HETEROSCEDASTICITY
AND EFFICIENT ESTIMATES OF BETA

JOZSEF VARGA' — GABOR RAPPATI®

This study investigates the presence of conditional heteroscedasticity in the market
model residual terms and the efficiency of beta estimates. Nonnormality and heteroscedas-
ticity in the market model residual terms make the estimators inefficient and some of the sig-
nificance tests invalid. An extension of the Autoregressive Conditionally Heteroscedastic
(ARCH) model, the Bollerslev’s Generalized Autoregressive Conditionally Heteroscedastic
(GARCH) model, is applied to a sample composed of securities traded at the Budapest Stock
Exchange, which allows us to test whether the conditional heteroscedasticity, mainly ob-
served in the United States market, is also present in the Hungarian stock market.
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In the terminology of the capital asset pricing model (CAPM), beta is a measure or
price of risk that arises from the reasonable and widespread idea that changes in stock
returns are directly related to market changes. It is the difference between the expected
rate of return on market portfolio and the riskfree rate of return. The equation describing
this relationship has been developed by Sharpe (1963) and is known as the market model.
The market model is a simple statistical model which relates the return of any given secu-
rity to the return of the market portfolio. The model’s linear specification follows from
the assumed joint normality of asset returns. For any security i we have

R, =o;+ B[Rmt +&;
E[Sit]zo Var[sit]zcéi, v

where

R;, is the random return on stock i in period ¢,
R, 1s the random return on the market index in period ¢,

o

; 1s the component of stock i’s return that is independent of the market perform-

ance,
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p; or beta is the measure of the expected change in R,, given change in R,, ,

g;; 1s the random disturbance term with an expected value of zero and variance of

02

g
Equation /1/ is frequently used to forecast stock returns. As the future returns are un-
known, in practice it is necessary to rely on estimates of the model parameters based on
historical data, that is

R, =&+ BiRmz s 12/

where R,, denotes the actual return of the market index regarding it as the proxy of the

market portfolio, &; and f%,- are the estimates of a; and f; respectively.

When using the ordinary least squares (OLS) technique, which generates best linear
unbiased estimates (BLUE), the beta estimates are given by the following formula

ﬁiZGﬂZCOV(Ri,Rm), Y
c Var(R,,)

2
m
widely used in finance. In the Sharpe model the endogeneous variables (individual re-
turns) are not independent, what is more they partly compose the exogeneous variable
(market portfolio return). Thus, this is a multivariate regression model consisting of non-
independent equations. Estimating these equations separately, the estimates probably will
contain certain SUR bias, but it should also be remembered that in the original Sharpe
model the market return is present and not the value of the market portfolio (or as its
proxy the index value) and the market return is not a linear combination of the individual
returns.

The ordinary method assumes that the disturbance term is white noise, that is,
conditions of normality with zero mean, finite and constant through time (homoscedastic)
variance, and universal uncorrelation are hold. However a number of studies have raised
questions on the validity of the market model to estimate the systematic risks of financial
assets using the OLS technique. It has been shown that some of the assumptions such as
homoscedasticity do not always hold. The most important implications of
heteroscedasticity are:

1. The OLS estimators will be inefficient, since they will not have the minimum vari-
ance in the class of unbiased estimators. This fact can partly explain the nonstability of
beta estimates and makes impossible to use past values of betas for forecasting their fu-
ture values. So the accuracy of beta estimates also can not be evaluated in a correct way.
(Blume; 1971, Levy; 1971, Theil; 1971, Lin—Chen—Boot; 1992).

2. Significance hypothesis tests of the estimates will be performed with a higher type
I error than it is assumed, since the estimated covariance matrix will be biased. In similar
way, other tests, based on homoscedasticity, e. g., the Chow test for parameter stability
will no longer be valid.
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3. The coefficient of determination R will decrease, wich means that systematic risk
will be understated, while diversifiable risk will be overstated. As Fisher and Kamin state
(Fisher—Kamin; 1985, p. 129), errors in beta estimates are the equivalent of extra non-
systematic individual risks.

