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In the paper the problem of estimating the variance of totals is considered in the 

case of samples of fixed size selected with probability proportional to size and with-

out replacement. Note that the term “sampling with unequal probabilities” might be 

used instead of “sampling with probability proportional to size” (abridged πps  when 

sampling is without replacement) throughout the paper; from the aspect of practice, 

there is no substantial difference between the two notions.  

Since the introduction of the Horvitz-Thompson estimator /4/ and the correspond-

ing variance estimator /5/ by Sen [1953] and Yates–Grundy [1953] (see in the follow-

ing), a considerable number of publications have been appeared on this topic. The 

intensive research in this field has been motivated probably by the fact that estimat-

ing the variance of an estimated total has proved to be a quite hard job in case of 

πps  sampling in contrast to pps sampling, i.e. when sampling is done with replace-

ment. Having extraordinarily ample literature on πps  sampling, one should raise the 

question what is the novelty in this paper. 

From the beginning up to our days, the usual way of creating a πps  sampling de-

sign is as follows: 

– Assign a first-order inclusion probability 0 1iπ   to each unit 

i of the universe called also target population  1, 2, ...,U N ; 

– If n is the sample size, make sure that the equality 

1 2 ... Nπ π π n     may hold; 

– Define a procedure suitable for selecting samples of size n such 

that the unit i is included in the sample with probability iπ ; 

– On the basis of the sampling procedure derive a rule of determin-

ing exact or approximate value of each second-order inclusion proba-

bility ijπ 1, i.e. the probability of the event that both units i and j are in-

cluded in a sample of size  1 , ,n i j N i j   . 

Having carried out these operations, samples can be selected and the survey can 

be conducted; thereafter the Horvitz-Thompson estimator (Horvitz–Thompson [1952]) 

and the Sen-Yates-Grundy estimator (Sen–Yates–Grundy [1953]) can be used with 

the values of the characteristic observed on the units of the sample. 

 
1 This step is sometimes replaced by providing an approximate formula for the variance estimator. 
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By contrast, our approach is based on the direct use of the second-order inclusion 

probabilities ijπ  in defining the sampling design. The ijπ ’s should be assessed by 

means of suitable information obviously other than the design, and the key to solving 

this problem is given in the following by the relations /1/–/3/ between the first- and 

second-order inclusion probabilities. Given the set  1 2, , ..., Nπ π π , assessing a 

feasible set of the ijπ ’s is trivial in certain cases, and then sampling with second-

order inclusion probabilities is one of the simplest and fastest method of πps  sam-

pling. However, the bulk of this paper is the sampling algorithm on the assumption 

that the ijπ ’s are known, and assessing the latter in the general case will be discussed 

in another paper.  

Note that there is a minor looseness of terminology in the paper. A sampling 

method is obviously a procedure, an algorithm whose result is a sampling design. 

Nevertheless, in some cases the latter term will refer to the algorithm resulting in the 

design; this will make the language simpler, hopefully without leading to confusion.   

The structure of this paper is as follows. Our sampling algorithm is described in 

Chapter 1, this is followed by presenting an application in Chapter 2. In Chapter 3 

the algorithm is compared with some standard designs of πps  sampling from the 

aspect of the simplicity of usage. It is worth noting here that current research on πps  

sampling focuses on high entropy of the sampling design – see in the following – 

rather than on simplicity of computing variance estimates. Hence the goal of this 

paper is not in the mainstream, but in certain cases simplicity of computing may be 

more important than high entropy of the design2. In the paper the following notations 

will be used besides those mentioned earlier. 

