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In the literature on calibration methods, the Deville–Särndal paper [1992] is a key 
reference. It is shown in that paper that under some mild conditions any calibration es-
timator is asymptotically equivalent to the generalized regression estimator (called 
henceforth GREG), and therefore the variance and the estimated variance of the latter 
may be used for the former. A small Monte Carlo study with simple random samples 
of size 200n =  from a population consisting of 2000N =  units has yielded practi-
cally the same variance for the most common calibration estimators in use.  

In this paper a method is given to assign approximate variance and sample esti-
mate of the variance – different from those of the GREG – to an arbitrary calibration 
estimator. By the Deville–Särndal principle, these variances will be quite close to 
their counterparts corresponding to the GREG, yet in some cases the difference may 
be interesting, and the extra computing needed is not substantial. The idea of our 
method is to re-write a given calibration estimator in a form similar to that of the 
GREG, and then the variance and the variance estimate can be determined in a simi-
lar way as in the case of the latter. The GREG in this paper plays the role of the base-
line, therefore we begin with a brief review on that estimator.  

Provided we are given a sample { }1  2   , , ..., n  from a finite universe of size N, and 
the design enables the use of the Horvitz–Thompson estimator, consider the follow-
ing problem referred to as (P1) in the subsequent considerations. Find the calibrated 
weights 1 2  ..., nw , w , w  by minimising the distance function 

                                                  ( )2
1

n
j j jj w d / d= −∑  ,  /1/ 

subject to the calibration constraints  

                                       1
n

ji j ij x w X= =∑ ,           1  2   i , , ..., m= . /2/ 

In equations /1/ and /2/, 1 2  ..., nd , d , d  stand for the design weights, 

1 2  ..., j j jmx , x , x  are the values of the auxiliary variables observed on sample unit j, 

and 1 2  ..., mX , X , X  are the population totals of the auxiliary variables. The unique 
solution of the problem (P1) for jw  can be given explicitly, and the calibrated total 

of some study variable jy  can be written as 

                                                   ( )reg
1

m
i i ii

ˆ ˆ ˆY Y b X X== + −∑ .  /3/ 
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regŶ  is called generalized regression estimate of the population total Y; 1  ... ˆ ˆY , X ,  
and mX̂  are Horvitz–Thompson estimates based on the design weights jd , and 

1 2  ..., mb , b , b  are generalized regression coefficients estimated from the sample. 
To emphasize the baseline function of the GREG in this paper, the results coming 

from the problem (P1) will be denoted with symbols having a superscript ( )o. ; thus 

e.g. o o o
1 2  ..., nw , w , w  will stand for the calibrated weights and /3/ will be re-written as  

                                           ( )reg o
1

m
i i ii

ˆ ˆ ˆY Y b X X== + −∑ .  /3a/ 

Matrix algebra will often be used in this paper hence we need matrix-vector nota-
tions, too. Some of the most important of those are as follows. The superscript ( )T.  
denotes transpose of matrices or vectors; 

( )1 2  ..., T
nd , d , d=d , 

( )o o o o
1 2  ..., 

T
nw , w , w=w , 

( )1 2  ..., T
ny , y , y=y , 

( )jix=x ,    1  2   j , , ..., n= ,   1  2   i , , ..., m= , 

( )o o o o
1 2  ..., 

T
mb , b , b=b  ,  

Ω  is  the diagonal matrix with entries 1 2  ..., nd , d , d  in the main diagonal. 
Note that 

1
n T

j jj
ˆd y Y= = =∑ d y  ; 

by analogy we have 

( )1 2  ..., T
m

ˆ ˆ ˆX , X , X=d x . 

Further notations: 

( )1 2  ..., T
nX X , X , X= , 

( )1 2     
T

m
ˆ ˆ ˆ ˆX X , X , ..., X= . 
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Except for the last two symbols, matrices and vectors are denoted by bold-face 
letters that may be capital, lower case or even Greek characters. Note also that with 
these notations the vector ob  of regression coefficients can be written as follows: 

 ( ) 1o T T−
=b x Ωx x Ωy  . 

