in Pál et al. (2013) and Vida et al. (2014).
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Appendix

A Analytical derivation of the variance function of unknown parameters

The  expected  value  of  the  error  of  tilt  corrections  can  also  be  estimated  using  the  error 

propagation  law (e.g.  Moritz,  1980).  The design matrix  A (Eq.  3) connects  the unknown 

parameters x (Eq. 2) with the actual tilt observations l (Eq. 1) through Eq. 4. Its solution based 

on the principles of least-squares adjustment involves the computation of the inverse of the so 

called normal matrix N

1 1( )T− −= =N Q A PA , (9)

where the  weight  matrix  1,1,...,1==IP ,  assumes  that  all  the  measurements  have the 

same reliability. Eq. 9. is identical with so called co-factor matrix Q which is used to estimate 

the variance-covariance matrix M of the parameters x

QM 2
0σ= , (10)

where σ0 is the a posteriori RMS of a single measurement having unit weight in the non-over-

determined  case.  The  elements  (variances  and  covariances)  of  Q can  be  determined 

analytically if the design matrix is somewhat simplified to 
















=

10cossin-
01sincos
1010
0101

αα
ααA (11)

by using the approximations

αεα
αεα

ε
ε

cossin

sincos

sin

cos

=+
−=+

≅
≅

)(

)(

1

0

(12)

This simplification assumes the axes of the tilt sensors are sufficiently perpendicular ( 90≅ε

).  As  further  simplification  in  the  analytical  derivation,  the  angles  α and  ε are  assumed 

variance-free. In this case the normal matrix N becomes

2 0 1 cos -sin

0 2 sin 1 cos

1 cos sin 2 0

-sin 1 cos 0 2

T

α α
α α

α α
α α

+ 
 ÷+ ÷=
 ÷+
 ÷+ 

A A (13)



and for its inverse Q follows through analytical derivation

2 * * * * *
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,      (14)

where q denotes the weight coefficients. The elements of the variance-covariance matrix  M 

finally provide the variances σ2 and covariances c, i.e. of the unknowns

2 * * * * *
1 1 2 1 1 1 2

2 * * *
2 2 2 1 2 2
0 2 *

1 1 2
2

2

( ) ( , ) ( , ) ( , )

. ( ) ( , ) ( , )
.

. . ( ) ( , )

. . . ( )

n c n n c n n c n n

n c n n c n n

n c n n

n

σ
σ

σ
σ

σ

 ∆ ∆
 ÷∆ ∆ ÷= =  ÷∆ ∆ ∆
 ÷ ÷∆ 

M Q (15)

With σ0  = 0.05“ (observational accuracy), it follows for the standard deviation ( )*
1nσ  of the 

tilt correction:

( )* 2 2 * 0.5
1 0 1 0( ) (1 cos )n q nσ σ σ α −= = −  (16)

which  confirms  the  results  from  the  MC  simulation  (Eq.  8),  recalling  the  theorem 

21 cos 2sin 0.5α α− = . The very good agreement with the MC results implicitly shows that 

the uncertainties of the angles α and ε play a negligible role for the standard deviation of the 

tilt correction in the present case. We finally note that the analytical derivation of (16) would 

become much more complicated if the above simplifications were not made.
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