
 

HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 10 

 
On estimation of generalized logarithmic 
series distribution∗ 

  
Anwar Hassan, 
associate professor of 
PG. Department of Statistics 
University of Kashmir,  
Srinagar, India. 
E-mail: anwar_husan@yahoo.com 

Khurshid Ahmad Mir, 
senior lecturer of 
Department of Statistics  
Amar Singh College,  
Srinagar, India 
E-mail: khrshdmir@yahoo.com 

In this paper we have studied the estimation of 
generalized logarithmic series distribution (GLSD) by 
the method of weighted discrepancies between ob-
served and expected frequencies. The maximum like-
lihood, minimum chi-square and the discrimination in-
formation methods are special cases of the weighted 
discrepancies method. A new weighted technique, the 
empirical weighted rates of change (EWRC) for esti-
mating the GLSD parameters has been obtained. We 
have fitted the GLSD to several zero-truncated bio-
logical data by different methods and observed that in 
most of the cases the GLSD provided a better fit than 
the usual logarithmic series distribution (LSD) by us-
ing EWRC method. 
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The generalized logarithmic series distribution (GLSD) characterized by two pa-
rameters α  and β  was defined by Jain and Gupta [1973]. The probability function 
of the GLSD model is given by 
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The GLSD model /1/ is also a limiting form of the zero-truncated generalized 
negative binomial distribution of Jain and Consul [1971]. Patel [1981] also defined 
GLSD and obtained the estimates of the parameters by the method of moments. 
The model /1/ reduces to the simple logarithmic series distribution (LSD) when 
β 1= . Patil [1962] studied the estimation of LSD. The GLSD model is a member 
of Gupta [1974] modified power series distribution and also can be found in La-
grangian probability distributions of Consul and Shenton [1972]. Famoye [1987] 
showed that the GLSD is unimodal and the mode is at the point 1x = . Some meth-
ods of sampling from GLSD /1/ are provided by Famoye [1997]. Mishra [1979], 
and Mishra–Tiwary [1985] showed that the GLSD provides a very close fit to the 
observations coming from various fields such as medicine, engineering etc. Tripa-
thi-Gupta [1988] gave the another generalization of the logarithmic series and 
geometric distributions. 

Jani [1977] obtained the minimum variance estimators, Famoye [1995] acquired 
the moment estimators, Mishra [1979] and Jani–Shah [1979] discussed the use of 
maximum likelihood and moment method of estimation for the two parameter GLSD 
/1/. Mishra–Tiwary [1985] suggested an alternative method of estimation based on the 
first three moments. Mishra–Hassan [1996], [1997] recommended a quick and simple 
method for the estimation and they also obtained the Bayesian estimate of GLSD. 

In this paper we study the estimation of the parameters of GLSD /1/ using the 
maximum likelihood (ML), minimum chi-square (MC), weighted discrepancy 
(WD) and empirical weighted rate of change (EWRC) methods in the same line as 
has been performed by Famoye–Lee [1992] in case of generalized Poisson distribu-
tion (GPD). 
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1. Maximum likelihood method  

Let a random sample of size N be taken from the GLSD /1/ and let the observed 

frequencies be xf ; 1  2 ....x , k=  so that 
1

k

x
x

f N
=

=∑ , where k is the largest of the ob-

served values having non–zero frequencies. The likelihood equation of the GLSD /1/ 

can be written as  
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The log likelihood function is given as  
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The two likelihood equations can be obtained as 
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where x  is the sample mean. From equation /4/, we get  
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Putting this in equation /5/, we get 
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The previous equation does not seem to be directly solvable and hence some 
iteration method can be used to solve it. For this we find second derivatives of log 
L as 
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The values of these second derivatives can be put in the following equation in the 
matrix form as 
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where α̂ , and β̂ are the ML estimators of α  and β  respectively and 0α , 0β  are the 
initial values of the parameters. For initial values the moment estimators can be used 
or it can be obtained by equating the first three observed relative frequencies to the 
corresponding theoretical probabilities. The system of two equations may be used re-
peatedly till a good approximation of α  and β  are obtained. 

2. Weighted discrepancies (WD) method 

Let xf  denote the observed frequencies 0  1  2   x , , , .... k= . Obviously, k is the 

largest of the observations. Let 
1

k

x
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The corresponding relative frequencies are given by 
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The log likelihood function can be written as 
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Subtracting /17/ from /15/ and /18/ from /16/, we get  
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Substituting the corresponding expressions of the derivatives to /19/ and /20/, we 
get 
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which has referred to Kemp [1986] as an equation from minimum discrimination in-
formation and ML estimation and called as weighted discrepancies estimation 
method. 

