
DIAGNOSTICS OF THE ERROR FACTOR  
COVARIANCES 

OTTÓ HAJDU1 

In this paper we explore initial simple factor structure by the means of the so-called 
‘EPIC’ factor extraction method and the ‘orthosim’ orthogonal rotational strategy. Then, the 
results are tested by confirmative factor analysis based on iteratively reweighted least squares 
on the one hand and asymptotically distribution free estimation on the other hand. Besides, 
based on multivariate kurtosis measures, multivariate normality is also investigated to see 
whether the use of the IWLS method is appropriate or a robust ADF estimator with relatively 
larger standard error is preferred. Finally, the paper draws attention that confidence intervals 
for the non-centrality based goodness of fit measures are available. 
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A model that relates measured variables to latent factors in covariance structure 
analysis is called a measurement model. These models are mostly factor analysis models 
and it is standard to distinguish between confirmatory and exploratory 

  

approach. In an 
exploratory factor analysis, we may not know how many factors are needed to explain 
the inter-correlations among the indicators. In addition, even if we are sure about the ex-
istence of a particular factor, we may not know which variables are the best indicators of 
the factor. Exploratory factor analysis will give us results: the number of factors, the fac-
tor loadings, and possibly the factor correlations. 

In contrast, if we anticipate these results, we can do a confirmatory factor analysis. In 
this type of factor analysis, we presumably have a hypothesis about the number of fac-
tors, which measured variables are supposedly good indicators of each of the factors, 
which variables are unrelated to a factor and, how strongly or weakly the factors correlate 
to each other. In confirmatory models, variables are presumed to be factorially simple. 
That is, a given indicator is usually expected to be influenced by very few factors, typi-
cally only one. In addition, the covariance structure of the error factors can be arbitrary if 
it is reasonably justified and the model identification permits it. This means that the error 
(unique) factors are not necessarily uncorrelated but their variances may be equal by the 
homogeneity hypothesis.2 Of course, hypothesis may be incorrect hence it must be tested 

1 Associate professor of the Budapest University of Technology and Economic Sciences. 
2 This error covariance structure is analogous to that used in the econometrics literature. 
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by sample information. Nevertheless, the hypothetical simple factor structure could be 
explored by orthogonal or oblique rotation of factor loadings carried out on an initial 
loading matrix produced by some factor extraction method. 

The aim of this paper is twofold. In an explorative step we draw attention to a fac-
tor extraction method named EPIC (Equal Prior Instant Communalities) and an or-
thogonal rotation technique called orthosim. The EPIC method is used in our analysis 
as a compromise between two methods: the principal components method, which is 
computationally simple and the maximum likelihood factor analysis, which frequently 
leads to convergence problems. The ‘orthosim’ solution (proposed by Bentler [1977]) 
does not optimize some simplicity criterion within the loading matrix instead it maxi-
mizes a generalized variance type factor simplicity index corresponding to the loading 
matrix as a whole. 

The core problem is that the initial unrotated EPIC factor solution (named by Kaiser 
[1990]) is based on a method in which the variances of the uncorrelated error factors are 
initially taken as equal, 

),p

permitting the computations to be done explicitly and untroubled 
by linear dependencies among the variables (Anderson [1984] p. 21.). Nevertheless, the 
homogeneity assumption of the equal unique variances, as well as the factor pattern itself 
is merely a hypothesis. Therefore, it must be tested by using a confirmatory factor analy-
sis step. There are two main approaches available to estimate the parameters of a confir-
matory factor model. The first is based on some normality assumptions. However, if the 
normality assumptions are violated, asymptotically distribution free (ADF) approach 
must be used. This article gives a review of multivariate kurtosis measures to help deci-
sion whether the use of ADF method (with relatively larger standard errors) is necessary 
or not. In addition, the paper draws attention to those goodness of fit measures for which 
confidence intervals are available. 

Finally, the paper illustrates the problems investigated based on microeconomic bal-
ance-sheet data. The computations are performed using the statistical programs ‘Statistica 
6.0’ and ‘EQS’. 

THE ROLE OF UNCORRELATEDNESS  
IN THE FACTOR MODEL 

In factor analysis, one assumes that certain observable variables (indicators) correlate 
because there are one or several underlying latent factors that generate the observed x 
data. The parametric form of the factor analysis model is given by 

( ) ( ) (( , ), ,p mp m= +x Λ f u1 1 1/ 1  /

where vector x=[x1, x2,..., xp]T consists of p indicators, vector f=[ f1, f2,..., fm]T consists of m 
common (latent) factors and u=[u1, u2,..., up]T represents the error factors, unique to that 
indicator.3 The so-called ‘pattern matrix’  of order (Λ  p, m) consists of jkλ  factor load-
ings. The higher the value of a loading in absolute magnitude the more important the  
  

3 The ‘error factor’ and ‘unique factor’ terminologies are used synonymously in this paper. 
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factor is. Using /1/ we can express the C covariance matrix of order ( p, p) among the ob-
served indicators based on covariances as follows: 

T T
ff uu fu uf= + + +C ΛC Λ C ΛC C Λ . /2/ 

It is apparent, that C has p( p+1)/2 distinct elements (including the variances on the 
main diagonal as well) but the total number of the unknown parameters in /2/ is 

( ) ( )m m p p
pm mp

+ +
+ + +

1 1
2 2

. /3/ 

The factor model is identified when the number of parameters to be estimated q is less 
than the number of the distinct observed covariances that is: 

( )p pdf q+
= − >

1 0
2

 /4/ 

where df is the degree of freedom. Hence, it is necessary to reduce substantially the num-
ber of parameters to be estimated relative to the number of indicators. This can be 
achieved by imposing hypothetical restrictions on the parameters and by increasing the 
number of indicators. 

Such straightforward assumption is that the unique factors are uncorrelated with the 
common factors, i.e. equation fu uf= =C C in /2/. This restriction yields a de-
composition of the observed covariance matrix in the following form: 

0  holds 

T
ff u= +C ΛC Λ C /5/ u . 

A further reasonable restriction that can be imposed is that the unique factors are un-
correlated with each other as well. This means that the covariance matrix  is diago-
nal. Based on this additional restriction the decomposition of the observed covariance 
matrix takes the form: 

uuC

T
ff= +C ΛC Λ Ψ2  /6/ 

where  is our standard notation for the diagonalΨ2

σ2

 covariance matrix of the unique fac-
tors. In addition, if the unique variances are homogeneous, i.e. all of them are equal to a 
constant , the covariance decomposition is as follows: 

T
ff= + σC ΛC Λ I2 . /7/ 

Using now the conventional notation of ff =C Φ  and concerning orthogonal factors, 
 is diagonal and, further, assuming standardized factors, Φ  equals the identity. A non-

diagonal  indicates ‘oblique’ (i.e. correlated) factors. 
Φ

Φ
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Explorative factor analysis is basically aimed at estimating the ( )Λ,Φ, Ψ2  parame-

ters in /6/ without any presumed knowledge about them except, that the common factors 
are standardized (i.e.  is a correlation matrix). In contrast, in a confirmative analysis 
interpretable parameters are selected to be estimated rather than accepting any computa-
tionally convenient assumptions. Our focus in this paper is mainly on testing the hy-
pothesized structure of . 

