A stability theorem for lines in Galois planes of prime order

Tamás Szőnyi and Zsuzsa Weiner *

July 18, 2014

Abstract

In this paper we prove that a point set of size less than $\frac{3}{2}(q+1)$ in $\mathrm{PG}(2, q), q$ prime, that has relatively few 0 -secants must contain many collinear points. More precise bounds can be found in Theorem 2.4.

1 Introduction

A blocking set B of $\mathrm{PG}(2, q)$ is a set of points intersecting each line in at least one point. Lines intersecting B in exactly one point are called tangents. A point is essential to B, if through it there passes at least one tangent of B. The blocking set is minimal if all of its points are essential. The smallest examples are lines and a blocking set that does not contain a line is called non-trivial. For a survey on blocking sets, the reader is referred to [10]. When q is a prime, Blokhuis [1] proved an old conjecture by Di Paola.

Result 1.1 (Blokhuis [1]) A non-trivial blocking set in $\mathrm{PG}(2, q), q$ prime, has at least $\frac{3}{2}(q+1)$ points.

If we delete a few say, ε points from a line, we get a point set intersecting almost all but εq lines. After deleting ε points from a blocking set of size $\frac{3}{2}(q+1)$ (for example, from a projective triangle, see Definition 3.11 in [10])

[^0]we get at least $\varepsilon \frac{(q-1)}{2} 0$-secant lines. The situation is similar for blocking sets of size at most $2 q$; this follows easily from the result of Blokhuis and Brouwer, see Result 2.1. In general, we cannot expect that the number of points that block the 0 -secants is the number of 0 -secants divided by constant times q. To illustrate this, let us consider a blocking set which is the union of parabolas for $q \equiv 1(\bmod 4)($ see Section 3.3 in $[10])$. Let us delete ε parabolas completely from this blocking set. Since through each point of a parabola, there passes one tangent line, we will get $\varepsilon q 0$-secants. These lines cannot be blocked by roughly ε points, since through a point there are at most two tangent lines of a parabola, so one point can block at most 2ε 0 -secants. This means, that we would need at least $q / 2$ points to block the 0 -secants. We will be interested in the question, when the number of points needed to block the 0 -secants is roughly the number of 0 -secants divided by q. If we add these points to our original set, we get a blocking set. Hence we look for a result guaranteeing that a point set having at most $c \varepsilon q 0$-secants must contain a blocking set minus roughly ε points. Of course, the situation is also interesting when we have less than q skew lines. In this case we wish to prove that the 0 -secants pass through a point. For such a result, formulated in the dual setting, see Proposition 1.5 in [3].

The following old result of Erdős and Lovász can be considered as a stability theorem for lines.

Result 1.2 (Erdős and Lovász, [7]) A point set of size q in a projective plane of order q, with less than $\sqrt{q+1}(q+1-\sqrt{q+1}) 0$-secants always contains at least $q+1-\sqrt{q+1}$ points from a line.

Note that the proof of the theorem of Erdős and Lovász can be extended to sets of size less than $q+\sqrt{q}+1$ with a weaker bound on the number of 0 -secants, that is roughly $(q-\sqrt{q})(\sqrt{q}-k)$. The reason that one needs the bound $q+\sqrt{q}+1$ on the size of the set is Bruen's theorem, see [5, 6], namely that the size of a non-trivial minimal blocking set is at least $q+\sqrt{q}+1$.

The main result of the present short note is Theorem 2.4, which can be regarded as an analogue of the Erdős and Lovász theorem (or rather its generalization to $q+k$) for Galois planes of prime order.

2 Results

In this section we will improve on the stability theorem of Erdős and Lovász, when the plane is $\mathrm{PG}(2, q), q$ prime. We are going to show that if B is a point set with $|B|<\frac{3}{2}(q+1)$, having at most $\delta=\varepsilon(q+1) 0$-secants, then it contains a huge part of a line. Even though the bound in our main result is not sharp, ε can even be $c q$, where c is a small constant depending on $|B|$, if $|B|$ is not very close to $\frac{3}{2}(q+1)$.

