
PRODUCTION FUNCTIONS HAVING THE CES PROPERTY

LÁSZLÓ LOSONCZI

Abstract. To what measure does the CES (constant elasticity of substitution) property determine
production functions? We show that it is not possible to find explicitely all two variable production
functions f(x, y) having the CES property. This slightly generalizes the result of R. Sato [16].
We show that if a production function is a quasi-sum then the CES property determines only the
functional forms of the inner functions, the outer functions being arbitrary (satisfying some regularity
properties). If in addition to CES property homogeneity (of some degree) is required then the (two-
variable) production function is either CD or ACMS production function. This generalizes the result
of [4] and also makes their proof more transparent (in the special case of degree 1 homogeneity).

1. Introduction

In economics, a production function is a function that specifies the maximal
possible output of a firm, an industry, or an entire economy for all combinations
of inputs. In general, a production function can be given as y = f(x1, x2, . . . , xn)
where y is the quantity of output, x1, x2, . . . , xn are the production factor inputs
(such as capital, labour, land or raw materials). We do not allow joint production,
i.e. productions process, which has multiple co-products or outputs. Of course both
the inputs and output should be positive. Concerning the history of production
functions see the working paper of S. K. Mishra [14]. Several aspects of production
functions are dealt with in the monograph of R. W. Shephard [17].

Let R and R+ denote the set of reals and positive reals respectively.

Definition 1. A function f : Rn
+ → R+ is called a production function.

In the sequel we assume that production functions are twice continuously differ-
entiable. The elasticity of substitution was originally introduced by J. R. Hicks
(1932) [10] (in case of two inputs) for the purpose of analyzing changes in the
income shares of labor and capital. R. G. D. Allen and J. R. Hicks (1934) [3] sug-
gested two generalizations of Hicks’ original two variable elasticity concept. The
first concept which we call Hicks’ elasticity of substitution is defined as follows.
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Definition 2. Let f : Rn
+ → R+ be a production function with non-vanishing first

partial derivatives. The function

Hij(x) = −
1
xifi

+ 1
xjfj

fii
(fi)2
− 2fij

fifj
+

fjj
(fj)2

(x ∈ Rn
+, i, j = 1, . . . , n, i 6= j) (1)

(where the subscripts of f denote partial derivatives i.e. fi =
∂f

∂xi
, fij =

∂2f

∂xi∂xj
,

all partial derivatives are taken at the point x and the denominator is assumed to
be different from zero) is called the Hicks’ elasticity of substitution of the ith
production variable (factor) with respect to the jth production variable
(factor).

The other concept (thoroughly investigated by R. G. D. Allen [2], and H. Uzawa [20]
is more complicated.

Definition 3. Let f : Rn
+ → R+ be a production function. The function

Aij(x) = −x1f1 + x2f2 + · · ·+ xnfn
xixj

Fij
F

(x ∈ Rn
+, i, j = 1, . . . , n, i 6= j) (2)

where F is the determinant of the bordered matrix

M =


0 f1 . . . fn
f1 f11 . . . f1n
...

... . . .
...

fn fn1 . . . fnn

 (3)

and Fij is the co-factor of the element fij in the determinant F (F 6= 0 is assumed
and all derivatives are taken at the point x) is called the Allen’s elasticity of
substitution of the ith production variable (factor) with respect to the
jth production variable (factor).

It is a simple calculation to show that in case of two variables Hicks’ elasticity of
substitution coincides with Allen’s elasticity of substitution.

Definition 4. A twice differentiable production function f : Rn
+ → R+ is said to

satisfy the CES (constant elasticity of substitution)-property if there is a
constant σ ∈ R, σ 6= 0 such that

Hij(x) = σ (x ∈ Rn
+, i, j = 1, . . . , n, i 6= j). (4)

In the sequel we discuss that to what measure does the CES property (4) deter-
mine the production function.
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2. Cobb-Douglas and Arrow-Chenery-Minhas-Solow type
production functions

C. W. Cobb and P. H. Douglas [6] studied how the distribution of the national
income can be described by help of production functions. The outcome of their
study was the production function

f(x) = Cxα1
1 · · · · · xαnn (x ∈ Rn

+)

where C > 0, αi 6= 0 (i = 1, . . . , n) are constants satisfying α :=
n∑
i=1

αi 6= 0. We call

this Cobb-Douglas (or CD) production function.
In 1961 K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow [4] introduced

a new production function

f(x) = (β1x
m
β

1 + · · ·+ βnx
m
β
n )β (x ∈ Rn

+)

where βi > 0 (i = 1, . . . , n),m 6= 0, β 6= 0 are real constants. We shall refer
to this function as Arrow-Chenery-Minhas-Solow (or ACMS) production
function.