Φ

Ψ2

Once a solution is obtained, with any Tm non-singular matrix of order m equation /1/ 
is still satisfied in the following form: 

( )( )−= +x ΛT Tf1 u . /8/ 

Replacing f by f*=Tf and  by Λ * −=Λ ΛT 1

*T
 we perform an oblique rotation which 

results in the covariance matrix =TΦT Φ  of the rotated factors and preserves the re-
produced covariance matrix being unchanged: 

T T∗ ∗ ∗ =Λ Φ Λ ΛΦΛ . 

Specially, an orthogonal rotation is performed when the factors are uncorrelated and 
T is orthonormal: T −=T T 1 . 

Our final goal is to give a pattern of loadings as clear as possible that is factors that 
are clearly marked by high loadings for some variables and low loadings for others. This 
general pattern is referred to as „simple structure’. This can be achieved by a two-step 
approach. First, in the explorative step we estimate the orthogonal loadings and subse-
quently rotate them. Then, in the confirmative step we fix some parameters at some 
(typically zero or equal) hypothetical value, reestimate the free parameters and test the 
goodness of fit. Specially, the adequacy (goodness of fit) of a specific orthogonal or 
oblique factor solution can directly be tested by confirmative factor analysis. 

There are various rotational strategies that have been proposed in the field to explore 
a clear pattern of loadings. The most widely used orthogonal rotational strategy is the so-
called varimax method (Kaiser [1958], Ten Berge [1995]). Despite the popularity of 
varimax, we shall use another method based on a different approach named orthosim 
(Bentler [1977]). 

The so-called ‘orthosim’ orthogonal rotation is based on a factorial simplicity index. 
Let us start with a known loading matrix A and transform it with an orthonormal T into 

=B AT uch that ( ) (( Tdiag= ∗ ∗D B B B agonal matrix and * denotes the 

element-wise (Hadamard) product. Then we seek the rotated pattern matrix which 
maximizes the index of factorial simplicity defined as the generalized variance as fol-
lows: 

, s ))B  is a di

( ) ( )( )( )/ /det maxTGV − −= ∗ ∗D B B B B D1 2 1 2 → . 

This determinant (based on a symmetric, nonnegative definite matrix with unit diago-
nal elements) ranges between zero and one. It equals zero when there are linear depend-
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encies among the columns of ( )∗B B . Such a case when some columns of B are propor-
tional or identical except for sign. The maximum value of one occurs if the matrix in GV 
is the identity. This means that the factor pattern is factorially simple. It must be empha-
sized that provided a diagonal scaling matrix GV is invariant with respect to the column 
rescaling of B. 

The concept of oblique rotations can be used in order to obtain more interpretable 
simple structure that best represents the ‘clusters’ of variables, without the constraint of 
orthogonal factors. One of the recommended widely used methods is the direct quartimin 
method (Jennrich–Sampson [1966]). 

THE ‘EQUAL PRIOR INSTANT COMMUNALITIES’ FACTOR  
EXTRACTION METHOD 

Under the hypothesis of this orthogonal factor model, the unique variances of the co-
variance (correlation) matrix are presumed to be equal. According to the standard or-
thogonality and the Kaiser-normalization requirements the matrix 

–T

m

d
d

d

 
 
 = =
 
 
  

Λ Ψ Λ D

1

22

O
 

is diagonal and the maximum likelihood (ML) equations /9/ and /10/ must hold (Lawley–
Maxwell [1971] p. 27. EQ 4.9; p. 30. EQ 4.19): 

)( Tdiag=Ψ C – Λ2 Λ , /9/ 

– ( )m= +CΨ Λ Λ I D2 , /10/ 

where C is the covariance matrix of the observed indicators. Alternatively, equation /10/ 
can be written as: 

–( – ) =C Ψ Ψ Λ ΛD2 2 . 

It is apparent that the columns of  are the eigenvectors corresponding to the largest 
m eigenvalues of matrices 

Λ
–CΨ 2 , or –( )Ψ Ψ2 2C – . 

Let us suppose, that the uncorrelated unique factors are homogeneous i.e. p= σΨ I2 2 , 

m

and consider the standard spectral decomposition of the covariance matrix C of the indi-
cators. Taking only the first m eigenvalues on the main diagonal of the diagonal matrix 

 then: mU

, T
m m m m m= =CW W U W W I , /11/ 
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where the columns of Wm are the corresponding eigenvectors. After some manipulations 
we can write /11/ equivalently as: 

( )p m m m m m m
−
 

    σ σ − = σ −    σ σ    
 

C I W U I W U I U

1 1
1 2 22

2 2
1 1

m
σ2
1 . 

Clearly, making the 

m m m
 = σ − σ 

Λ W U I

1
2

2
1 , /12/ 

m m= −
σ

D U I2
1 , /13/ 

p= σΨ I2 2  /14/ 

substitutions – provided homogeneous unique factors – our all initial ML requirements 
are met. 

The estimation of variance σ2  happens in the following manner. Given that 
 is the sum of the m communalities. ( T

m mtr Λ Λ )

m( ) ( )var
p

T
j m

j
p x tr

=
σ = −∑2

1
L L  

and based on equations /12/, /13/ and T
m m m=W W I , we obtain 

( ) ( )( )p p
T T

j m m j m m m
j j

p u tr u tr
= =

σ = − σ = − −σ =∑ ∑W DW U W W2 2 2

1 1
 

p m

j j
j j

u u m
= =

 
= − − σ  

 
∑ ∑ 2

1 1
, 

from which 

( )
p

j
j m

p m u
= +

− σ = ∑2

1
. /15/ 

We draw attention that WU1/2 gives the standard principal components loading ma-
trix. 



OTTÓ HAJDU 74 

There are two reasons why the p= σΨ2 2 ssumption is not as restrictive as it 
seems: first, the unique variances for the covariance matrix are not used in the computa-
tions and are not presumed to be equal when an explorative factor extraction is carried 
out on the correlation matrix as it is the usual case. Rather, the ratio of common factor 
variance to unique variance is hypothesized as equal for all variables under the model. 
Second, the estimated communalities for the correlation matrix, obtained from the solu-
tion, can vary substantially in practice. 

I  a

AN EXPLORATIVE STUDY BASED  
ON MICROECONOMIC FINANCIAL INDICATORS 

Based on balance-sheet data of 2117 Hungarian economic units from the branch with 
NACE code ‘5011’ in 1999, the following indicators have been investigated by EPIC fac-
tor analysis followed by orthosim and direct quartimin rotations: 

 
Profit after taxation / Liabilities: ‘ATPLIAB’ 
Cash-Flow / Liabilities: ‘CFLIAB’ 
Current ratio = Current assets / Short term liabilities: ‘CURRENT’ 
Adjusted Current ratio = (Current assets-Inventories) / Short term liabilities: ‘ACUR-

RENT’ 
Long term liabilities / (Long term liabilities + Owner’s equity): ‘DEBT’ 
Owner’s equity / (Inventories + Invested assets): ‘EQUITYR’ 
 
The cases with observed value smaller than –10 and those with larger than 10 are ex-

cluded from the analysis. The covariance and correlation matrices of these 6 variables are 
given in Table 1. 