The following result, which is a consequence of the affine blocking set theorem by Jamison [8], and Brouwer, Schrijver [4], will also be used in our proof.

Result 2.1 (Blokhuis and Brouwer, [2]) Let B be a blocking set in $\operatorname{PG}(2, q)$, $|B|=2 q-s$ and let P be an essential point of B. Then there are at least $s+1$ tangents through P.

Lemma 2.2 Let B be a point set in $\mathrm{PG}(2, q),|B|<\frac{3}{2}(q+1)$. Assume that there are $\delta 0$-secants to B. Then the total number τ of tangents of B is at least $(q+1)\left(2 q-|B|-\frac{2 \delta}{q+1}\right)$. Hence there is a point P of B so that there are at least $\frac{2}{3}\left(2 q-|B|-\frac{2 \delta}{q+1}\right)$ tangents through P.

Proof. Take a 0 -secant ℓ of B. If there is no such a line then B is a blocking set and (by Result 2.1) through any essential point of B there pass at least $\frac{1}{2}(q+1)-1$ tangents. Let the points of ℓ be denoted by P_{1}, \ldots, P_{q+1} and let ν_{i} be the number of 0 -secants, τ_{i} be the number of tangents through P_{i}. Looking at B from P_{i} one gets $q-\left(\nu_{i}+\tau_{i}\right) \leq\left(|B|-\tau_{i}\right) / 2$, which implies that $2 \nu_{i}+\tau_{i} \geq 2 q-|B|$. Summing over all i we get that $(q+1)(2 q-|B|) \leq 2 \delta+\tau$, from which $\tau \geq(q+1)\left(2 q-|B|-\frac{2 \delta}{q+1}\right)+1$ follows. On the other hand, if we add up the number of tangents at the points of B, we get τ, so there is a point which has at least the average number of tangents.

The following lemma is an easy folklore result in algebraic geometry.
Lemma 2.3 Let S be a set of points in $\operatorname{AG}(2, q)$. Then there exists a nonzero two-variable polynomial of degree at most $\sqrt{2|S|}-1$, so that it vanishes at every point of S.

Proof. Each point $(u, v) \in S$, gives a linear equation for the coefficients of the desired polynomial p. Hence we have a homogeneous system of $|S|$ such
linear equations. When $\operatorname{deg}(p) \geq \sqrt{2|S|}-1$, then the number of coefficients is larger than $|S|$, so we have a non-trivial solution.

The proof of our main theorem is motivated by [1] and [9].
Theorem 2.4 Let B be a set of points of $\mathrm{PG}(2, q), q=p$ prime, with at most $\frac{3}{2}(q+1)-\beta$ points. Suppose that the number δ of 0 -secants is less than $\left(\frac{2}{3}(\beta+1)\right)^{2} / 2$. Then there is a line that contains at least $q-\frac{2 \delta}{q+1}$ points.

Proof. Choose the coordinate system in such a way that (∞) is a point of B with at least $\frac{2}{3}\left(2 q-|B|-\frac{2 \delta}{q+1}\right)$ tangents, one of them be the line at infinity. Let $U=\left\{\left(a_{i}, b_{i}\right): i=1, \ldots,|B|-1\right\}$ be the affine part of B. The 0 -secants of B can be written as $Y=m_{j} X+c_{j}, j=1, \ldots, \delta$. Consider the polynomial $a(x, y)$ of the smallest degree Δ, which vanishes at the points $\left(c_{j}, m_{j}\right), j=1, \ldots, \delta$. By Lemma 2.3, $\Delta \leq \sqrt{2 \delta}-1$. Now write up the polynomial

$$
H(X, Y)=\left(\prod\left(X+a_{i} Y-b_{i}\right)\right) a(X, Y)
$$

The first product is the Rédei polynomial of U. This polynomial H vanishes for every (x, y), hence it can be written as

$$
H(X, Y)=\left(X^{q}-X\right) f(X, Y)+\left(Y^{q}-Y\right) g(X, Y)
$$

where $\operatorname{deg}(f), \operatorname{deg}(g) \leq|B|-1-q+\Delta$. As in Blokhuis [1], consider the terms of highest degree of this equation and substitute $Y=1$ in it. Then we get a polynomial equation