The CD and ACMS production functions have the CES property, namely as it is

easy to check Hij(x) = 1 for the CD functions and Hij(x) =
1

1− m
β

for the ACMS

production functions if m
β 6= 1, for m

β = 1 the denominator of Hi,j is zero, hence it
is not defined.

3. Homogeneous, sub- and superhomogeneous functions

Definition 5. A function F : Rn
+ → R+ is called is said to be homogeneous of

degree m ∈ R if
F (tx) = tmF (x)

holds for all x ∈ Rn
+, t > 0.

Definition 6. A function F : Rn
+ → R+ is called is said to be subhomogeneous of

degree m ∈ R if
F (tx) ≤ tmF (x)

holds for all x ∈ Rn
+ and for all t > 1. The function F is called superhomogeneous

of degree m ∈ R if the reverse inequality holds.

Homogeneous (sub and superhomogeneous) functions of degree 1 will simply be
called homogeneous (sub and superhomogeneous) functions.

If F is a production function, then in economy also the terms constant return to
scale, decreasing and increasing return to scale are used to designate homogeneous,
subhomogeneous and superhomogeneous (production) functions respectively.
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It is well-known that differentiable homogeneous functions F of degree m can be
characterized by Euler’s PDE

x1Fx1
(x) + · · ·+ xnFxn(x) = mF (x) (x ∈ Rn

+).

It is not so much known, that similar characterizations hold for sub- and superho-
mogeneous function (compare with L. Losonczi [11]).

Theorem 7. Suppose that F : Rn
+ → R+ is a differentiable function on its domain.

F is subhomogeneous of degree m, i.e.

F (tx) ≤ tmF (x) (5)

holds for all x ∈ Rn
+ and for all t > 1 if and only if

x1Fx1
(x) + · · ·+ xnFxn(x) ≤ mF (x) (x ∈ Rn

+) (6)

F is superhomogeneous of degree m, i.e. the reverse inequality of (5) holds if and
only if the reverse of (6) is satisfied.
If strict inequality holds in (6) or in its reverse then also (5) or its reverse is
satisfied with strict inequality.

Remark 1. (5) (or its reverse) holds for x ∈ Rn
+, t ∈]0, 1[ if and only if the

reverse of (6) (or (6)) is satisfied.

Proof. We prove the statement only for subhomogeneous functions, the superho-
mogeneous case is analogous.
Necessity. Deducting F from (5), dividing by t−1 > 0 and taking the limit t→ 1+0
we obtain (6).

Sufficiency. Replace in (6) x by tx and rearrange it as

tx1Fx1
(tx) + · · ·+ txnFxn(tx)

F (tx)
≤ m

where t > 1. This equation can be rewritten as

t
d

dt
(lnF (tx)) ≤ m, or

d

dt
(lnF (tx)) ≤ m

t
.

Integrating the latter inequality from t = 1 to t > 1 and omitting the ln sign we
obtain (5), completing the proof of sufficiency.
The statement concerning strict inequalities is obvious. �

4. The most general two variable CES function

Suppose that f : R2
+ → R+ is a two variable CES production function, then

−
1

x1f1
+ 1

x2f2
f11

(f1)2 −
2f12
f1f2

+ f22
(f2)2

= σ (x1, x2 ∈ R+) (7)
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where σ ∈ R, σ 6= 0 is a constant. (7) is partial differential equation (PDE) of
second order which can be reduced to two first order equations. We shall find the
general solution of the first equation. We partially follow R. Sato [16] who found
the solution of a special Cauchy problem for the said equation. The left hand side
of (7) can be written as

−
1

x1f1
+ 1

x2f2
f11

(f1)2 −
2f12
f1f2

+ f22
(f2)2

=
x1f1 + x2f2

x1x2

(
−f11f2

f1
+ 2f12 − f22f1

f2

) =
x1 + x2u

x1x2

(
∂u
∂x1
− 1

u
∂u
∂x2

)
where

u(x1, x2) :=
f1(x1, x2)

f2(x1, x2)
(x1, x2 ∈ R+).