 Table 1  

Covariances and correlations of the financial microeconomic indicators (N=2117) 
Variable ATPLIAB CFLIAB CURRENT ACURRENT DEBT EQUITYR 

 Covariance matrix 
ATPLIAB 0.513 0.501 0.118 0.155 –0.086 0.193 
CFLIAB 0.501 0.571 0.155 0.181 –0.110 0.223 
CURRENT 0.118 0.155 0.837 0.842 –0.189 0.571 
ACURRENT 0.155 0.181 0.842 1.566 –0.289 0.671 
DEBT –0.086 –0.110 –0.189 –0.289 0.596 –0.934 
EQUITYR 0.193 0.223 0.571 0.671 –0.934 2.721 

 Correlation matrix 
ATPLIAB 1.000 0.927 0.180 0.173 –0.155 0.163 
CFLIAB 0.927 1.000 0.225 0.191 –0.188 0.179 
CURRENT 0.180 0.225 1.000 0.735 –0.268 0.378 
ACURRENT 0.173 0.191 0.735 1.000 –0.299 0.325 
DEBT –0.155 –0.188 –0.268 –0.299 1.000 –0.733 
EQUITYR 0.163 0.179 0.378 0.325 –0.733 1.000 
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The eigenvalues of the correlation matrix constitute the main diagonal of the diagonal 
matrix U=< 2.709, 1.589, 1.101, 0.306, 0.222, 0.072 > where the first three largest roots 
account for a variance explained of 90 percentage. In order to extract 3 unrotated factors 
named F1, F2, F3, the EPIC factor model is used. The estimated variance of the unique 
factors (see equation /15/) is the average omitted eigenvalue: 

0.306+0.222+0.072ˆ .σ = =2 0 2
3

. 

The EPIC loadings based on equation /12/ are shown in Table 2. They are computed 
from the WU1/2 principal components loadings (see also Table 2) according to the fol-
lowing manner: 

ˆ ˆ.
ˆ ˆ

PCA
EPIC u

u
Λ  Λ = = σ − = σ −  σ σ  

W U I

1 1
2 211

11 11 11 11 12 2
1

1 10 601 1 =


 

.. .
..

= −
0 6245 10 2 2 709 1

0 22 709
 

and 

( ). .. .
. .

EPICΛ = − = − −63
0 2 1 1010 4271 0 4722 1

1 101 0 2
. 

Table 2  

Initial, unrotated and rotated EPIC factor loadings 
PCA factor loadings WU1/2 EPIC factor loadings Orthosim solution Direct quartimin solution 

Variable 
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

ATPLIAB 0.624 0.756 –0.036 0.601 0.707 –0.033 0.088 0.921 0.079 –0.013 0.933 0.008 
CFLIAB 0.653 0.731 –0.029 0.629 0.684 –0.026 0.118 0.916 0.100 0.015 0.924 –0.009 
CURRENT 0.705 –0.309 0.526 0.679 –0.289 0.475 0.851 0.107 0.185 0.872 0.012 –0.006 
ACURRENT 0.688 –0.324 0.536 0.662 –0.303 0.485 0.853 0.085 0.175 0.878 –0.009 0.004 
DEBT –0.659 0.358 0.559 –0.634 0.335 0.505 –0.139 –0.088 –0.862 0.047 –0.008 0.893 
EQUITYR 0.698 –0.391 –0.472 0.672 –0.366 –0.427 0.228 0.079 0.842 0.056 –0.008 –0.854 

Since the first three eigenvalues of the correlation matrix account for a large portion 
of the total variance, it is clear, that the principal components and the EPIC loadings dif-
fer just to a slight extent. On the other hand, when some of the subsequent eigenvalues 
tend to be more important this tendency is not necessary. 

The solutions from the orthogonal orthosim and oblique direct quartimin rotations are 
given in Table 2 and are almost identical.  
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According to the rotated loadings the following factors have been explored: 

– F1: liability-based ‘profitability’, 
– F2: current ratio-based ‘liquidity’, 
– F3: long run ‘debtness’. 

After oblique rotation the inter-factor correlations are not negligible because: 
Corr(F1,F2) = –0.233, Corr(F1,F3) = –0.408 and Corr(F2,F3) = –0.21, respectively. As a 
consequence, in the confirmative analysis step these correlations need to be estimated, 
increasing hence the number of free parameters. 

The question arises at this stage is whether the hypothetical restriction  imposed 
on the covariance matrix of the error factors is acceptable or not. Decision on the model 
will be based on ‘goodness of fit’ measures, evaluated first retaining and then relaxing 
the restrictions. Such a method that provides tools for inference via the maximum likeli-
hood theory is the generalized weighted least squares. However, when the sample does 
not come from a multivariate normal distribution, the asymptotically distribution free es-
timator is still available. A detailed overview of it is as follows. 

σ I2

ASYMPTOTICALLY DISTRIBUTION FREE ESTIMATORS 

Based on a sample of size N let S denote the usual unbiased estimator of the popula-
tion covariance matrix  whose elements are functions of a parameter vector θ : ( , )p pΣ

( )=Σ Σ θ . 

The weighted least squares (WLS) quadratic form discrepancy function measures the 
discrepancy between the sample covariance matrix S and the reproduced covariance ma-
trix  evaluated at an estimator (Browne [1974]): ˆˆ ( )=Σ Σ θ

( )( ) ( )( ) ( )( ), mTF −= − − →s σ θ s σ θ W s σ θ1 in , 

where s and σ(θ) are column vectors, formed from the ( )*p p p= +1 2/  non-duplicative 
elements of S and Σ(θ), respectively and W 

)
is a positive definite weight matrix of order 

. It is optimal to choose the weight matrix based on the covariance matrix of the 
sample covariances with typical element: 
( *, *p p

( ), ,( ) cov , ( )jk lt jk lt jk lt jl kt jt kl jklt
Nw N s s N

N
−

= − = − σ = σ σ +σ σ + κ
11 1 , /16/ 

where [ ]jl jlσ = Σ  and 

( )jklt jklt jk lt jl kt jt klκ = σ − σ σ + σ σ + σ σ  
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is a fourth-order cumulant with the fourth-order moment 

( )( )( )( )jklt j j k k l l t tE x x x xσ = −µ −µ −µ −µ . 

Equation /16/ gives the weight matrix for Browne’s Asymptotically Distribution Free 
(ADF) estimator (Browne [1984]). Letting N tend to infinity the ADF weight takes the 
form without specifying any particular distribution: 

,jk lt jklt jk ltw = σ −σ σ  /17/ 

with consistent (but not unbiased) estimators 

( )( )( )( )
N

jklt j j k k l l t t
i

m x x x x x x x x
N =

= − − − −∑
1

1 , 

( )( )
N

jk j j k k
i

m x x x x
N =

= − −∑
1

1 . 