 1 2, , ..., ns i i i : sample3 of size n from U, 

 \U i : “reduced” universe obtained from U by deleting unit i , 

U  : set of all samples consisting of n units from U,   

  ! ! !C N N n n  : total number of samples of size n,   

 p s : probability function (abridged pf), positive for all s U  , 

  1
s U

p s


 , 

 1 2, , ..., Ns x x x : alternative notation for a sample, 1ix   or 

0ix  , if unit i s  or i s , respectively, 

 
2 The application of the principle of maximum entropy in statistics reduces the chance of receiving unwar-

ranted information (Jaynes [1962]). 
3 Samples selected without replacement are only considered. 
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   p s Φ s : specifying  p s  as a member of some special fam-

ily of functions, 

   
1

1

1
ii

N
xx

i i
i

p s p p




  : pf of the conditional Poisson design, 

0 1ip  ,    

   log
s U

H p s p s


   : entropy of the sampling design, 

j jp π n : probability of selecting unit j from U, 1, 2, ...,j N  .  

The following basic relations concerning πps  samples will also be referred to in 

the paper. 

                                                 1 2  , ...,  Nπ π π n      /1/ 

                                         
 

 ( 1) 
N

ij i
j i

π n π


  ,  1, 2, …, i N   /2/ 

                                       0 ij i jπ π π  4, 1 i ,   j N , i j   /3/ 

                                                      ˆ  HT i i
i s

Y y π


   /4/ 

                                 

2

,  

ˆ ˆ( )   
i j ij ji

HT
i s j s j i ij i j

π π π yy
V Y

π π π  

 
   


    /5/ 

                                    

2

1ˆ ˆ ˆ( )  
( 1)

j

pps pps
j s j

y
V Y Y

n n p

 
    

   /6/ 

ˆ
HTY  in /4/ is the sample estimate of the population total 

1

N

k
k

Y y


   by the 

Horvitz–Thompson estimator.  The variance of ˆ
HTY  is   

2

 1  1  

1ˆ( )  2
N N N

ij i ji
HT i i j

i i j ii i j

π π ππ
V Y y y y

π π π  


    , 

the sample estimate /5/ of this statistic is by Sen [1953] and Grundy–Yates [1953]. 

The order of the sampled units in /5/ should be increasing in terms of their identifi-

 
4 In some approximations  “ ” may stand instead of the second “ ”.   
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ers, i.e. of their indices. Estimator /6/ is the counterpart of /5/ in the case of pps 

samples. 

1. Sampling by means of second-order inclusion probabilities   

Assume we are given the sets of first- and second-order inclusion probabilities 

satisfying the constraints /1/–/3/. Suppose that a sample of fixed size n should be 

selected with probability proportional to size from a universe consisting of N units. 

Using the notations in the introduction, define the following.  

Algorithm. 

Step 1. Select a unit i  from the universe   1, 2, …, U N  with 

the probability i ip π n . 

Step 2. Using the probabilities 1i iπ π , 2i iπ π , …, ,  1i i iπ π , 

,  1i i iπ π , …, iN iπ π , select –1n  units from the reduced universe 

 \U i  with probability proportional to size. Denote 2i , 3i , … and 

ni  the selected units. The procedure has finished, resulting in the sam-

ple  2 3, , , ..., ns i i i i . 

Remark. Randomised systematic sampling (Hartley–Rao [1962]) is recommend-

ed to select the 1n   units in the Step 2, since this is the simplest technique between 

the standard πps sampling methods, requiring nearly optimal amount of computing 

in ingenious applications.5 For a description of the method see the Appendix.  

Theorem. When using this algorithm, each unit i of the universe is included in a 

sample of n units with probability iπ . In addition, any pair  ,i j  of units of the uni-

verse  i j  is included in a sample of size n with probability ijπ . 