$$
h^{*}(X)=\left(\prod\left(X+a_{i}\right)\right) a^{*}(X)=X^{q} f^{*}(X)+g^{*}(X),
$$

where $X^{q} \nmid g^{*}(X)$. We may suppose that f^{*} and g^{*} are coprime, since otherwise we could divide by their greatest common divisor and obtain an equation of the same type with smaller degrees. Denote by s the maximum of the degrees of f^{*} and g^{*} after this division. The roots of $h^{*}(X)$ in $\operatorname{GF}(q)$ are also roots of $X f^{*}(X)+g^{*}(X)$. The multiple roots of $h^{*}(X)$ in $\operatorname{GF}(q)$ are also roots of $X^{q}\left(f^{*}(X)\right)^{\prime}+\left(g^{*}(X)\right)^{\prime}$. The roots not in $\operatorname{GF}(q)$ are roots of $a^{*}(x)$. Hence

$$
\begin{equation*}
h^{*}(X) \mid\left(X f^{*}(X)+g^{*}(X)\right)\left(\left(f^{*}(X)\right)^{\prime} g^{*}(X)-\left(g^{*}(X)\right)^{\prime} f^{*}(X)\right) a^{*}(X) \tag{1}
\end{equation*}
$$

If the polynomial on the right hand side of (1) is non-zero, then comparing the degrees gives $q+s \leq s+1+2 s-2+\Delta$, that is $s \geq(q+1-\Delta) / 2$. Since $s \leq|B|-1-q+\Delta$, then $|B| \geq \frac{3}{2}(q+1)-\frac{3}{2} \Delta$, which is a contradiction.

The third term on the right hand side of (1) cannot be the zero polynomial, since the terms of highest degree of $a(X, Y)$ form a homogeneous polynomial and so $(Y-1)$ cannot be a factor of it.

If the first term on the right hand side of (1) is the zero polynomial then $h^{*}(X)$ is divisible by $\left(X^{q}-X\right)$. Since $a^{*}(X)$ has degree at most Δ, the remaining $q-\Delta$ factors of $\left(X^{q}-X\right)$ must arise from the product $\Pi\left(X+a_{i}\right)$. Geometrically this would imply that through the point (∞) there pass at most $\Delta+1$ tangents, which contradicts the choice of (∞). (Here we use that $\left.\Delta+1<\frac{2}{3}\left(2 q-|B|-\frac{2 \delta}{q+1}\right).\right)$

If the second term is zero, then, since f^{*} and g^{*} are coprime, $f^{*}(X) \mid\left(f^{*}(X)\right)^{\prime}$ and similarly $g^{*}(X) \mid\left(g^{*}(X)\right)^{\prime}$. Hence $\left(f^{*}(X)\right)^{\prime}=\left(g^{*}(X)\right)^{\prime}=0$. For $q=p$ prime, it implies that either $|B| \geq 2 q+1-\Delta$ (which is not possible by our upper bound on $|B|$) or $a X^{q}+b$ divides $h^{*}(X)$. Since $a X^{q}+b=(a X+b)^{q}$ and at most Δ of these factors can come from $a^{*}(X)$, then there is a line ℓ (through (∞)) that contains at least $q+1-\Delta$ points of B. Finally, assume that $|\ell \cap B|=q+1-k, k \leq \Delta$. Then the 0 -secants pass through the k missing points of ℓ. Since $|B| \leq \frac{3}{2} q+1-\frac{3}{2} \Delta$ then the number of 0 -secants is at least $k\left(q-\left(\frac{3}{2} q+1-\frac{3}{2} \Delta-q-1+k\right)\right)^{2} \leq \frac{1}{2} k(q+1)$. Hence $k \leq \frac{2 \delta}{q+1}$.

Let us see now some constructions for sets with few 0 -secants not containing a very large collinear subset. Deleting ε points from a line or a projective triangle yields εq or at least $\varepsilon \frac{q-1}{2} 0$-secants, respectively. In the former case the number of deleted points is $\frac{\delta}{q}$, in the latter case it is roughly $\frac{2 \delta}{q}$. The constructions below can be regarded as generalizations of the Rédei-Megyesi construction for blocking sets (see Theorem 3.10 in [10]). In the constructions we use standard notation: affine points are denoted as (u, v), ideal point as (m) or (∞).