Let us consider the heterogeneous kurtosis theory (Kano–Berkane–Bentler [1990]) 
which defines a general class of multivariate distributions that allows marginal distribu-
tions to have heterogeneous kurtosis parameters. Let /j jjjj jjκ = σ σ2 3 2  represent a measure 
of excess kurtosis of the jth indicator. Then the fourth-order moments have the structure 

j k j l j tl t k t k l
jklt jk lt jl kt jt kl

κ + κ κ + κ κ + κκ + κ κ + κ κ + κ
σ = σ σ + σ σ + σ σ

2 2 2 2 2 2
. 

Under the assumption that all marginal distribution of a multivariate distribution are 
symmetric and have the same relative kurtosis, the elliptical (homogeneous kurtosis) the-
ory estimators and test statistics can be obtained. The common kurtosis parameter of a 
distribution from the elliptical class of distributions with multivariate density4 

( ) ( )| | – –Tc h
− − 

 V x µ V x
1

12 µ  

is 

jjjj

jj

σ
κ = −

σ2 1
3

. 

Then, the fourth-order moments are 

( ) ( )jklt jk lt jl kt jt klσ = κ + σ σ + σ σ + σ σ1 . 

  
4 Here c is a constant, h is a non-negative function and V is a positive definite matrix. 
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Letting again N tend to infinity, substitution into /17/ yields the weight 

( ),jk lt jl kt jt kl jk lt jl kt jt klw = σ σ + σ σ + κ σ σ + σ σ + σ σ = ( )( )jl kt jt kl jk ltκ + σ σ + σ σ + κσ σ1  

Obviously, if , then, multivariate normal distributions are considered and the 
typical element of the weight matrix takes the form 

κ = 0

,jk lt jl kt jt klw = σ σ + σ σ . 

Because the size of W in practice can be very large it is reasonable to perform com-
putations based on an equivalent form of the discrepancy function. Namely, assuming el-
liptical distributions, the quadratic form discrepancy function takes the form: 

( ) ( )– –( – ( )) – ( – ( ))
( ) ( ) ( )EF tr tr

p
κ =  κ +   κ + + κ κ +

S Σ θ V S Σ θ V
21 2

2
1

2 1 4 1 2 1
1  

which reduces to the normal theory discrepancy function when κ = 0 , i.e. the distribu-
tions have no kurtosis: 

( )–( ( ))NF tr  =   
S – Σ θ V

211
2

. /18/ 

When V=I, one obtains the unweighted least squares estimator FULS, the substitution 
V=S yields the generalized least squares estimator FGLS and an iteratively reweighted so-
lution FIWLS is obtained when  is the reproduced covariance matrix generated 

by  in each iterative step. Finally, asymptotically, F

ˆ( )=V Σ θ

θ̂ IWLS leads to maximum likelihood 
estimate FML for exponential families of distributions.5 

If [V]jk is a consistent estimator of [ ] jkjk = σΣ

ŵ

then  will be a consistent estima-

tor of cov(s,s
,ˆ jk ltw

). Further, the unbiased estimator of  is ,jk lt

( )( ),ˆ jk lt
Nw

N N
= ×

− −2 3
 

( )( )– – – –
–jklt jk lt jl kt jt lk jk ltN m m m m m m m m m

N
  × +    

21
1

. 

  
5 The statistical distribution of the elements of a covariance matrix is not the same as that of a correlation matrix. This is 

obvious if you consider the diagonal elements of a covariance matrix, which are the variances of the variables. These are ran-
dom variables – they vary from sample to sample. On the other hand, the diagonal elements of a correlation matrix are not ran-
dom variables – they are always 1. The sampling distribution theory employed for the case of a covariance matrix is not appli-
cable to a correlation matrix, except in special circumstances. It must be emphasized that it is possible (indeed likely) to get 
some incorrect results if we analyze a correlation matrix as if it were a covariance matrix. This has been described in the litera-
ture (see, for example, Cudeck [1989]). In order to analyse of the correlation matrix of the input data correctly, computations 
are based on the constrained estimation theory developed by Browne [1982]. As a result, we give the correct standard errors, 
estimates, and test statistics when a correlation matrix is analyzed directly. 
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If W consists of these unbiased elements, it may not be positive definite, but it would 
be unlikely the case when N is substantially larger than p*. 

As it is apparent, the measures of multivariate kurtosis play a key role from the multi-
variate normality point of view. 

THE MEASURES OF KURTOSIS 

The statistics described subsequently allow us to examine whether the assumptions 
of multivariate normality have been violated. The consistent estimator of the common 
relative multivariate kurtosis parameter κ  is the rescaled Mardia’s sample measure: 

( )
( ) ( )

( )
ˆ

T
N i i

i Np p

−

=

 − − κ + =
+

∑
x x S x x

2
1

1
1

2
. 

This measure should be close to 1 if the distribution is multivariate normal. 
If the sample comes from a multivariate normal distribution, the Mardia-coefficient of 

multivariate kurtosis defined as 

( )ˆMK p p= κ + 2  

should be close to zero.6 Further, the normalized multivariate kurtosis 

( )
ˆ

/
MK

p p N
κ =

+
0

8 2
 

has a distribution that is approximately standard normal at large samples. 
The elliptical distribution family includes the multivariate normal distribution as a 

special case. As mentioned in this distribution family all variables have a common kurto-
sis parameter .κ  This parameter can be used to rescale the Chi-square statistic if the as-
sumption of an elliptical distribution is valid. The Mardia-based kappa 

( )
ˆ MK

p p
κ =

+1 2
 

is an estimate of kappa obtained by rescaling the Mardia's coefficient of multivariate kur-
tosis. This number should be close to zero if the population distribution is multivariate 
normal. 

Distribution theory provides a lower bound for kappa. It must never be less than  
–6/(p+2), where p is the number of variables. The adjusted mean scaled univariate kurto-
  

6 The expected value and variance of ( ) ( )ˆ 1 2p pκ + + ( ) ( ) ( )1 2 /N p p N 1− + + ( ) /8 2p p N+  
respectively. 

 are  and 
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sis is an alternate estimate of kappa, which takes into account this requirement and is ob-
tained simply as the average univariate kurtosis: 

–ˆ max – ,
p jjjj

j jj

m
p pm=

   κ =    +  
∑2 2

1

1 63
3 2

, 

where 

jjjj

jj

m

m
−2 3  

is the rescaled (i.e. uncorrected), biased estimate of univariate kurtosis for variable xj. 
The asymptotic variance of this univariate measure is 24/N, which is used to standardize 
the uncorrected kurtosis in order to produce the ‘normalized’ kurtosis. 

The  estimate averages the scaled univariate kurtosis, but adjusts each one that 
falls below the bound to be at the lower bound point. This coefficient should be close to 
zero if the distribution is multivariate normal. 