3. Minimum chi-square (MC) method  

We know that  

                                                
( )2

2

1
χ

K x x

X x

n p
p=

−
= ∑   /23/ 

is approximately distributed as chi-square. Differentiating it with respect to α  and 
β , we obtain 
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Substituting the corresponding expressions of the derivatives to /24/ and /25/ we get  
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By a similar argument in section 3 the resulting equations /26/ and /27/ are known 
as minimum chi-square equations. 

The weights in equations /15/ and /16/ for ML method depend only on the ob-
served frequencies while the weighted discrepancies method equations /21/ and /22/ 
including the minimum chi-square method equations /26/ and /27/, both have weights 
depending on the parameters as well as observed frequencies. 



GENERALIZED LOGARITHMIC SERIES DISTRIBUTION 

HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 10 

177 

4. Empirical weight rates of change (EWRC) method 

The expression 
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j
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where 1θ α,= 2θ β= , is common to /15/, /16/ and /19/, /20/ and /26/, /27/ which are, 
the ML equations, the weighted discrepancies equations and minimum chi-square 
equations respectively. The common term /28/ can be seen as the relative rates of 
change in the probabilities on the parameters as α  andβ  change. We refer to /28/ as 
the score function and it is being weighted by the relative frequencies in case of ML 
estimation method as in equations /15/ and /16/ and weighted by the discrepancy be-
tween observed relative frequency and estimated probability in case of WD estima-
tion method as in equations /26/ and /27/. In order to obtain an estimation which is 
closer to the actual parameter value, it is quite natural to consider the combination of 
these two methods of estimation. Thus, we will use a weighting factor which is the 
product of the weights of ML and WD methods. This leads to equations  
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where 1θ α,= 2θ β= . 
Estimators obtained from /29/ will be referred as empirical weighted rates of 

change estimators (EWRC). This method weights the scoring function by 
( )x x xn n p−  which weights the discrepancy by factor xn . If large discrepancies oc-

cur on the extreme x values, then small weights are applied. Meanwhile, if large dis-
crepancies occur on the more frequent x values, large weights are applied. Therefore 
this method can be viewed as a generalization of WD method. 

5. Fitting to the GLSD 

In this section the method will be presented on a biological example. In our paper 
we have fitted the logarithmic series distribution (LSD) and GLSD /1/ to the same 
zero truncated biological data which was used by Jani and Shah [1979] though they 
only used the method of moment estimation. Here we have operated with the differ-
ent methods of estimation like ML, WD, MC and EWRC to find the estimators for 
fitting the LSD and GLSD. 

Data provided in Tables 1 and 2 are the zero-truncated data of P. Garman (Jani–
Shah [1979]) on counts of the number of European red mites on apple leaves. 
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Table 1 

Estimation of LSD model 

Expected frequency of LSD  

methods of estimation Number of 
mites per leaf Leaves observed 

ML Moments MC WD EWRC 

1 38 44.05 43.46 42.53 40.58 41.26 
2 17 15.67 6.24 0.09 18.09 17.07 
3 10 9.03 8.09 9.01 9.06 9.03 
4 9 3.97 4.53 4.25 3.56 4.56 
5 3 2.49 2.71 2.79 2.72 3.89 
6 2 1.34 1.69 1.57 1.34 1.56 
7 1 1.56 1.08 1.79 2.09 2.01 
≥8 0 1.89 2.20 2.97 2.56 0.62 

Total 80 80.00 80.00 80.00 80.00 80.00 
Mean 2.1500 . . . . . 
S.D 1.4504 . . . . . 

2χ  . 2.30 1.81 1.038 0.935 0.80508 

D.f . 2 2 2 2 2 

( )2χP  . 0.3166 0.40 0.595 0.6265 0.6686 

 
Estimates 

α    0.7578 0.7473 0.7398 0.7296 0.7216 

Table 2 

Estimation of GLSD model 

Expected frequency of LSD  

methods of estimation Number of 
mites per leaf Leaves observed 

ML Moments MC WD EWRC 

1 38 40.56  39.10 38.46  38.16  38.89 
2 17 18.56  17.40 16.03 15.98  16.05 
3 10 9.34 9.73 10.63 10.21  9.81 
4 9 4.79  5.83 5.26  5.81  5.34 
5 3 2.59  3.55 3.29 3.75  3.89 
6 2 2.06 2.17 1.38 1.56  1.34 

(Continued on the next page.) 
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(Continuation.) 