By (7) the new unknown function u satisfies the first order PDE

∂u

∂x1
− 1

u

∂u

∂x2
=

u

σx1
+

1

σx2
.

This PDE is simplified if we introduce the function v = lnu provided that u(x1, x2) >
0 (otherwise, if u(x1, x2) < 0, we use the substitution v = ln(−u)). Restricting our-
selves to the first case, the transformed equation reads

ev
∂v

∂x1
− ∂v

∂x2
=

ev

σx1
+

1

σx2
,

or

ev
∂

∂x1

(
v − lnx

1
σ
1

)
=

∂

∂x2

(
v + lnx

1
σ
2

)
.

This equation is further simplified if we use the new unknown function

w(x1, x2) := v(x1, x2)− lnx
1
σ
1 + lnx

1
σ
2 .

Then

ev = ew
(
x1

x2

) 1
σ

,
∂

∂x1

(
v − lnx

1
σ
1

)
=
∂w

∂x1
,

∂

∂x2

(
v + lnx

1
σ
2

)
=
∂w

∂x2

hence

ew
(
x1

x2

) 1
σ ∂w

∂x1
− ∂w

∂x2
= 0. (8)

(8) is a first order homogeneous quasi-linear partial differential equation in two
variables. Taking its general solution in implicit form Φ(x1, x2, w) = 0 it is known
(see [19], pp. 279-283) that for Φ the linear homogeneous PDE

ew
(
x1

x2

) 1
σ ∂Φ

∂x1
− ∂Φ

∂x2
+ 0

∂Φ

∂w
= 0
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holds. Its characteristic system is

dx1

ew
(
x1

x2

) 1
σ

=
dx2

−1
=
dw

0

or

dw

dx2
= 0,

dx1

dx2
= −ew

(
x1

x2

) 1
σ

.

First we find two independent first integrals of this system of ordinary differential
equations. From the first equation we get w = C0 (C0 is an arbitrary constant)
then with eC0 = C1 > 0 separating the variables in the second equation we obtain

dx1

x
1
σ
1

= −C1
dx2

x
1
σ
2

.

Integrating we get

lnx1 = −C1 lnx2 + C2 if σ = 1

x
1− 1

σ
1 = −C1x

1− 1
σ

2 + C2 if σ 6= 1.
(9)

The first integrals are the solutions for C1, C2 of the system consisting of (9) and
ew = C1. These are C1 = ew, C2 = lnx1 + ew lnx2 if σ = 1 and C1 = ew, C2 =

x
1− 1

σ
1 + ewx

1− 1
σ

2 if σ 6= 1. Finally the general solution of (8)

Φ(ew, lnx1 + ew lnx2) = 0, if σ = 1,

Φ(ew, x
1− 1

σ
1 + ewx

1− 1
σ

2 ) = 0, if σ 6= 1,

where Φ is an arbitrary differentiable function. Going back to the original variables
we obtain

Φ

(
f1
f2

(
x2

x1

) 1
σ

, lnx1 + f1
f2

(
x2

x1

) 1
σ

lnx2

)
= 0, if σ = 1

Φ

(
f1
f2

(
x2

x1

) 1
σ

, x
1− 1

σ
1 + f1

f2

(
x2

x1

) 1
σ

x
1− 1

σ
2

)
= 0, if σ 6= 1

(10)

The next step in finding the production function f would be to solve (10) for the
ratio f1

f2
as a function of x1, x2 i.e. find a function G such that f1

f2
= G(x1, x2). Then

solving the second linear PDE

∂f

∂x1
−G(x1, x2)

∂f

∂x2
= 0

we obtain the the most general CES functions f .
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Unfortunately we cannot find all solutions f1
f2

from (10), as this ratio appears
in both variables of Φ.. We can however find several families of Φ for which the
solution can be found.

For CES functions of more than two variables the situation is even more compli-
cated.

5. Quasi-sum form CES production functions

Definition 8. A function f : Rn
+ → R+ is called a quasi-sum, if there exist

continuous strict monotone functions gi : R+ → R (i = 1, . . . , n) and there exist
an interval I ⊆ R of positive length and a continuous strict monotone function g :
I → R+ such that for every x = (x1, . . . , xn) ∈ Rn

+ we have g1(x1)+ · · ·+gn(xn) ∈ I
and

f(x) = g (g1(x1) + · · ·+ gn(xn)) . (11)

The justification for studying production functions of quasi-sum form is that
these functions appear as solutions of the general bisymmetry equation and they
are related to the problem of consistent aggregation, see J. Aczél and Gy. Maksa [1],
Gy. Maksa [13].