κ̂2

 Table 3  

Measures of Multivariate Kurtosis 
Measure Value 

Mardia Coefficient of Multivariate Kurtosis 403.085 
Normalized Multivariate Kurtosis 946.437 
Mardia-Based Kappa 8.398 
Mean Scaled Univariate Kurtosis 9.580 
Adjusted Mean Scaled Univariate Kurtosis 9.580 
Relative Multivariate Kurtosis 9.398 

Table 4  

Univariate measures of skewness and kurtosis 
Measures of skewness Measures of kurtosis 

Variable 
Skewness Corrected Normalized Kurtosis Corrected Normalized 

ATPLIAB 0.490 0.490 9.201 46.798 46.912 439.524 
CFLIAB 2.176 2.178 40.876 50.111 50.232 470.636 
CURRENT 4.056 4.059 76.188 22.257 22.313 209.040 
ACURRENT 3.311 3.314 62.203 13.932 13.968 130.850 
DEBT 4.256 4.259 79.940 27.112 27.179 254.632 
EQUITYR –1.387 –1.388 –26.051 11.809 11.840 110.913 

Considering our 6 financial microeconomic indicators, the computed values of the 
measures discussed are presented in Table 3 and Table 4. Results show that the require-
ment of zero kurtosis is violated. Nevertheless, the homogeneous kurtosis hypothesis 
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about a common non-zero kurtosis parameter could still be valid. But as we can see from 
Table 4 the univariate uncorrected kurtosis measures do not justify accepting the case of 
a common kurtosis parameter. 

Finally, if the univariate kurtosis and skewness measures separately reject the as-
sumption of univariate normality, the hypothesis about the multivariate normality must 
also be rejected as a consequence. Therefore, the corrected univariate kurtosis and skew-
ness measures are also useful unbiased estimates for investigation of the assumption of 
normality.7 They are, respectively: 

Corrected univariate kurtosis 

( )
( ) ( – )–

( – )( – )( – ) ( – )( – )( )
jjjj

j
jj

mN N Nb
N N N N Nm

∗
 +
 =
  

2 2

2 2
1 3

1 2 3 2
1

3
. 

Corrected univariate skewness 

( ) ( – )( – ) ( )
jjj

j
jj

mNb
N N m

∗
 
 =
  

2

1 3 21 2
. 

The asymptotic variance of this latter measure is 6/N, 

  

which is used to standardize the 
uncorrected skewness to produce the ‘normalized’ skewness. 

As a consequence of the kurtosis and skewness measures, we prefer the ADF estima-
tor under arbitrary distribution as long as it produces interpretable results. 

Estimates of free parameters and their inference statistics (standard error, T-value) are 
given in Table 5 based on both IWLS and ADF estimators considering both homogene-
ous and heterogeneous error-variance models. The corresponding converged values of 
the discrepancy function are also included. (Each of the four model-estimation converged 
within 10 iteration steps.) The type of the free parameters is indicated by the following 
scheme in the first column of the table: (.) contains latent variable, [.] includes measured 
indicator, the numbered -#-> arrow represents directed relationship and the numbered -#- 
wire represents undirected relationship (i.e. variance, covariance). Finally, the numbered 
name of an error factor is DELTA#. 

As we can see, only the ‘ADF, Homogeneous’ T-values for parameters #11 and #13 are 
not significant with P-values 0.336, 0.454, respectively. All other P-values are practically 
zeros. Obviously, in the case of the ADF estimator (because of the distributional knowledge 
omitted) the estimated standard errors are higher than those computed by IWLS. 

Based on the discrepancy function the results from the ADF method seem to be pre-
ferred. Contrary, based on the Root Mean Square (RMS) standardized residual8, the 
IWLS results exhibit a better fit. The former results are based on the assumption of 
multivariate normality, while the latter is not, producing greater standard errors. Never-
theless our main purpose is to compare the homogeneous model with the heterogene-
ous one. 

7 One can find the uncorrected counterparts closed in the [.] bracket. 
8 Residual is divided by its standard error. 
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Table 5  

Model characteristics from IWLS and ADF estimators 
Iteratively reweighted least squares estimator Asymptotically distribution free estimator 

Heterogeneous variances Homogeneous variances Heterogeneous variances Homogeneous variances Free parameters 

Estimate St.Error T Estimate St.Error T Estimate St.Error T Estimate St.Error T 

(F1)-1->[ATPLIAB] 0.664 0.012 56.444 0.634 0.014 44.706 0.465 0.060 7.773 0.569 0.064 8.885 
(F1)-2->[CFLIAB] 0.756 0.012 65.054 0.673 0.015 46.140 0.530 0.066 8.066 0.585 0.066 8.849 
(F2)-3->[CURRENT] 0.837 0.022 37.855 0.765 0.015 49.839 0.556 0.045 12.334 0.859 0.049 17.515 
(F2)-4->[ACURRENT] 1.005 0.030 33.997 1.159 0.020 56.991 0.990 0.068 14.671 0.875 0.050 17.528 
(F3)-5->[DEBT] -0.590 0.019 -31.016 -0.600 0.013 -44.7 -0.763 0.044 -17.28 -0.298 0.020 -15.27 
(F3)-6->[EQUITYR] 1.581 0.043 36.631 1.589 0.026 60.476 1.203 0.072 16.782 1.297 0.071 18.362 
(DELTA1)-7-(DELTA1) 0.072 0.002 32.527 0.189 0.003 56.338 0.031 0.010 3.191 0.018 0.005 3.667 
(DELTA2)-8-(DELTA2) 0.000 0.000 - 0.189 0.003 56.338 0.000 0.000 - 0.018 0.005 3.667 
(DELTA3)-9-(DELTA3) 0.137 0.027 5.013 0.189 0.003 56.338 0.201 0.033 6.031 0.018 0.005 3.667 
(DELTA4)-10-(DELTA4) 0.555 0.042 13.081 0.189 0.003 56.338 0.273 0.106 2.579 0.018 0.005 3.667 
(DELTA5)-11-(DELTA5) 0.248 0.017 14.668 0.189 0.003 56.338 0.030 0.031 0.962 0.018 0.005 3.667 
(DELTA6)-12-(DELTA6) 0.220 0.108 2.028 0.189 0.003 56.338 0.878 0.128 6.882 0.018 0.005 3.667 
(F2)-13-(F1) 0.244 0.022 11.028 0.238 0.024 9.927 0.047 0.063 0.749 0.212 0.072 2.944 
(F3)-14-(F1) 0.193 0.022 8.778 0.207 0.024 8.651 0.220 0.035 6.300 0.250 0.053 4.701 
(F3)-15-(F2) 0.427 0.022 19.541 0.399 0.020 19.842 0.321 0.026 12.540 0.431 0.034 12.807 
     
Discrepancy Function 0.0441 0.973 0.0301 0.0897   
degree of freedom 6 11 6 11   
RMS Stand. Residual 0.0158 0.0625 0.243 0.285   
Chi-Square Statistic 93.3284 2057.94 63.7372 189.81   
     