Proof. If i is selected in Step 1, the corresponding selection probability is 

i ip π n . If unit j i  is selected in Step 1, the conditional probability   P i j  

equals ji jπ π , that is, the first-order inclusion probability of unit i as a unit selected 

 
5 This technique starts with arranging the units of the universe in random order, which requires considera-

ble CPU (central processing unit) time in the case of large universes. However, it is not necessary to repeat this 

ordering whenever a new   selection is needed.  
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from the reduced universe  \U i  in a sample of size 1n . As for   P i i , the 

only meaningful interpretation is that it equals 1. Since the events “drawing i giv-

en j ” in Step 2 constitute a countable partition of “drawing i ”, by virtue of the law 

of total probability we have 

                                 
 1  

( ) ( | ) ( )
N N

j j ji j i
j j i

P i p P i j π n π π p
 

    ,   /7/ 

which, owing to the relations ji ijπ π , i ip π n  and equation /2/, can be re-written 

as follows: 

 

(  1)
( )     

N
ij i i i

i
j i

π π n π π
P i π

n n n n


     . 

This proves the first part of the Theorem. The proof of the second part is based on 

the fact that selecting a unit i  in the Step 2 of the algorithm – provided that unit j has 

been selected in Step 1 – is tantamount to selecting the pair of units j and i , ( j i ). 

The term  j ji j jiπ n π π π n  in /7/ is a portion of the first-order inclusion 

probability iπ , and at the same time it is also a portion of the second-order inclusion 

probability of the pair of units (j, i ). Consider now a sample  1 2, , ..., ns i i i  

selected from U by means of our algorithm. In the course of the algorithm, this sample 

occurs on n occasions depending on which of its units is selected in Step 1. Whenever 

this sample s is selected, all of the     ! 2! 2 ! 1 2n n n n    pairs of units con-

tained in it are obviously selected, too. On each occasion, when s is selected, the pairs 

(j, i ) belonging to it will be selected with the same probability. As we have seen above, 

the case where e.g. 1i  is selected in Step 1 and 2i  in the second contributes the portion 

1 2i iπ n  to the inclusion probability of the pair  1 2,i i , thus we conclude that the full 

inclusion probability of this pair is 
1 2

 i in π n . The proof is thereby complete. 

Corollary. For a given set of first-order inclusion probabilities iπ  satisfying /1/, 

the values ijπ  with 1 i , j N , i j  constitute a set of second-order inclusion 

probabilities for some πps  design if and only if the relations /2/ and /3/ hold. 
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2. An example of application 

As was mentioned in the introduction, the application of our sampling method – 

called henceforth _p ij  method – is especially advantageous in cases where, besides 

the first-order inclusion probabilities, the second-order ones are also available, or at 

least there is a simple method to assess them. Such a case and such a “simple meth-

od” will be considered in the example below.   

Suppose we are given a set of first-order inclusion probabilities 1 2,  ,  ...,  Nπ π π  

satisfying constraint /1/. Let 

                                          i ip π n   for    1,  2, ..., i N , /8/ 

                                                      
 1

 
1 2

N
i

i i

p
τ

p




 , /9/ 

                             
 1 1

  
(1 ) 1 2

i
i

n
u

n τ p




 
   for    1,  2, ..., i N ,     /10/ 

    ij i jx u u      for  ,  1,  2, ..., i j N ,  i j ,   11 22  ,  ...,  0NNx x x    ,    /11/ 

and finally 

                                    ij ij i jπ x π π , ,   1,  2, ..., i j N ,   i j . /12/ 

Second-order inclusion probabilities defined by /8/–/12/ can be found often in the 

literature on πps  sampling. They satisfy the basic relations /2/ between the first- and 

the second-order inclusion probabilities and are positive if each 0iπ  . In addition, 

in case 2n  , they also satisfy the inequalities /3/ whereby all conditions on sec-

ond-order inclusion probabilities are fulfilled; these probabilities ijπ  were derived in 

the works by Brewer [1963], Rao [1965] and Durbin [1967]. If the relations /2/ and 

/3/ held in general for n greater than 2, the situation would be optimal for our 

_p ij method, but unfortunately, this is not the case. However, the set of the individ-

ual bounds  1 2inp   for  1,  2, ..., i N  is a sufficient condition on the inequalities 

/3/, and the latter ensure that the Sen-Yates-Grundy estimate /5/ of the variance may 

be always non-negative. 