In some cases a generalized version of the problem (P1) is considered where the 
distance function /1/ has the following form:  

                                                  ( )2
1

n
j j j jj w d / q d= −∑  ,  /1a/ 

and 1 2   ..., nq , q , q  are positive weights chosen properly. For any unit j in the sample 
or in the population, jq  can always be identified with the reciprocal of the variance 

2σ j  of the random variable jY  in the super-population model, 1  2   j , , ..., N= ; see 
e.g. Särndal, Swensson and Wretman ([1992] p. 225–229.). However, the option of 
using weights jq  other than unity would have no impact on our conclusions there-

fore we assume throughout that 1jq =  for all j. In any case, it is interesting to note 
that the estimator /3/ – or /3a/ – can be derived in two different ways: either by solv-
ing the calibration problem (P1) or by means of the super-population principle.  

1. The general calibration estimator  
and its quasi-regression form 

With the same assumptions on sample and universe as in the introductory section, 
consider the following calibration problem (P2). Find the calibrated weights 

1 2  ..., nw , w , w  by minimising the distance function 

                                         ( )1 2 1 2 ...,    ...,  n nF F w , w , w , d , d , d=  , /4/ 

subject to the calibration constraints  

                                       1
n

ji j ij x w X= =∑ ,           1  2   i , , ..., m= . /2/ 

and the individual bounds on the calibrated weights 

                                                          j jL w / d U≤ ≤ .  /5/ 
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The distance function F is supposed to be strictly convex and continuously differ-
entiable at least twice. In the majority of cases it is also assumed that F is separable 
which means that it is of the form 

( )1
n

j jjF G w ,d== ∑ , 

where G is strictly convex and continuously differentiable at least twice; term j in 
this representation depends only on jw  and jd . 

Denote ( )1 2  ..., T
nw , w , w=w  the unique solution of (P2) – distinguishing it in 

this way from the solution of (P1) – and denote calŶ  the calibrated estimate of Y  
with these weights. We point out the following. 

Result 1. calŶ  can be written in form as follows: 

                                     ( ) ( )cal
1

Tm
i i ii

ˆ ˆ ˆ ˆ ˆY Y b X X Y X X== + − = + −∑ b  ,  /6/ 

where o ’= +b b b , and 

( ) ( ) ( )
( ) ( )

( ) ( )

cal reg def1

1

def 1
o

T
T T

T

ˆ ˆY Y ˆ’ X X
ˆ ˆX X X X

ˆC X X

−

−

−

−
= − =

− −

= −

b x Ωx
x Ωx

x Ωx

. 

Note that b depends on the problem (P2) only through the expression cal regˆ ˆY Y− , 
and that X̂  depends on the sample and the design weights jd . 

Proof. Starting with the right-hand side of /6/, we have 

( ) ( ) ( )
( ) ( )

o

reg reg cal reg

  

 ,

T T T

T

ˆ ˆ ˆ ˆ ˆY X X Y X X X X

ˆ ˆ ˆ ˆ ˆY X X Y Y Y

′+ − = + − + − =

′= + − = + −

b b b

b
  

as was to be shown. 
While Result 1 is almost trivial, expression /6/ is useful in examining the esti-

mated variance of calŶ . It is easy to see that the existence of ( ) 1T −
x Ωx  is sufficient 

for that of regŶ  and also for the “quasi-regression” representation /6/, thus the term 
“quasi-regression form of calibrated estimates” is justified. 
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2. Linearization and variance expressions 

With the quasi-regression forms introduced in the preceding section, one should 
proceed in the same way as in the case of “ordinary” regression estimates.  

To this end: 

– first the quasi-regression estimate should be linearized, then 
– the linearized expression can be treated as the Horvitz–Thompson 

estimate of a total, and 
– expressions for the variance and the sample estimate of the vari-

ance should be identified, and finally, 
– the unknown population values in the variance estimate from the 

sample should be replaced by the corresponding sample estimates. 

Before starting this procedure, the population value of the quasi-regression coef-
ficients b should be found. This will be done for the two terms of o ’= +b b b  sepa-
rately. By the principle of the super-population model, the population value of bo is 
Bo, the vector of regression coefficients in the population ( ( )o oE≠B b ). As for b’, it 

is straightforward to take the expectation B’ of b’ over all samples in the design in 
consideration as population value. In cases where 1T( )−x Ωx  does not exist we take 

o 0’= = =b b b . The population value of b is then defined as o ’= +B B B , its com-
ponents will be denoted by 1 2  ..., mB , B , B . 