Goodness of fit indices Confidence intervals at 90 percent level 
Noncentrality based indices LB PE UB LB PE UB LB PE UB LB PE UB 
Population Noncentrality Index 0.026 0.038 0.055 0.500 0.551 0.606 0.017 0.027 0.041 0.065 0.085 0.107 
Steiger-Lind RMSEA Index 0.066 0.080 0.095 0.213 0.224 0.235 0.053 0.067 0.083 0.077 0.088 0.099 
McDonald Noncentrality Index 0.973 0.981 0.987 0.738 0.759 0.779 0.980 0.986 0.992 0.948 0.959 0.968 
Population Gamma Index 0.982 0.987 0.991 0.832 0.845 0.857    
Adjusted Population Gamma 
Index 0.938 0.956 0.970 0.679 0.704 0.727    

     
Other fit indices     
Joreskog GFI  0.986 0.844 0.832  0.499  
Joreskog AGFI  0.952 0.701 0.412  0.044  
Akaike Information Criterion  0.058 0.982 0.044  0.099  
Schwarz's Bayesian Criterion  0.098 1.009 0.084  0.126  
Browne-Cudeck Cross Valida-
tion  0.058 0.982 0.044  0.099  
Null Model Chi-Square  7989.2 7989.2 291.8  291.8  
Null Model df  15 15 15  15  
Bentler-Bonett Normed Fit In-
dex  0.988 0.742    

Bentler-Bonett Non-Normed 
Fit Index  0.973 0.650    

Bentler Comparative Fit Index  0.989 0.743    
James-Mulaik-Brett Parsimo-
nious Fit Index  0.395 0.544    

Bollen's Rho  0.971 0.649    
Bollen's Delta  0.989 0.743    

Note: Where a baseline model is involved, it is assumed to be the null model, defined as a model without any common fac-
tors. 

var(F1)=var(F2)=var(F3)=1 and the error factors (Delta1-Delta6) are uncorrelated. 
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Once a minimized converged value of the discrepancy function has been reached and 
selected as the best one, the subsequent evaluation of its goodness of fit is necessary. For 
this purpose a wide selection of fit-indices is available. Some of them are hypothesis the-
ory-based, others are heuristic. On the other hand, we can distinguish noncentrality-based 
goodness of fit indices and other indices including incremental type indices as well. In 
the following section we discuss those employed in this paper. 

NONCENTRALITY-BASED  
GOODNESS-OF-FIT INDICES 

Let us consider the null hypothesis that the restricted model ( )Σ θ  holds for the popu-
lation covariance matrix , against the alternative that it does not hold: Σ

( ):H =Σ Σ θ0 , 

( ):H ≠Σ Σ θ1 . 

In other words, the H1 hypothesis states that a significant improvement is expected 
in the discrepancy between the restricted and the unrestricted models due to a simple 
switch from ( )Σ θ  to . Then, the discrepancy between the true and the hypothesized 
model is 

Σ

( )( ) ( )( ) ( )( ), mTF −= − − →σ σ θ σ σ θ W σ σ θ1 in  

which could be minimized with respect to the parameter vector . Let θ ( )( )*F σ,σ θ  de-

note the minimized value at some . Then, asymptotically, *θ ( ) (N F− s,σ θ1 )( )χ =2 is 
distributed as a noncentral Chi-square with 

( )p p
df q

+
= −

1
2

 

degrees of freedom and noncentrality parameter 

( ) ( )( )*N Fτ = − σ,σ θ1  

or 

( )( )*F
N
τ

=
−

σ,σ θ
1
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rescaled noncentrality parameter, where q is the number of parameters to be estimated 
for the model. Obviously, when the model holds, τ = 0  and χ2  is distributed as a central 
Chi-square with df degrees of freedom. 

Hence, the size of  can be considered as a population measure of model misspecifi-
cation, with larger values of  indicating greater misspecification. As it follows from the 
probability theory, the expected value of the noncentral Chi-square statistic is 

τ
τ

( ) ( ) ( )( ){ },E E N F dfχ = − = + τs σ θ2 1 . 

Hence, based on only one observation for χ2 , the estimated value of the noncentrality 
parameter is 

ˆ NCP dfτ = = χ −2 , 

where 

( ) ( )( )ˆ,N Fχ = − s σ θ2 1  

is the estimated measure of distance between the currently investigated model which is 
the target of our hypothesis and the saturated model with ( ) /p p +1 2  free parameters, 
say, s. Therefore, the discrepancy function (named also fitting function) is calculated as 

F
N
χ

=
−

2

1
. 

Note, that NCP can be negative when the estimated Chi-square is less than the df. Di-
viding the noncentrality parameter by (N–1) yields the population noncentrality index 
PNI which is a measure of population badness-of-fit and depends only on the model, and 
the method of estimation: 

–max ,
–
dfPNI

N
 χ =  
  

2
0

1
. 

The population noncentrality index PNI is an unbiased estimate of the rescaled non-
centrality parameter and is relatively unaffected by the sample size. However, PNI fails 
to compensate for model complexity. In general, for a given S, the more complex the 
model the better its fit. A method for assessing population fit which fails to compensate 
for this will inevitably lead to choosing the most complex models, even when simpler 
models fit the data nearly as well. Because PNI fails to compensate for the size or com-
plexity of a model, it has limited utility as a device for comparing models. 

The adjusted root mean square error index, first proposed by Steiger and Lind 
[1980], takes a relatively simplistic approach to solving these problems. Since model 
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complexity is reflected directly in the number of free parameters, and inversely in the 
number of degrees of freedom, the PNI is divided by degrees of freedom, then the 
square root is taken to return the index to the same metric as the original standardized 
parameters. 

PNIRMSEA
df

= . 

The RMSEA index can be thought of roughly as a root mean square standardized re-
sidual. Values above .10 indicate an inadequate fit, values below .05 a very good fit. 
Point estimates below .01 indicate an outstanding fit. The rule of thumb is that, for ‘close 
fit’, RMSEA should be less than c = .05 yields a rule that 

( ) NN c
df
χ −

< + − = +
2

2 11 1 1
400

. 

With this criterion, if N = 401, the ratio of the Chi-square to its degrees of freedom 
should be less than 2. Note that this rule implies a less stringent criterion for the ratio 
χ2/df as sample size increases. 

Rules of thumb that cite a single value for a critical ratio of χ2/df ignore the point 
that the Chi-square statistic has an expected value that is a function of degrees of free-
dom, population badness of fit, and N. Hence, for a fixed level of population badness 
of fit, the expected value of the Chi-square statistic will increase as sample size in-
creases. 

McDonald [1989] proposed an index of noncentrality that represents one approach 
to transforming the population noncentrality index PNI into the range from 0 to 1. The 
index does not compensate for model parsimony, and the rationale for the exponential 
transformation it uses is primarily pragmatic. The index may be expressed as 

PNI
MDNI e

−
=

1
2 . 

Good fit is indicated by values above 0.95. Similarly, the scaled likelihood ratio cri-
terion is 

F
LHR e

−
=

1
2 . 