Construction 2.5 Assume that $3 \mid q-1$ and let H be a subgroup of $\operatorname{GF}(q)^{*}$, $|H|=\frac{q-1}{3}$. Furthermore, let B be the set of size $q+2$, where
$B=\{(0, h) \mid h \in H\} \cup\{(h, 0) \mid h \in H\} \cup\{(h) \mid h \in H\} \cup\{(0,0)\} \cup(0) \cup(\infty)\}$.
Then the number of 0 -secants to B is $\frac{2}{9}(q-1)^{2}$. Add $k<\frac{q+17}{6}$ ideal points not in B to obtain B^{\prime}. Then the total number of 0 -secants to B^{\prime} is $\left(\frac{2}{3}(q-\right.$ $1)-k) \frac{1}{3}(q-1)$.

The sets constructed above have less than $\left(\frac{3}{2}(q+1)-\left|B^{\prime}\right|\right) \frac{q-1}{2} 0$-secants (this is what we would get for a set contained in a projective triangle) and are not contained in a projective triangle.

In general, one could choose a multiplicative subgroup H (of size $\frac{q-1}{t}$) from the line $Y=0, s$ cosets of H from the line $X=0$, and the same s cosets from the ideal line. For example, when $t=2 s,\left|B^{\prime}\right|=q+2+\frac{q-1}{2 s}$ and the number of 0 -secants is roughly $\frac{q-1}{2}\left(\frac{q-1}{2}-\frac{q-1}{2 s}\right)$, which is the same as one could get by deleting $\left(\frac{q-1}{2}-\frac{q-1}{2 s}\right)$ appropriate points from a projective triangle. For $t>2$ the cosets can be chosen in such a way that the set is not contained in a projective triangle.

Construction 2.6 Let A and B be less than p and let B^{*} be a the following set.
$B^{*}=\{(1, a) \mid 0 \leq a \leq A\} \cup\{(0,-b) \mid 0 \leq b \leq B\} \cup\{(\infty)\} \cup\{(c) \mid 0 \leq c \leq A+B\}$.
Then B^{*} has $2(A+B)+4$ points and the total number of 0 -secants to B^{*} is $(q-1-A-B)(q-A-B-2)$.

One can modify this construction and delete some points $(c)(0 \leq c \leq$ $A+B)$ which are on many tangents of B^{*}. To be more concrete choose α and β, so that $\alpha \leq A+B-\beta$. Let

$$
B^{* *}=\left\{\left(B^{*} \cap A G(2, p)\right) \cup(\infty) \cup\{(c) \mid \alpha \leq c \leq A+B-\beta\}\right.
$$

Then $\left|B^{* *}\right|=2(A+B)+4-\alpha-\beta$ and there are $(q-1-A-B)(q-$ $A-B-2)+\frac{\alpha}{2}(2 q+\alpha-3-2(A+B))+\frac{\beta}{2}(2 q+\beta-3-2(A+B)) 0$-secants.

For $A=B=\frac{p}{4}, B^{*}$ has size $p+4$ and the number of 0 -secants is roughly $\frac{p^{2}}{4}$, which is the number of 0 -secants of the a point set obtained by keeping these many points of a projective triangle, but this set obviously cannot be embedded in a projective triangle. One can also combine Constructions 2.6 and 2.5 by replacing arithmetic by geometric progressions. For example, if $t=5, H$ is a multiplicative subgroup and ω generates G / H then

$$
\begin{aligned}
B^{* * *} \quad & =\{(0, h) \mid h \in H \cup \omega H\} \cup\left\{(h, 0) \mid h \in H \cup \omega^{-1} H\right\} \cup \\
& \left.\left\{(h) \mid h \in H \cup \omega H \cup \omega^{2} H\right\} \cup\{(0,0)\} \cup(0) \cup(\infty)\right\}
\end{aligned}
$$

has $3+\frac{7}{5}(q-1)$ points and $\delta=\frac{2}{25}(q-1)^{2} 0$-secants. By deleting the points $(h), h \in \omega^{2} H$ we get a set of size $3+\frac{6}{5}(q-1)$ points which has $\delta=\frac{4}{25}(q-1)^{2}$.