Now we have to linearize calŶ  given by /6/. This estimated total depends on Ŷ , 
1 2    ...  m

ˆ ˆ ˆX , X , X , and a certain number of other sample-depending values deter-
mined basically by the distance function F in /4/. Denote 1 2  ..., hˆ ˆ ˆz , z , z  these argu-

ments of calŶ ; we shall see soon that we need not to have much information on them. 
Differentiating yields 

cal  1ˆ ˆY / Y∂ ∂ ≡ ; 

( )mcal
k 1

k
i k k i

i

bˆ ˆ ˆY / X X X b
X̂=
∂

∂ ∂ = − −
∂

∑ ,          1  2   i , , ..., m= ; 

( )cal
1

m k
i k kk

i

bˆ ˆˆY / z X X
ẑ=

∂
∂ ∂ = −

∂
∑ ,       1  2   i , , ..., h= . 

Setting the arguments in the last two relations equal to the corresponding popula-
tion values implies  
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cal | =
i iˆi iX X

ˆ ˆY / X B=∂ ∂ − ,   1  2   i , , ..., m= ,  and cal
  |   0

i iˆi z z
ˆ ˆY / z =∂ ∂ = .1 

This suggests that linŶ , the linearized version of calŶ  can be written as follows: 

                  ( ) ( ) ( )mlin
k 1 1

m
k k k k k kk

ˆ ˆ ˆ ˆ ˆY Y Y Y B X X Y B X X= == + − + − − = + −∑ ∑ ,   /7/ 

i.e. the linearization yields that the quasi-regression coefficients ib  are replaced by 

the corresponding population values. From now on, variance expressions for calŶ  
are derived in the same way as in the case of the ordinary regression estimator. The 
approximate variance of calŶ  is the variance of linŶ , and since ∑k kk XB  is con-
stant over all samples, we have  

( ) ( ) ( ) ( )cal lin
1

m
k kk

ˆ ˆ ˆ ˆ ˆAV Y Var Y Var Y B X Var Z== = − =∑ , 

where Ẑ  is the total of the residuals ∑ =−= m
k jkkjj xByz 1  weighted with the design 

weights jd , and ( )ˆVar Z  is computed with the variance formula of the Horvitz–

Thompson estimator. The sample estimate of the variance is also based on the re-
siduals jz , but the unknown population values kB  should be replaced by the corre-

sponding sample values kb ; moreover, Deville and Särndal advocate the use of cali-
brated weights jw  in variance estimates rather than that of jd . It should be empha-

sized that in this way the estimated variance of calŶ  – and not that of regŶ  – is de-
termined; and in practice presumably not the Yates–Grundy formula  

( ) ( ) ( ) ( )2cal
π π π

π π
π

i j ij
i i j j

i j i ij

ˆ ˆvar Y var Z z z
>

−
≈ = −∑∑  

will be used, but e.g. the jackknife method. 
In the particular case of simple random sampling an explicit expression can be 

given for ( )ˆvar Z . We have the following. 

Result 2. Assume that the design is simple random sampling without replacement 
and one of the auxiliary variables assumes the value 1 for each unit of the popula-

 
1 The notation is simplified; all arguments in the partial derivatives should set equal to the corresponding 

population values. 
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tion.2 In this case the following relation holds for the sample estimate of the variance 
of calŶ : 

( ) ( ) ( ) ( )cal reg  ˆ ˆ ˆ ˆvar Y var Z var Y var Xb′≈ = +                           /8/ 

where ∑ =−= m
k jkkjj xbyz 1  and ∑ == n

j jzn
NZ 1

ˆ . Furthermore, 

( ) ( )
( )

( )
( ) ( ) ( )

2cal reg2

1

1-
1 T T

ˆ ˆY Yf Nˆvar X
n n ˆ ˆX X X X

−

−
′ <

− − −
b

x x
,                         /9/ 

where Nnf /= .   
Proof. It is easy to see that the well-known estimated variance for an estimated 

total under simple random sampling (see Cochran [1977] p. 26.) can be re-written in 
matrix-vector form as follows; 

( ) ( )
( )

21 1  
1

T Tf Nˆvar Z
n n n
−  = − −  

z I ee z , 

where ( )1 2  ..., T
nz , z , z=z , I is unit matrix of order n and e is a vector with each 

component being equal to 1. Thus we have  

( ) ( ) ( )1
1T T T Tˆvar Z C
n

 = − − − 
 

y b x I ee y xb                         /10/ 

where 
( )