Further, the weighted population coefficient of determination can also be defined as 

( )( ) ( )( )T

T

−

−

− −
Γ = −

σ σ θ W σ σ θ

σ W σ

1

11 , 

where W is a positive definite weight matrix. Under arbitrary weighted least squares es-
timation, the population gamma index of Tanaka and Huba [1985] is given as a general 
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form for the sample fit index for covariance structure models. It assumes the covariance 
structure model has been fit by minimizing the WLS discrepancy function. Then, the in-
dex is 

( )( ) ( )( )T

T

−

−

− −
γ = −

s σ θ W s σ θ

s W s

1

11 . 

When the distributions have no kurtosis ( κ = 0 ) based on /18/ we can write  as the 
parametric form of the Jöreskog–Sörbom [1984] index of fit: 

γ

( )( )( )
( )

V

tr
JSI

tr

−

−

−
= −

S Σ θ V

SV

21

21

1
21

1
2

. 

If V=I, or V=S, one obtains the Jöreskog–Sörbom (JS) index for the ULS and GLS es-
timators, respectively. Specially, using IWLS, i.e. ˆ=V , gives asymptotically the JSIΣ  in-
dex for the maximum likelihood (ML) estimation with 

( ) ( ) ( )ˆ ˆ ˆ
IWLSF tr tr tr p− − = − = − 
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Hence, 
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In addition, when the 

( )ˆtr p− =SΣ 1  

equation holds, the ,IWLS MLγ  index reduces to the classic JS goodness of fit index: 

( )ˆ IWLS

p pGFI
F ptr −

= =
+SΣ

21 2
. 

As a consequence, GFI can be thought of as the sample equivalent of the index de-
fined in the population as 

( )( ) ( )( ),
p p

F p ptr N
−

Γ = = =
τ+
p

+   −
σ σ θΣ Σ θ

1 21 2 2
1

. 
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Any consistent estimate of τ  will give a consistent estimate for Γ1. This index like 
PNI, fails to compensate for the effect of model complexity. Consider a sequence of 
nested models, where the models with more degrees of freedom are special cases of those 
with less degrees of freedom. For such a nested sequence of models, the more complex 
models (i.e. those with more free parameters and less degrees of freedom) will always 
have Γ1 coefficients as low or lower than those which are less complex. 

The adjusted population gamma index Γ2 attempts to compensate for this tendency: 

( ) ( )p p
df
+

Γ = − −Γ
⋅2 1

11 1
2

 

and its sample counterpart is 

 
( ) ( )p pAGFI GFI

df
+

= − −
⋅

11 1
2

. 

Values of the Joreskog GFI above .95 indicate good fit. This index is a negatively 
biased estimate of the population GFI, so it tends to produce a slightly pessimistic view 
of the quality of population fit. We give this index primarily because of its historical 
popularity.  

The Population Gamma index is a superior realization of the same rationale. The 
values of the Joreskog AGFI above .95 also indicate good fit. This index is, like the 
GFI, a negatively biased estimate of its population equivalent. As with the GFI, the 
Adjusted Population Gamma Index is a superior realization of the same rationale. 

At this stage we have arrived at an important conclusion that the lower and upper 
bounds of an α  level confidence interval of the Chi-square statistic can be inserted 
into any goodness of fit measure that involves the Chi-square statistic. Consistent esti-
mates and confidence intervals for Γ1 may thus be converted into corresponding quanti-
ties for Γ2. 

OTHER INDICES OF FIT 

Rescaled Akaike Information Criterion 

In a number of situations the user must decide among a number of competing 
nested models of different dimensions. This criterion is useful primarily for deciding 
which of several nested models provides the best approximation to the data. The most 
typical example is the choice of the number of factors in common factor analysis. 
Akaike ([1973], [1974], [1983]) proposed a criterion for selecting the dimension of a 
model. Steiger and Lind [1980] presented an extensive Monte Carlo study of the per-
formance of the Akaike criterion. Here the criterion is rescaled (without affecting the 
decisions it indicates) so that it remained more stable across differing sample sizes. 
The rescaled Akaike criterion ( modified by Cudeck and Brown [1983]) is as follows. 
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Let FML,k be the maximum likelihood discrepancy function and qk be the number of 
free parameters for the model Mk. Let N be the sample size.  

When trying to decide between several nested models, choose the one with the small-
est Akaike criterion: 

,
k

k ML k
q

AC F
N

= +
−

2
1

. 

Schwarz’s Bayesian Criterion 

This criterion (Schwarz [1978] also modified by Cudeck and Brown [1983]) is similar 
in use to Akaike’s index, selecting, in a sequence of nested models, the model for which 

,
ln( )k

k ML k
q N

SC F
N

= +
−1

 

is a minimum. 

Browne–Cudeck Single Sample Cross-Validation Index 

Browne and Cudeck [1990] proposed a single sample cross-validation index as a 
follow-up to their earlier (Cudeck–Browne [1983]) paper on cross-validation. Cudeck 
and Browne had proposed a cross-validation index which, for model Mt in a set of 
competing models is of the form FML(Scν,Σt(θ)). In this case, F is the maximum likeli-
hood discrepancy function, Scν is the covariance matrix calculated on a cross-validation 
sample, and Σt(θ) the reproduced covariance matrix obtained by fitting model Mt to the 
original calibration sample. In general, better models will have smaller cross-validation 
indices. 

The drawback of the original procedure is that it requires two samples, i.e. the calibra-
tion sample for fitting the models, and the cross-validation sample. The new measure es-
timates the original cross-validation index from a single sample.  

The measure is 

( , ( ))
– –

t
t ML cv t

q
C F

N p
= +S Σ θ

2
2

. 

Null Model Chi-square and df 

This is the Chi-square goodness-of-fit statistic, and the associated degrees of free-
dom, for the hypothesis that the population covariances are all zero. Under the assump-
tion of multivariate normality, this hypothesis can only be true if the variables are all in-
dependent. The ‘Independence Model’ is used as the ‘Null Model’ in several comparative 
fit indices. 
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Bentler–Bonett Type Fit Indices 

One of the most historically important and original fit indices, the Bentler–Bonett 
[1980] normed index measures the relative decrease in the discrepancy function caused 
by switching from a ‘Baseline Model’ (typically the null model) to a more complex 
model. It is defined as: 

/
b t b t

t b
b b

F F
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F
− χ − χ
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χ

2 2

20 1≤ , 

where Fb is the discrepancy function for the ‘baseline model’, Ft is the discrepancy func-
tion for the target (typically the current) model. This index approaches 1 in value as fit 
becomes perfect. However, it does not compensate for model parsimony. 

The comparative Bentler–Bonett [1980] non-normed fit index takes into account 
model parsimony. It is defined as 
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or it can be written as 
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where pb/t is the so-called parsimony coefficient. 