For these reasons, it is necessary to take heteroscedasticity explicitly into account.
Although many of the previous studies consider it in the CAPM tests, only a few excep-
tions investigate this question in the estimation of betas with the market model. Miller
and Scholes (1972), Brenner and Schmidt (1975), Martin and Klemkovsky (1975), Bel-
kaui (1977), Brown (1977), and Bey and Pinches (1980) find evidences of heteroscedas-
ticity in the market model. The previously listed authors use a wide variety of methods:
from simple analysis of scatter diagrams and regressions, to the Bartlett, the Glejser, or
the Goldfeld-Quandt tests. However, Giaccotto and Ali (1982) point out that uncondi-
tional acceptance of that evidence can not be advisable, among other reasons, because the
tests are not reliable if regression residuals are non-normal. This is a very common case,
as probability distributrion of asset returns are usually markedly leptokurtic (see, for ex-
ample, Varga; 1998). But apart from this evidence, rarely has literature dealt with the es-
timation of beta explicitly considering heteroscedasticity. We mention the following ex-
ceptions. Schwert and Seguin (1990) apply the weighted least squares (WLS) technique,
instead of the OLS one, to estimate betas. This procedure requires the introduction of an
exogenous variable — normally, the market return — in order to predict the residual vari-
ance and takes into account unconditional heteroscedasticity. Bera, Bubnys and Park
(1988), Diebold, Im and Lee (1988) and Morgan and Morgan (1987) use the Autoregres-
sive Conditionally Heteroscedastic (ARCH) model of Engle (1982), that is, they estimate
betas considering residual variance of today depending upon yesterday’s error. This
model is used by Schwert and Seguin, who find similar results to those of the WLS re-
gression. Finally, Corhay and Rad (1996) apply a market model which accounts for
GARCH (Generalized Autoregressive Conditionally Heteroscedastic) effects.

The following part of this study is divided into four sections. First, the applicability of
the GARCH models to capture the serial correlation of volatility in financial time series
is discussed. The second section presents the data used for model specification. In the
third section the empirical findings of normality and heteroscedasticity are presented and
discussed. The final section of the paper contains brief conclusions.

THE GARCH MODEL

In order to concentrate on volatility of a time-series ¢, ;, we assume that &,,, is an
innovation, that is, it has zero mean conditional on time ¢ information. In an application
in finance, &,,, might be the innovation in an asset return. We define o> to be the time
¢ conditional variance of &,,, or equivalently the conditional expectation of &2, . It is
also assumed that conditional on time ¢ information, the innovation is normally distrib-

uted: &,,, ~ N(0,67) . The unconditional variance of the innovation, o, is just the un-

conditional expectation of 2. (For a series with a time-varying conditional mean, the
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unconditional variance is not the same as unconditional expectation of the conditional
variance. This result holds only because we are working with an innovation series that
has a constant (zero) conditional mean).

To capture the serial correlation of volatility in financial time series, Engle (1982)
proposed the class of ARCH models. These regard conditional variance as a distributed
lag of past squared innovations:

o] =w+0(L) &, /4

where 0 is a polynomial in the lag operator. To keep the conditional variance positive,
o and the coefficients in 6(L) must be non-negative.

As a possible way to model persistent movements in volatility without estimating a
large number of coefficients in a high-order polynomial 6(L), Bollerslev (1986) sug-
gested the GARCH model:

ol =w+p(L) o’ +0(L) &2, /5/

where p(L) is also a polynomial in the lag operator. This is called a GARCH (p, q)
model, when the order of polynomial p(L) is p and the order of the polynomial 6(L) is

q. The most commonly used model in the GARCH class is the simple
GARCH (1, 1) which can be written as

o; =w+p o, +0 & =0+ (p+0)0, +0 (&~ ) = 6
=w+(p+0) o/, +0 07 (e —1).

The term (&7 —o?,) in the second equality in /6/ has zero mean, conditional on time

t-1 information, and can be thought of as the shock to volatility. The coefficient ©
measures the extent to which a volatility shock today feeds through into the next period's
volatility, while (p+0) measures the rate at which this effect dies out over time. The

third equality in /6/ rewrites the volatility shock as O‘t2_1 (s,2 —1), the square of a standard
normal variable less its mean, i.e. a demeaned %> (1) random variable, multiplied by past
volatility a; .