Our first observation is that if a production function is of quasi-sum form (11)
then its Hicks’ elasticity of substitution of the ith production variable with respect
to the jth production variable does not depend on the function g.

Write h(x) = g1(x1) + · · ·+ gn(xn) then

f(x) = g (h(x)) = g (g1(x1) + · · ·+ gn(xn)) (x ∈ Rn
+).

A simple calculation shows that

fxi(x) = g′ (h(x)) g′i(xi)

fxixi(x) = g′′ (h(x)) (g′i(xi))
2 + g′ (h(x)) g′′i (xi)

fxixj(x) = g′′ (h(x)) g′i(xi)g
′
j(xj)

thus

Hij(x) =
− 1
xig′(h)g′i

− 1
xjg′(h)g′j

g′′(h)(g′i)2+g′(h)g′′i
(g′(h)g′i)2

− 2g′′(h)g′ig
′
j

(g′(h))2g′ig
′
j

+
g′′(h)(g′j)2+g′(h)g′′j

(g′(h)g′j)2

=
− 1
xig′i
− 1

xjg′j

g′′i
(g′i)2

+
g′′j

(g′j)2
(12)

where the derivatives of gi (i = 1, . . . , n) are taken at the point xi and h is taken at
x. This proves our claim.

For quasi sums however the CES property determines the functional forms of the
inner functions gi.
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Theorem 9. Suppose that the production function f : Rn
+ → R+ is of quasi-sum

form (11) where the functions g, gi (i = 1, . . . , n) are twice differentiable and have
non-vanishing first derivatives. If f satisfies the CES-property, then the functions
gi (i = 1, . . . , n) have the following forms

gi(x) =


σx1− 1

σ

Ci(σ − 1)
+Di, if σ 6= 1,

lnx

Ci
+Di, if σ = 1,

(13)

where Ci, Di are arbitrary nonzero constants.
If n = 2, σ 6= 1 then, in addition to the functions (13), g1, g2 may have the form

g1(x) =
ln
∣∣∣σd1x

1− 1
σ

σ−1 +C1

∣∣∣
d1

+D1, g2(x) =
ln
∣∣∣−σd1x

1− 1
σ

σ−1 +C2

∣∣∣
−d1

+D2,
(14)

where d1 6= 0, D1, D2 are arbitrary constants, C1, C2 are constants satisfying the
conditions

signC1 = sign
(σ − 1)

σd1
, and signC2 = − sign

(σ − 1)

σd1
. (15)

Conversely, if gi have the forms (13), (14) (with (15) satisfied) then (4) holds.

Proof. By the identity

g′′(x)

(g′(x))2 = − d

dx

(
1

g′(x)

)
we can rewrite (12) as

Hij(x) =

−

(
1

xi

1

g′i
+

1

xj

1

g′j

)
(

1

g′i

)′
+

(
1

g′j

)′ .

This shows that the substitutions ki(xi) :=
1

g′i(xi)
will simplify our formulae. In-

deed, by the help of ki the equation (4) goes over into

σk′i(xi)−
1

xi
ki(xi) = −

(
σk′j(xj)−

1

xj
kj(xj)

)
.
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Here the right hand side depends only on xj while the left hand side depends only
on xi, hence both sides must be constant (depending only the subscript i). Thus
we conclude that

k′i(xi)−
1

σxi
ki(xi) = di (i = 1, . . . , n). (16)

For the constants di we have di + dj = 0 if i, j ∈ {1, . . . , n}, i 6= j.
If n = 2 then we have only one equation: d1 + d2 = 0, hence d2 = −d1, with

arbitrary d1 ∈ R.
If n ≥ 3 then all di’s must be zero, as d1 +d2 = d1 +d3 = · · · = d1 +dn = 0, hence

d2 = d3 = · · · = dn = −d1. From d2 + d3 = 0 we get d1 = 0, thus d2 = · · · = dn = 0.

Thus we proved that (4) holds if and only if

gi(x) =

∫
dx

ki(x)
, (x ∈ R+, i = 1, . . . , n)

where ki satisfy (16), with d1 ∈ R, d2 = −d1, if n = 2, and d1 = · · · = dn = 0, if
n ≥ 3.