All the examples given above can be obtained from a blocking set contained in the union of three lines by deleting quite a few points. In some cases they have less 0 -secants than a set of the same size contained in the projective triangle. The examples also show that we cannot expect $\frac{\delta}{q+1}$ missing points from a line in Theorem 2.4.

Remark 2.7 1) In the case corresponding to the Erdős and Lovász theorem, that is when $|B|=q$, we can allow roughly $\frac{q^{2}}{18} 0$-secants to guarantee a collinear subset of size at least $\frac{8 q}{9}$ in B. The bound $\frac{q^{2}}{18}$ can most likely be improved but we do need an upper bound of the form $c q^{2},\left(c \leq \frac{1}{2}\right)$ on the number of 0 -secants as shown by the constructions above.
2) If a set B has size $|B|=c q$ for some $c<1$ then the number of 0 secants is at least $(1-c) q(q+1)$. This can be seen by counting 0 -secants through points of a fixed 0 -secant. Hence our theorem gives a non-trivial bound only if $(1-c) q(q+1)<\left(\frac{2}{3}(\beta+1)\right)^{2} / 2$, where $\beta=\left(\frac{3}{2}-c\right) q$. Roughly speaking, this gives that for a fixed $c<1$, the value of δ has to be smaller than $\left(1-\frac{2}{3} c\right)^{2} q^{2} / 2$, which gives the equation $4 c^{2}+6 c-9=0$ for the critical value of c. The positive root of the equation is $\frac{-3+\sqrt{45}}{4} \approx 0.927$. So our result gives a non-trivial stability theorem also for sets of size $c q, 1>c>\frac{-3+\sqrt{45}}{4} \approx 0.927$.

References

[1] A. Blokhuis, On the size of a blocking set in $\operatorname{PG}(2, p)$, Combinatorica 14 (1994), 273-276.
[2] A. Blokhuis, A. E. Brouwer, Blocking sets in Desarguesian projective planes, Bull. London Math. Soc. 18 (1986), 132-134.
[3] A. Blokhuis, A. E. Brouwer, T. Szőnyi, Covering all points except one, J. Alg. Combin. 32 (2010), 59-66.
[4] A. E. Brouwer, A. Schrijver, The blocking number of an affine space, J. Comb. Theory Ser. A 24 (1978), 251-253.
[5] A. A. Bruen, Baer subplanes and blocking sets, Bull. Amer. Math. Soc. 76 (1970), 342-344.
[6] A. A. Bruen, Blocking sets in finite projective planes, SIAM J. Appl. Math. 21 (1971), 380-392.
[7] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pp. 609-627, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[8] R. E. Jamison, Covering finite fields with cosets of subspaces, J. Comb. Theory Ser. A 22 (1977), 253-266.
[9] T. SzőnYi, Around Rédei's theorem, Discrete Math. 208/9 (1999), 557575.
[10] T. Szőnyi, A. GÁcs, Zs. Weiner, On the spectrum of minimal blocking sets, J. Geometry 76 (2003), 256-281.

Authors address:

Tamás Szőnyi, Zsuzsa Weiner
Department of Computer Science, Eötvös Loránd University,
H-1117 Budapest, Pázmány Péter sétány 1/C, HUNGARY
e-mail: szonyi@cs.elte.hu, weiner@cs.elte.hu
Tamás Szőnyi,
Computer and Automation Research Institute of the Hungarian Academy of Sciences
H-1111 Budapest, Lágymányosi út 11, HUNGARY
Zsuzsa Weiner
Prezi.com
H-1088 Budapest, Krúdy Gyula utca 12, HUNGARY
e-mail: zsuzsa.weiner@prezi.com

[^0]: *The authors were partially supported by OTKA NK 67867 and K 81310 grants and by the ERC Grant DISCRETECONT.