The GARCH (1,1) model can also be written in terms of its implications for squared

innovations &2,. We have then

& =0+ (P+0)E + (G —0)) —p (& —aly). 17/

This last representation makes it clear that the GARCH (1,1) model is an ARMA (1, 1)

model for squared innovations, but the standard ARMA (1, 1) model has homoscedastic

shocks, while in this model the shocks (&7, —o7) are themselves heteroscedastic.
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In the GARCH (1,1) model it is easy to construct multiperiod forecasts of volatility.
When p+6 <1, the unconditional variance of &,,,, or equivalently the unconditional ex-
pectation of atz ,is w/(1-p-0).

The GARCH (1,1) model with p+0 =1 has a unit autoregressive root so that today's

volatility affects forecasts of volatility into the indefinite future. It is therefore known as
an integrated GARCH, or IGARCH (1,1) model (Engle and Bollerslev; 1986).

THE DATA

In the model specification the daily closing prices of stocks traded at the Budapest
Stock Exchange (BSE) for the period August 1998 to January 2000 (365 trading day) are
used. Results are based on a sample containing 18 individual securities as well as the
stock compound index (BUX). The stocks under investigation (their names and codes
used in the analysis are shown in the columnar composition) were selected because of
their high volume (nearly 90 percent of the trading volume of the BSE) and frequency of
trading in the last years. In the investigated time horizont of the analysis — practically
without any changes — these stocks formed the stock index. This confirms the suitability
of the sample as an adequate representation of the Hungarian stock market.

The stocks under investigation and their codes used in the study

Code Stock Code Stock
BCHEM Borsodchem Rt. NABI NABI Rt.
DANUB Danubius Rt. oTP OTP Bank Rt.
DEMASZ  Démasz Rt. PPLAST Pannonplast Rt.
EGIS Egis Rt. PICK Pick Szeged Rt.
FOTEX Fotex Rt. PGAZ Primagaz Rt.
GRABO  Graboplast Rt. RABA RABARt.
IEB Inter-Europa Bank Rt. RICHTER Richter Gedeon Rt.
MATAV ~ Matav Rt. TVK TVKRt.
MOL MOL Rt. ZALAKER Zalakeramia Rt.

Returns used to estimate the parameters of the market model were computed in the
usual way by the formula

R” _ Piz _B,t—l % 365 ,
R’,t—l dt =1

>

where P, is the closing price of stock i onday ¢ and d,, ; denotes the real number of

days between trading days #—1 and ¢. This transformation (mean and variance stabili-
zation) results in mean and covariance stationarity and ergodicity of the return series to
guarantee the validity of all the statistical tests containing as an assumption the station-
arity of the time series under investigation. Return values computed by the previous for-
mula approximate the log returns widely used in finance. The market return was deter-
mined by the changes of the stock index (BUX).
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THE EFFICIENCY OF BETA ESTIMATES, NORMALITY
AND HETEROSCEDASTICITY OF THE RESIDUAL TERMS

As a first step of the empirical analysis the usually specified model (see equation /1/,
white noise with random error) was estimated using the method of ordinary least squares
(OLS), then tested the normality and heteroscedasticity of the residual terms. The nor-
mality test was performed by the Jarque-Bera statistic. For testing the heteroscedasticity
the White test (White; 1980) was used. The results are summarized in Table 1.

Table 1
Results of parameter estimation with the OLS technique

Stock imes | P | e | P | g | P

BCHEM 1.103 0.000 154.84 0.000 16.90 0.000
(23.28)

DANUB 0.771 0.000 100.80 0.000 60.90 0.000
(15.06)

DEMASZ 0.784 0.000 514.36 0.000 51.60 0.000
(19.64)

EGIS 1.046 0.000 477.96 0.000 10.90 0.000
(18.05)

FOTEX 0.658 0.000 12 043.88 0.000 22.85 0.000
(12.09)

GRABO 0.852 0.000 12 476.17 0.000 12.09 0.000
(8.69)

IEB 0.474 0.000 438.06 0.000 228 0.104
(9.03)

MATAV 0.735 0.000 351.33 0.000 67.83 0.000
(27.39)