Expected frequency of LSD  

methods of estimation Number of 
mites per leaf Leaves observed 

ML Moments MC WD EWRC 

7 1 0.89  1.27  2.97  3.01 2.79 
≥8 0 1.21 0.95  1.98  1.52 1.89 
Total 80  80.00 80.00 80.00 80.00 80.00 
Mean 2.1500 . . . . . 
S.D 1.4504 . . . . . 

2χ  . 1.38 0.16 0.102 0.097 0.084 

D.f . 1 1 1 1 1 

( )2χP  . 0.2401 0.69 0.75 0.76 0.772 

 
Estimates 

α    0.8904 0.8898 0.8878 0.8823 0.8789 
β    0.9526 0.9129 0.9103 0.91001 0.9001 

It is evident from Tables 1 and 2 that in all the cases GLSD /1/ provides a better 
fit than the usual logarithmic series distribution. We notice that all the estimation 
techniques, the ML, the WD, the moment and the MC method do not perform well in 
comparison to the EWRC method in estimating the LSD and GLSD parameters. 
Also, we observed that EWRC method seems to be better than any of the other 
methods for fitting the data either to LSD or GLSD. 

References 

CONSUL, P. C. –  SHENTON, L. R. [1972]: Use of Lagrange expansion for generating discrete gener-
alized probability distributions. SIAM Journal of Applied Mathematics. Vol. 23. No. 2. p. 239–
248. 

FAMOYE, F. [1987]: A short note on generalized logarithmic series distribution. Statistics and 
Probability Letters. Vol. 5 p. 315–316. 

FAMOYE, F. [1995]: On certain methods of estimation for the generalized logarithmic series distri-
bution. Journal of Applied Statistical Sciences. Vol. 2. p. 103–117. 

FAMOYE, F. [1997]: Sampling from the generalized logarithmic series distribution. Computing. Vol. 
61. p. 365–375. 

FAMOYE, F. – LEE, C. M. S. [1992]: Estimation of generalized Poison distribution. Communications 
in  Statistics–Simulation and Computations. Vol. 21. No. 1. p. 173–188. 

GUPTA, R. C. [1974] : Modified power series distribution and some of its applications. Sankhya. 
Series. B. 36. p. 288–298. 



HASSAN – MIR: GENERALIZED LOGARITHMIC SERIES DISTRIBUTION 

HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 10 

180

JANI, P. N. [1977]: Minimum variance unbiased estimation for some Left-Truncated Modified 
Power Series Distribtions. Sankhya.  Series B. 39. p. 258–278. 

JAIN, G. C. – CONSUL, P. C. [1971]: A generalized negative binomial distribution. SIAM Journal of 
Applied Mathematics. Vol. 21. No. 4. p. 501–513. 

JAIN, G. C. – GUPTA, R. C. [1973]: A logarithmic type distribution. Trabjos Estadist. Vol. 24. p. 99–
105. 

JANI, P. N – SHAH, S. M. [1979]: On fitting of the generalized logarithmic series distribution. Jour-
nal of the Indian Society for Agricultural Statistics. Vol. 30. No. 3. p. 1–10. 

KEMP, A. W.[1986]: Weighted discrepancies and maximum likelihood estimation for discrete dis-
tributions. Communication in Statistics – Theory and Methods. Vol. 15. No. 3. p. 783–803. 

MISHRA, A (1979): Generalization of some discrete distributions. PhD thesis Patna University. 
Patna. Working paper. 

MISHRA, A – TIWARY, D. [1985]: On generalized logarithmic series distribution.  Journal of the In-
dian Society for Agricultural Statistics. Vol. 37. No. 3. p. 219–222. 

MISHRA, A. – HASSAN, A. [1996]: On Bayesian estimation of generalized logarithmic series distri-
bution. Research Journal of Statistics. Assam Statistical Review. Vol. 10. No. 2. p. 120–124.  

MISHRA, A. – HASSAN, A. [1997]: A simple method of estimating generalized logarithmic series 
distribution. Journal of Statistical Research. Vol. 31. No. 2. p. 63–69. 

PATEL, I. D. [1981]: A generalization of logarithmic series distribution. Journal of Indian Statistical 
Association. Vol. 19. No. 1. p. 29–132. 

PATIL G. P. [1962]: Some methods of estimation for the logarithmic series distribution. Biometrics. 
Vol. 18. p. 68–75. 

TRIPATHI, R. C. – GUPTA, R. C: [1988]: Another generalization of the logarithmic series and the 
geometric distributions. Communication in Statistics – Theory and Methods. Vol. 17. No. 5. p. 
1541–1547. 

 
 