It is a simple exercise to show that the general solution of the linear inhomoge-
neous first order differential equation

k′(x)− 1

σx
k(x) = d (x ∈ I ⊆ R+)

is

k(x) =


σdx

σ − 1
+ Cx

1
σ , if σ 6= 1,

dx lnx+ Cx, if σ = 1,
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where C ∈ R is an arbitrary constant. Further, for d 6= 0 using the substitutions

u =
σdx1− 1

σ

σ − 1
+ C resp. u = d lnx+ C in the integrations we have

∫
dx

k(x)
=



σx1− 1
σ

C(σ − 1)
+D, if d = 0, C 6= 0, σ 6= 1,

lnx

C
+D, if d = 0, C 6= 0, σ = 1,

ln
∣∣∣σdx1− 1

σ

σ−1 + C
∣∣∣

d
+D, if d 6= 0, σ 6= 1,

ln |d lnx+ C|
d

+D, if d 6= 0, σ = 1,

(17)

where D ∈ R is an arbitrary constant.
If n = 2 then, in agreement with the previous calculations, we get g1, g2 from

(11) by putting into it C = C1, C2; D = D1, D2; d = d1,−d1 respectively. Thus,
assuming d1 6= 0 we obtain that

g1(x) =
ln
∣∣∣σd1x

1− 1
σ

σ−1 +C1

∣∣∣
d1

+D1, g2(x) =
ln
∣∣∣−σd1x

1− 1
σ

σ−1 +C2

∣∣∣
−d1

+D2, if σ 6= 1,

g1(x) =
ln |d1 lnx+ C1|

d1
+D1, g2(x) =

ln |−d1 lnx+ C2|
−d1

+D2, if σ = 1.

These functions should be defined for all positive numbers. This requirement ex-
cludes the solutions g1, g2 for σ = 1, as in this case the function x → d1 lnx + C1
always has a positive zero x0 = e−C1/d1 thus g1 is not defined at x0. For σ 6= 1 the
situation is different. In this case g1, g2 are defined for all positive numbers if and

only if the functions x→ σd1x
1− 1

σ

σ−1 +C1, x→ −σd1x
1− 1

σ

σ−1 +C2 do not have positive zeros,

i.e if −C1(σ−1)
σd1

< 0, and C2(σ−1)
σd1

< 0, or if

signC1 = sign
(σ − 1)

σd1
, and signC2 = − sign

(σ − 1)

σd1

hold, which is exactly (8). �
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6. Homogeneous CES production functions

Here we show that CES property and homogeneity (of some degree ) explicitely
determine the production functions, moreover they are either CD or ACMS pro-
duction functions. This generalizes and somewhat clarifies analogous result of [4].

Theorem 10. Suppose that P : R2
+ → R+ is a twice differentiable two-variable

production function, homogenous of degree m 6= 0 and satisfying (7). Then

P (x, y) =


Cxαym−α, if σ = 1

(
β1x

m
β + β2y

m
β

)β
, if σ 6= 1.

(18)

where α 6= 0 is arbitrary nonzero constant such that m− α 6= 0 holds, C, β1, β2 are

arbitrary positive constants, β =
mσ

σ − 1
6= 0 (and due to this

m

β
6= 1).

Remark 2. If P is homogeneous of degree zero then by the homogeneity equation
xPx(x, y) + yPy(x, y) = 0. Hence 1

xPx
+ 1

yPy
= 0 which makes the function Hij

indeterminate. Thus the assumption m 6= 0 in Theorem 10 is natural.
Remark 3. (18) shows that for σ = 1 the function P is a CD function while for

σ 6= 1 our production function P is an ACMS function.

Proof. For the sake of simplicity we shall denote the variables of P by x, y. Then
(7) has the form

σ = −
1

xPx(x,y) + 1
yPy(x,y)

Pxx(x,y)
(Px(x,y))2 −

2Pxy(x,y)
Px(x,y)Py(x,y) +

Pyy(x,y)
(Py(x,y))2

. (19)

As P is homogeneous of degree m it satisfies the partial differential equation

xPx(x, y) + yPy(x, y) = mP (x, y). (20)

Differentiating (20) with respect to x we get

Px + xPxx + yPyx = mPx

where here and in the following P and its derivatives are taken at the point (x, y).
Hence

Pxx = −y
x
Pyx +

m− 1

x
Px and similarly Pyy = −x

y
Pxy +

m− 1

y
Py

Substituting these into (19) we obtain that

σ =
−
(

1
xPx

+ 1
yPy

)
−xyPxy

(
1
xPx

+ 1
yPy

)2
+ (m− 1)

(
1
xPx

+ 1
yPy

) .
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Simplifying by the numerator we get that

xyPxy

(
1

xPx
+

1

yPy

)
= m− 1 +

1

σ
.