MOL 0.834 0.000 11.71 0.003 6.06 0.003
(28.69)

NABI 0,983 0.000 831.10 0.000 6.58 0.002
(14.8)

OTP 1.189 0.000 729.43 0.000 20.43 0.000
(33.11)

PANNONPLAST 0.847 0.000 630.22 0.000 3.89 0.021
(12.91)

PICK 0.928 0.000 16 940.09 0.000 6.35 0.002
(15.44)

PRIMAGAZ 1.034 0.000 189.26 0.000 2741 0.000
(18.53)

RABA 0.963 0.000 543.77 0.000 12.26 0.000
(17.98)

RICHTER 1.522 0.000 3266.85 0.000 2.39 0.093
(26.56)

TVK 1,124 0.000 1467.73 0.000 3.48 0.032
(19.69)

ZALAKERAMIA 1.074 0.000 728.84 0.000 5.95 0.003
(16.95)

* ¢ statistics in parentheses.
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In the second step of the analysis, the estimation procedure was repeated using a
GARCH(1,1) model for the error term. Results are presented in Table 2. Table 3 con-

tains the estimated parameters of the GARCH (1,1) model and the p-values for the devia-
tions from zero.
Table 2

Estimates of betas, values of t-statistic, p-values,
and the Jarque-Bera test values for individual securities using GARCH(1,1) model

BCHEM 1.069 0.000 131.69 0.000
(24.94)

DANUB 0.681 0.000 67.25 0.000
(13.56)

DEMASZ 0.693 0.000 164.51 0.000
(25.63)

EGIS 1.021 0.000 631.21 0,000
(23.63)

FOTEX 0.576 0.000 643.26 0.000
(24.99)

GRABO 0.654 0.000 1932.64 0.000
(17.77)

IEB 0414 0.000 276.91 0.000
(11.95)

MATAV 0.717 0.000 307.38 0.000
(51.07)

MOL 0.833 0.000 6.42 0.040
(45.02)

NABI 0.672 0.000 92.66 0.000
(12.93)

OTP 1.150 0.000 88.89 0.000
(57.09)

PPLAST 0.874 0.000 375.02 0.000
(16.16)

PICK 0.678 0.000 528.00 0.000
(16.13)

PGAZ 1.026 0.000 169.33 0.000
(30.87)

RABA 0.931 0.000 291.82 0.000
(37.42)

RICHTER 1.349 0.000 576.10 0.000
(44.51)

TVK 1.083 0.000 2226.53 0.000
(19.75)

ZALAKER 0.823 0.000 1380.39 0.000
(25.17)

* ¢ statistics in parentheses.
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Table 3

The estimated parameters of the GARCH (1,1) model and the p-values for the deviances from zero

Stock é p-value [3 p-value é + f)
BCHEM 0.082 0.000 0.870 0.000 0.952
DANUB 0.049 0.011 0.916 0.000 0.965
DEMASZ 0.084 0.000 0.860 0.000 0.944
EGIS 0.191 0.012 0.509 0.008 0.700
FOTEX 1.074 0.000 0.303 0.000 1.377
GRABO 0.248 0.000 0.691 0.000 0.939
IEB 0.328 0.000 0.339 0.001 0.667
MATAV -0.038 0.000 0.119 0.847 0.081
MOL 0.141 0.010 0.673 0.000 0.814
NABI 0.077 0.000 0.910 0.000 0.987
OTP 0.175 0.000 0.757 0.000 0.932
PPLAST 0411 0.000 0.311 0.000 0.722
PICK 0.239 0.000 0.576 0.000 0.815
PGAZ 0.131 0.000 0.284 0.183 0.415
RABA 0.336 0.000 0.451 0.000 0.787
RICHTER 0.191 0.000 0.793 0.000 0.984
TVK 0.058 0.000 0.837 0.000 0.895
ZALAKER 0.468 0.000 0.296 0.000 0.764

Evaluating the results the following can be stated.

1. The beta estimates based on both the OLS technique and the GARCH(1,1) ad-
justed model are the same from the view point of the risk evaluation with only one ex-
ception (ZALAKER) , being the estimated beta in the first case greater, and in the second
case less than 1.