Bentler Comparative Fit Index 

The comparative index (Bentler [1990]) estimates the relative decrease in the popula-
tion noncentrality obtained by changing from the ‘Baseline Model’ to the t model. The 
index may be computed as: 

/
t

t b
b

NCP
BCFI

NCP
= −1 , 

where NCPt is the estimated non-centrality parameter for the target model and NCPb is 
that for the base line model. 
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James–Mulaik–Brett Parsimonious Fit Index 

This index was one of the earliest (along with the Steiger–Lind index) to compensate 
for model parsimony. Basically, it operates by rescaling the Bentler–Bonett Normed fit 
index to compensate for model parsimony. The formula for the index is: 

t
t

b

df
PI NFI

df
= , 

where NFI denotes the Bentler–Bonett normed fit index. 

Bollen’s Rho 

This comparative fit index computes the relative reduction in the discrepancy function 
per degree of freedom when moving from the ‘Baseline Model’ to the t model. It is com-
puted as 

/

b t

b t b
t b

b t b

b

F F
df df df F

F df F
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−
ρ = = −1 t . 

Comparing with NNFI, we see that, for even moderate N, there is virtually no differ-
ence between Bollen’s Rho and the Bentler–Bonett Non-normed fit index. 

Bollen’s Delta 

This index is also similar in form to the Bentler–Bonett index, but rewards simpler 
models (those with higher degrees of freedom). It is computed as: 

/
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b t
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F F
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. 

EVALUATION OF MODEL FIT 

Based on the results given in Table 5 and discussion of the goodness of fit measures 
presented earlier the following statements can be established: 

Both the IWLS and the ADF estimates exhibit an outstanding goodness of fit. The 
model with more parameters, of course, performs a better fit. Except the population 
gamma and Jöreskog–Sörbom indices, the ADF estimator seems to be preferred against 
the IWLS estimator. 

As a brief summary measure the pseudo R-square defined as 

null-model
R χ

= −
χ

2
2

21  
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are 98.83 and 74.24 percent for the IWLS homogeneous and heterogeneous models, re-
spectively. Hence, switching from one model to the other seems to cause a consider-
able difference. These measures for the ADF estimators are 78.16 and 34.95 percent, 
respectively. 

The null-model goodness of fit Chi-square value (the distance from the saturated 
model with p(p+1)/2 parameters) is substantially smaller in the ADF case. This null 
model Chi-square means the moving range given for the Chi-square to get closer to the 
saturated model (to the sample points). The corresponding R-square values thus must 
be interpreted on this shorter range of improvement for the ADF case. The null model 
chi-square estimated by the ADF method is 291.781, maybe underestimated to a great 
extent. Therefore additional goodness of fit measures based on this distance are not 
published in Table 5. 

Only the James-Mulaik-Brett Parsimonious Index prefers the improvement in the de-
gree of freedom versus worsen in the discrepancy function. 

Considering any model of our interest, because of the large sample size the model 
chi-square statistic is relatively large as compared with the small degree of freedom re-
sulted in from the (6,6) order of the sample covariance matrix. As a consequence, in spite 
of the goodness of fit measures, the chi-square test suggests to reject each of our models 
at any significance level. 

Even a moderately large sample size is given, as it is the present case, it is not pos-
sible to choose between the competing homogeneous and heterogeneous models based 
on chi-square-difference test statistic. Namely, the difference between these chi-square 
statistics 2057.94–93.33=1964.61 and 189.81–63.74=126.07 are still significant at  
(11–6=5) degrees of freedom no matter whether the IWLS or the ADF results are 
considered. 

Nevertheless, hypothesis testing can be avoided if we use some so-called incremental 
goodness of fit index such as the Bentler-type indices. Normed indices that fall into the 
interval of (0,1) are preferred because of their easy interpretation. In our investigation the 
Bentler-type incremental indices are as follows 

homogeneous/heterogeneous
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and in the case of the ADF estimation they take the values as follows 
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.
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2 2

2
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.| .

.
o

e
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NCP
−

= − = − =
−

63 7372 61 1 0 6771
189 81 11
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The smaller the value of an incremental index, the closer the models of interest are 
to one another. Hence, the results from IWLS may suggest that the assumption of the 
homogeneous variances is acceptable but, in contrary, based on the ADF method we 
may conclude that the error factor variances are heterogeneous. Recall here that the use 
of IWLS is questionable because of rejecting the normality and the zero kurtosis 
assumption. 

Finally, the question of our interest is whether the magnitude of improvement in the 
discrepancy function due to involving correlated error (unique) factors is significant or 
not. Enabling cov(DELTA3, DELTA5) to be freely estimated provided heterogeneous er-
ror variances by the ADF method, the discrepancy function reduces to 0.0105 and the 
Chi-Square Statistic becomes 22.3062 with 5 degrees of freedom and P-value of 
0.000458. Parameter estimates are given in Table 6. As compared with the corresponding 
Chi-Square Statistic 63.7372, the difference is (63.7372–22.3062)=41.431 with 1 degree 
of freedom which is significant at any level. 

 Table 6  

Parameter estimation by ADF with heterogeneous but correlated error factors 
Free parameters Estimation Standard error T-value Prob. 

(F1)-1->[ATPLIAB] 0.635 0.058 10.894 0.000 
(F1)-2->[CFLIAB] 0.668 0.061 11.001 0.000 

(F2)-3->[CURRENT] 0.818 0.052 15.869 0.000 
(F2)-4->[ACURRENT] 0.979 0.050 19.647 0.000 

(F3)-5->[DEBT] –0.633 0.040 –15.822 0.000 
(F3)-6->[EQUITYR] 1.463 0.077 18.951 0.000 

(DELTA1)-7-(DELTA1) 0.018 0.009 1.975 0.048 
(DELTA2)-8-(DELTA2) –0.000 0.000  
(DELTA3)-9-(DELTA3) 0.123 0.028 4.373 0.000 
(DELTA4)-10-(DELTA4) 0.557 0.098 5.687 0.000 
(DELTA5)-11-(DELTA5) 0.191 0.032 6.008 0.000 
(DELTA6)-12-(DELTA6) 0.567 0.141 4.027 0.000 

(F2)-13-(F1) 0.284 0.061 4.648 0.000 
(F3)-14-(F1) 0.241 0.032 7.557 0.000 
(F3)-15-(F2) 0.465 0.030 15.671 0.000 

(DELTA3)-16-(DELTA5) 0.061 0.008 7.741 0.000 
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 Table 7  

Goodness of fit confidence intervals for IWLS and ADF measures 
 with heterogeneous but correlated error factors 

90 percent IWLS confidence  
interval 

90 percent  ADF confidence  
interval Noncentrality measures 

Lower Point Upper Lower Point Upper 

Population Noncentrality Index 0.007 0.015 0.025 0.003 0.008 0.017 
Steiger-Lind RMSEA Index 0.038 0.054 0.071 0.024 0.040 0.058 
McDonald Noncentrality Index 0.987 0.993 0.996 0.992 0.996 0.999 
Population Gamma Index 0.992 0.995 0.998    
Adjusted Population Gamma Index 0.965 0.980 0.990    

Finally, we conclude that the σ2I  restriction imposed in our factor model is strongly 
questionable. 
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