Consider now a universe consisting of N = 7 units and assume that the first-order 

inclusion probabilities pertaining to the latter are the following:  

                              0.48,  0.29,   0.49,   0.48,   0.41,   0.37,   0.48.   /13/ 
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These add up to n = 3, indicating that samples of size 3 should be selected. De-

note π  the vector whose components are the probabilities /13/. Making use of the 

formulae /8/–/12/, the following results are obtained for the matrices  
 

ij
N N

x


X  

and  
 

 ij
N N

π


 :  

0 0.7466 0.8142 0.8102 0.7842 0.7708 0.8102

0.7466 0 0.7506 0.7466 0.7206 0.7072 0.7466

0.8142 0.7506 0 0.8142 0.7882 0.7748 0.8142

0.8102 0.7466 0.8142 0 0.7842 0.7708 0.8102 

0.7842 0.7206 0.7882 0.7842 0 0.7448 0.7842

0.7708 0.7072

X

0.7748 0.7708 0.7448 0 0.7708

0.8102 0.7466 0.8142 0.8102 0.7842 0.7708 0

, 

           

0 0.1039 0.1915 0.1867 0.1543 0.1369 0.1867

0.1039 0 0.1067 0.1039 0.0857 0.0759 0.1039

0.1915 0.1067 0 0.1915 0.1584 0.1405 0.1915

0.1867 0.1039 0.1915 0 0.1543 0.1369 0.1867 

0.1543 0.0857 0.1584 0.1543 0 0.1130 0.1543

0.1369 0.0759

Π

0.1405 0.1369 0.1130 0 0.1369

0.1867 0.1039 0.1915 0.1867 0.1543 0.1369 0

.  /14/ 

It is easy to check that vector π  and matrix Π  given by /14/ satisfy the condi-

tions /1/–/3/ in case n = 3. In what follows, a sample of size 3 will be selected with 

the p_ij method described in the previous section, i.e. by means of the first-order 

inclusion probabilities /13/ and the second-order inclusion probabilities, i.e. the en-

tries of matrix Π . 

In order to use the p_ij method, the order of the units of the universe should be ran-

dom. Assume that the order of the probabilities iπ  in /13/ complies with this requirement. 

In Step 1 of the algorithm a unit i  should be selected from the universe with probability 

i ip π n . Scaling the entries of π  by 1 1 3n  , we get the probabilities 

0.16,  0.29/3,   0.49/3,   0.16,   0.41/3,   0.37/3,   0.16. 

From these probabilities the following cumulated totals are obtained for selecting a 

single unit of the universe: 0.16, 0.257, 0.42, 0.58, 0.717, 0.84, 1.0 (the values are 
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rounded). The random number generator has selected the value 0.1443637r   from 

the uniform distribution on the interval (0, 1). Since r < 0.16, the first element in the 

above sequence, we have 1i  . This means that further units of the sample should be 

selected in Step 2 of the algorithm by means of the first row of matrix Π , which is 

 

 

12 13 14 15 16 17,  ,  ,  ,  ,  

0.1039,  0.1615,  0.1867,  0.1543,  0.1369,  0.1867

π π π π π π 


  

(the vanishing diagonal entry has been omitted). Dividing these probabilities by 

1 0.48iπ π  , the first-order inclusion probabilities are obtained for selecting 

samples of size 1n   from the reduced universe consisting of the units 2, 3, 4, 5, 6 

and 7. In the special case considered, 3n   and condition /2/ reads as follows: 

7

1 1
1, 1

3 1 2j
j j

π π
 

   . 

The sample of size 2 will be selected from the reduced universe with randomised 

systematic sampling (see the Appendix). Since the size of the units is measured by 

the first-order inclusion probabilities 1 1jπ π , these are the building blocks of the 

cumulated totals the last of which is equal to the sample size 1 2n   . The cumu-

lated totals pertaining to the units of the reduced universe are the following. 