2. Based on the OLS estimates, it seems to be clear that in most of the models (16 out
of 18) significant heteroscedasticity does exist.

3. Assuming the GARCH (1,1) model for the error term the estimates result in higher

t-values than the ordinary method in 16 (out of 18) cases. (It should be noticed that all the
beta estimates using even the ordinary or the GARCH (1,1) adjusted models are signifi-
cantly different from zero.) It also should be emphasized that even in the case of
GARCH specification the normality assumption of the residual variable does not hold, i.
e., the increasing in #-values does not necessarily mean significant improvement.

4. The results of the normality test (Jarque-Bera test) also represent an improvement (in
15 out of 18 cases the test statistics are lower), but the residuals are not normally distributed.

5. The estimates of parameter o in the market model tends to be zero indicating the
efficiency of the security market, because in an efficient market assets tend to flow to
higher return securities or portfolios.

Calculations were repeated for portfolios in order to test whether some differences
arose from grouping of individual stocks. Different groups of stocks were composed to
test the influence of the size and composition of portfolios.
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The investigation was conducted for three portfolios with different size and composi-
tion. Composition was determined on the basis of the stock’s weights in the stock index.
The weights are proportional to the size of capitalization. The portfolios under investiga-
tion are as follows:

1. PORT1: Consists of the most traded stocks (nearly half of the trading volume);
MATAV, MOL, OTP, RICHTER, with the weights 1/4 all.

2. PORT2: A chemical industry's portfolio, BCHEM, GRABO, PPLAST, RICHTER,
TVK, with proportions of 15-10-3-6-48-18 percents, respectively.

3. PORT3: A power industry’s portfolio, DEMASZ, MOL, PGAZ, with weights of
30-60-10 percents, respectively.

Table 4
Results of the portfolio analysis using the OLS technique
Portfolios ;:f;z:s p-value Jal;(t]:t(i:gsra p-value S:Ztl:;:fc p-value
PORT1 1.070 0.000 639.89 0.000 7.51 0.001
(68.94)
PORT2 1.290 0.000 1072.71 0.000 8.47 0.000
(42.7)
PORT3 0.820 0.000 100.23 0.000 4.64 0.010
(36.82)
* ¢ statistics in parentheses.
Table 5
Results of the portfolio analysis using GARCH (1,1) model for the error term
. Esti d J -B
Portfolios ;%1}12:: p-value ars?;lteis ticem p-value
PORT1 1.094 0.000 1330.69 0.000
(71.71)
PORT2 1.261 0.000 293.07 0.000
(106.41)
PORT3 0.817 0.000 71.94 0.000
(51.52)
* ¢ statistics in parentheses.
Table 6

Parameter estimates of the portfolios with the GARCH (1,1) adjusted model

Portfolios é p-value f) p-value () +é
PORTI1 0.109 0.000 0.848 0.000 0.957
PORT2 0.282 0.000 0.620 0.000 0.902
PORT3 0.169 0.003 -0.236 0.326 -0.067
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These portfolios are different with respect to the number of individual securities com-
posing the portfolios, as well as the individual securities in the compositions. Tables 4, 5,
and 6 present the result of the analysis. As it can be seen, the findings for portfolios are
keeping with those of individual securities. The estimates become more efficient in all
the cases with minimum changes in betas, however normality does not hold.

CONCLUSION

The present paper emphasizes the importance of the conditional heteroscedasticity in
the market model residual terms. Non-normality and heteroscedasticity of those residual
terms make the estimators inefficient and some significance tests invalid. Thus, it is nec-
essary to take this matter into account in beta estimates, so that they become more accu-
rate and reliable. There must also be pointed out that the results achieved for Hungarian
stocks are similar to those of Bera—Bubnys—Park (1988) using the data of the United
States stock market suggesting that the presence of conditional heteroscedasticity is a
general problem in the market model on capital markets. In applications of the market
model, as well as the more general CAPM, non-normality does not cause problems, be-
cause normality is a sufficient and not necessary condition for the theoretical model. It
should be emphasized that non-normality confuses the validation of significance hy-
pothesis tests for parameters.
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