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Group, Eötvös Loránd University, Pázmány P. stny. 1.C, 1117 Budapest, Hungary

ferenc.izsak@ttk.elte.hu

Abstract

An adaptive finite element method is developed here for the numerical solution of
one-dimensional boundary value problems. The method is based a on a neural network
representation of continuous, piecewise linear functions. The proposed optimization
procedure is demonstrated in a test problem.

1 Introduction

Neural networks have proven their usefulness in a wide range of scientific computing. For
classical problems in the numerical analysis, its application is less usual. In this contribu-
tion, we propose a way to contribute to this research direction.

For the formal introduction of neural networks, we refer to [3] and [4]. For our purpose,
it is sufficient to use that one can assign to any neural network NN a real vector function
NN : Rd0 → RdN , which maps to the input an output value. The function itself is
given in concrete terms using some internal parameters. The main power of this approach
lies in the efficient optimization procedure, which drives the optimal choice of these model
parameters. For this, we mostly use given input-output pairs and choose parameters, which
lead to smallest deviation between computed and known outputs. In the absence of given
pairs, we can also try to define a meaningful loss function, which should be minimized
directly to get optimal parameters.

The automatic differentiation in the related program packages makes possible to deal
also with millions of parameters. At the same time, we should not misuse this capability
and keep the number of parameters at a moderate level to avoid overfitting and enhance
the computational efficiency.

Accordingly, we use here the idea to solve a problem in numerical analysis by converting
it into a multidimensional minimization.

2 Problem statement and methods

We investigate two-point boundary value problems for second-order ordinary differential
equations of the following form:{

−u”(x) + c(x)u(x) = f(x) x ∈ (a, b)

u(a) = u(b) = 0,
(1)
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where c ∈ L∞(Ω) and f ∈ L2(Ω) are given.
We are looking for a numerical approximation uh : [a, b]→ R of u as a piecewise linear,

continuous function. In concrete terms, we assume that they are linear on [tj , tj+1] with the
slope sj , where t0 = a, tN+1 = b. Such a function can be characterized with [t1, t2, . . . , tN ]
and [s1, s2, . . . , sN ].

According to [4], such a function xh can be identified with the neural network

xh(t) := NN (t) = a2 · ReLu(a1t + b1) + b2, (2)

with the input t, and parameters on the first layer

a1 = (1, 1, . . . , 1) ∈ RN+1 and b1 = (0,−t1, . . . ,−tN ) ∈ RN+1

and on the second layer

a2 = (s1, s2 − s1, . . . , sN − sN−1, sN+1 − sN ) ∈ RN+1 and b2 = x0 ∈ R,

respectively. Note that here sN+1 is a known parameter. For the details, see [4].
To find optimal parameters in the above setting, we cannot use known input-output

pairs. Instead, the following statement delivers an appropriate loss function.

Theorem 1 u ∈ H1
0 (a, b) is the unique solution of (1) if and only if u ∈ H1

0 (Ω) is the
unique minimum of J : H1

0 (a, b)→ R:

J(u) =
1

2

∫ b

a
(u′)2 + cu2 −

∫ b

a
f · u. (3)

In this way, our approach is to find parameters t = (t1, t2, . . . tN−1) ∈ RN−1 and
s = (s1, s2, . . . sN−1) ∈ RN−1 such that J(us,t) := Js,t is minimal, where us,t denotes the
piecewise linear function described at the beginning of the section.

To optimize the performance of our algorithm, we use the following statement.

Lemma 2 For any fixed parameter set t above, the minimum of Js,t is attained, if the
corresponding function us,t is the finite element solution of (1) using a piecewise first order
basis with internal vertices t1 ≤ t2 ≤ · · · ≤ tN .

For the proof of the above two statements, we refer to [1]. Using these results, we can
reduce the number of parameters in the minimization problem and consider henceforth
the following problem:

Find the parameter t such that Js(t),t is minimal, where s(t) corresponds to the finite
element solution in Lemma 2.

Observe that this is, indeed, an adaptive finite element algorithm, where the basis
points t1, t2, . . . , tN are to find in an optimal way.

It is important to ensure that we have an optimal parameter set also in the discrete
case, which is stated in the following:

Lemma 3 For any fixed N , we have t and s above such that Js,t is minimal.
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Proof:
According to Lemma 2, it is sufficient to ensure the existence of t ∈ RN , for which

Js(t),t is minimal. Since the mappings t→ s(t) and (t, s)→ Jt,s are continuous, the same
applies for t→ Js(t),s. On the other hand, indeed the definition domain of this mapping is

TN = {t = (t1, t2, . . . , tN ) : a ≤ t1 ≤ t2 ≤ · · · ≤ tN ≤ b} ⊂ RN ,

which is compact, and therefore, we really have a local minimum at some t ∈ TN . �

Observe, if the minimum is attained at the boundary of TN , then tj = tj+1 for some
index j ∈ {0, 1, . . . , N}. This results in exactly the same piecewise linear approximation
as . . . , tj−1, tj ,

tj+tj+2

2 , tj+2, . . . with the slopes . . . , sj−1, sj+1, sj+1, sj+2, . . . . In this way,
the minimum should also attained in the interior of TN .

3 Implementation issues and numerical results

Indeed, to find an optimal t ∈ TN , we had to perform a conditional minimization. It turns
out that unconditional minimization can harm the order of the components in t.

To reduce the computational complexity, we introduce the following penalty term to
avoid conditional minimization:

Pt = K · (|t1 − 0|+ |t2 − t1|+ · · ·+ |1− tN | − 1),

where K = 1000 in the experiments. Clearly, if t ∈ TN , this term should be zero. Alto-
gether, we computed the minimum of

t→ Js(t),t + Pt

starting from a uniform division of the interval (a, b). To approximate integrals in the loss
term and in the finite element method, we applied a three-point Gauß integral. One can
increase the accuracy of integration using the built-in Matlab subroutines but this does
not increase further the accuracy of the final result. To compare our method with a similar
one in [2], we use the same test problem{

ü(x) = 200
9 · exp{−100(x− 1

3)2} · (1800 · x3 − 1200 · x2 + 173 · x + 6) x ∈ (0, 1)

u(0) = u(1) = 0,
(4)

where the analytic solution is given by u(x) = x · (exp{−100(x− 1
3)2} − exp{−400/9}).

The finite element solution, i.e. optimal piecewise linear approximation for (4) with
the starting value t and with the optimal t are shown in Figure 1 and 2, respectively.

Also, we have tested the computational error of the adaptive finite element method
given by the above optimization process in the H1

0 (a, b)-norm. The results are shown in
Table 3.

N 4 9 19 39 79

errad 4.45 0.637 0.305 0.155 0.0774
errun 7.52 0.282 0.188 0.109 0.0608
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Figure 1: Finite element solution of (4)
with t = (0.1, 0.2, . . . , 0.9) (dashed) to-
gether with the analytic solution of (4).

Figure 2: Finite element solution of (4) with
the optimal t together with the analytic so-
lution of (4).

One can realize that the advance of adaptive methods is significant only in the case of
relatively coarse meshes. On the other hand, the test problem in (4) has smooth solution.
Therefore, on a sufficiently fine mesh, its solution can be approximated well also without
adaptive refinement.
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