Using again the homogeneity equation we have 1
xPx

+ 1
yPy

= mP
xPxyPy

thus finally

PPxy
PxPy

= 1− 1

m
+

1

σm
(21)

Case 1: σ = 1. Now we can rewrite (21) in the form

PPxy − PxPy
P 2 = 0, or (lnP )xy = 0,

hence by integration we conclude that there exist differentiable functions g, h such
that

lnP (x, y) = g(x) + h(y), P (x, y) = eg(x)+h(y).

Substituting P into the homogeneity equation (20) we obtain

xg′(x)eg(x)+h(y) + yh′(y)eg(x)+h(y) = meg(x)+h(y),

or

xg′(x) = m− yh′(y).

Here the right hand side depends only on x, while the left one only on y, thus both
sides must be a constant α and g, h have to satisfy the equations

g′(x) =
α

x
, h′(y) =

m− α
y

.

These equations imply that α 6= 0,m − α 6= 0 otherwise the partial derivatives
Px, Py would be zero, making the function Hij indeterminate.

Integrating we obtain g(x) = α lnx+D1, h(y) = (m−α) ln y+D2 where D1, D2 ∈
R are arbitrary constants, and

P (x, y) = eg(x)+h(y) = eα lnx+D1+(m−α) ln y+D2 = eD1+D2xαym−α = Cxαym−α

where C := eD1+D2 is an arbitrary positive constant. This proves (18) in the case
σ = 1.

Case 2: σ 6= 1. Let H be defined by P (x, y) = H(x, y)β, where β is a constant
to be determined later. Substituting the derivatives

Px = βHβ−1Hx, Py = βHβ−1Hy, Pxy = β(β − 1)Hβ−2HxHy + βHβ−1Hxy
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of P into (21) we get after some simplifications that

1− 1

β
+

1

β

HHxy

HxHy
= 1− 1

m
+

1

σm
. (22)

Let β =
mσ

σ − 1
then β 6= 0 as m 6= 0, σ 6= 0 further

m

β
6= 1 otherwise 1 =

σ

σ − 1
which is impossible. (22) simplifies to Hxy(x, y) = 0. Thus there exist differentiable
functions g, h such that

H(x, y) = g(x) + h(y), hence P (x, y) = (g(x) + h(y))β.

substituting P into the homogeneity equation (20) we obtain after some simplifi-
cations that

βxg′(x)−mg(x) = mh(y)− βyh′(y).

Here, again, the right hand side depends only on x, while the left one only on y,
thus both sides must be a constant α and g, h have to satisfy the equations

g′(x)− m

βx
g(x) =

α

βx
, h′(y)− m

βy
h(y) = − α

βy
.

The general solutions of these linear differential equations are

g(x) =
−α
m

+ β1x
m
β h(y) =

α

m
+ β2y

m
β ,

where β1, β2 ∈ R are arbitrary constants, and

P (x, y) = (g(x) + h(y))β =
(
β1x

m
β + β2y

m
β

)β
.

Here β1, β2 must be positive, otherwise P would not be defined for all positive
x, y. �

7. Closing remarks

For production functions of n > 2 variables the approach in section 6 does not
work, as the CES property involves partial derivatives with respect to two vari-
ables while Euler’s PDE characterizing homogeneous functions involves all partial
derivatives. There were several attempts to extend the two variable result to more
variables, see e.g. D. McFadden [8], H. Uzawa [20]. CD and ACMS production func-
tions (of several variables) have been characterized by the homogeneity (of some
degree) and quasi-sum (or quasi-linear) form, see W. Eichorn [7], B. Nyul [12], F.
Stehling [18]. The Hick’s elasticity of substitution has been generalized into several
directions, see among others R. Färe and L. Jansson [9], C. Blackorby and R. R.
Russell [5], N. S. Revankar [15].
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