( )
2

1
1

1
f N

C
n n
−

=
−

. Now bo+b’ should be substituted for b. We have to take into 

account that, owing to simple random sampling, the matrix Ω  in the expressions of 
bo and b’ is now  N/n times the unit matrix. However, the factor N/n will not occur in 
the formulae, since it always appears simultaneously in the numerator and in the de-
nominator. Consequently, the factor xby −  becomes 

( ) ( ) ( )1 1
o

T T T ˆC X X
− −

− − −y x x x x y x x x =

( ) ( ) ( )1 1 o
o

T T T TC
− −

= − − −y x x x x y x x x x w d , 

or denoting the matrix ( ) 1T T−
x x x x  by P,   

 
2 From the viewpoint of regression this means that there is an intercept. 
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                       ( ) ( ) ( )o o
o oC C− = − − − = − − −y xb y Py P w d I P y P w d , /11/ 

where 
( ) ( ) ( )

cal reg

o 1T T

ˆ ˆY YC
ˆ ˆX X X X

−

−
=

− −x x
; 

note that Ω  has disappeared from here, too. The matrix P is a symmetric projection 
and, because of the assumption on the auxiliary variable having the value 1 for any 
unit, the vector e is an eigenvector of  : =P Pe e . Substituting the right-hand side of 
/11/ for y – xb in /10/ implies     

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

o o
1 o o

2 o o
1 1 o

1

1

TT T

TT T

ˆvar Z C C C
n

C C C .
n

  = − − − − − − − =    
 = − + − − − 
 

y I P w d P I ee I P y P w d

y I P y w d P ee w d
 

Substituting here ( ) 1T T−
x x x x  for P and making use of the expression for ob  and 

the relation ( )oT ˆX X− = −x w d  one obtains 

( ) ( ) ( )

( ) ( ) ( ) ( )

o o
1

1 12
1 o

1

1

T T

T
T T T

ˆvar Z C
n

ˆ ˆC C X X X X .
n

− −

 − − − + 
 

  + − − −      

y xb I ee y xb

x x x I ee x x x
 

Using again the argument that an additive constant of the form ∑k kk Xb  has no 
impact on the variance, it is easy to see that the right-hand side of the last equality 
equals ( ) ( )reg  ˆ ˆv ar Y var X ′+ b which verifies /8/. Inequality /9/ follows by omitting 

the matrix nT /eeI −  from the second term and making use of the fact that its norm 
equals /1/. The proof is thereby complete. 

3. A numerical example 

We have considered a universe consisting of 2899N =  households. In those 
households, there were =1X 1076 individuals aged 15-24 years, =2X 4239 indi-
viduals aged 25-54 years, 3X = 1382 individuals aged 55-74 years, =4X 3193 males 
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aged 15-74 years, =5X 3504 females aged 15-74 years, and, finally =Y 3656 indi-
viduals aged 15-74 who participated in the labour market. 

From this universe simple random samples consisting of 25 units were selected, 
thus the design weight was 116.96 for each unit in the samples. Using 

1X , 2X , 3X , 4X , 5X  and 6X N=  as controls,3 two calibration estimates of Y  were 

computed for each sample. One of them was regŶ , the baseline estimate, the other 
was calŶ  obtained with raking, obeying also the individual bounds  40 ≤ jw ≤ 600  
for the final weights. 

The following table shows regŶ , calŶ , ( )cal reg Tˆ ˆ ˆY Y X X ′− = − b  and the corre-

sponding standard errors based on /8/ and /9/ for the first six samples. 

Estimates and standard errors obtained with two calibration estimators  
for samples from an artificial population 

regŶ  calŶ  cal regˆ ˆY Y−  Number 
of Sample Estimate S. E. Estimate S. E. Estimate S. E. 

1 2878 308.9 2933 310.5 55 30.9 
2 4815 331.4 4797 331.5 –18 7.2 
3 3306 393.4 3346 394.1 40 24.1 
4 3773 343.1 3739 344.0 –34 19.6 
5 2884 253.7 2959 254.7 75 22.8 
6 3494 409.4 3575 412.6 81 50.1 

It might be surprising that the asymptotic equivalence of calibration estimators is 
manifest even at such moderate sizes of sample and population as 25n = , 

2899N = .  
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3  Note that X1+X2+X3=X4+X5. 