Probability 

Index of the unit 

2 3 4 5 6 7 

Cumulated total 0.2165 0.6155 1.0044 1.3259 1.6111 2.0000 

The starting value in the randomised systematic sampling is a positive random 

number not exceeding the distance 1d  ; the value obtained with the random num-

ber generator was 1 0.4915k  . The next (and in this case also the last) auxiliary 

variable will be 2 1 1.4915.k k d    Since 10.2165 0.6155k   and 

21.3259 1.6111k  , the second and the third unit of the sample to be selected are 

2 3i   and 3 6i  , respectively. The sample of size 3 from the universe with 7 

units consists of the units 1, 3 and 6, respectively. 
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3. Comparison of the p_ij method with some standard ps  designs 

The introduction of the p_ij method was motivated by the aim to find a πps  de-

sign facilitating a very simple way of computing variance estimates. The comparison 

of the method with some standard designs of πps  sampling should report on the 

results of this endeavour. For the purpose of the comparison the following sampling 

methods have been chosen: 

– Sunter’s sequential method (Sunter [1986]), 

– conditional Poisson sampling (Hájek [1964], [1981]; Chen–

Dempster–Liu [1994]), and 

– Sampford sampling (Sampford [1967]). 

Owing to their fine theoretical properties, these methods lead the field in terms of 

number of references; as for practical applications, they are dominated by the ran-

domised systematic and the ordinary Poisson sampling. Our _p ij  method can be 

regarded as a variant of randomised systematic sampling, since the first unit is de-

termined by some selection probability iπ n , and the remaining 1n   units are 

selected with the randomised systematic method.  

The criteria of comparison will be run time needed to select a sample on the one 

hand and the complexity of computing or estimating the first- and second-order in-

clusion probabilities on the other. Consider first run time, which will be estimated by 

the number of operations needed to perform sampling. 

The randomised systematic sampling stipulates random order of the units of the 

universe. Fortunately, the sorting need not be repeated whenever a new selection is 

required. Using the properly ordered universe, each unit should be scanned to find 

neighbouring units i  and 1i   such that 1oi t kd i     where ot kd  is the 

member of an arithmetic sequence of length n  (see the Appendix). To sum up, the 

total number of operations needed with this method can be estimated as  

                                                       logO N N O N  /15/ 

where the first term stands for the operations of sorting and the second for scanning 

the individual units. According to the remark above, this estimate applies also to the 

p_ij method. 

Sunter’s sequential method (earlier version) stipulates ordering the units by de-

creasing first-order inclusion probabilities and scans each unit in this order. A unit i 

is selected if i iπ π  where iπ
  is the current value from the random number gener-

ator, and if this is the case, i  is deleted from the universe, and the first-order inclu-
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sion probabilities belonging to the remaining units are recalculated properly. With 

this method, units are included in the samples with the given (i.e. original) iπ ’s but 

the sample size n is a random number. This undesirable property of the method has 

been eliminated in the current version; however, at the cost of growing complexity of 

the method. The estimate /15/ of the number of operations is valid for the earlier as 

well as the current version of the sequential method. 

Conditional Poisson sampling (CP) is derived from the ordinary Poisson sam-

pling (Hájek [1964]). Its probability function (pf) belongs to the exponential family 

(see the notations in the introduction). Selecting a sample with the CP is performed 

with the rejection-acceptance method: ordinary Poisson sampling (see the Appendix) 

is repeated with the parameters 1 2,  ,  ...,  Np p p  until a sample of size n is obtained. 

Samples of size less or greater than n are rejected. If the parameters are known, the 

first-order inclusion probabilities can be computed by means of a closed form ex-

pression requiring  2O n N  operations (Chen–Dempster–Liu [1994]). In practice, 

the inverse problem when 1 2,  ,  ...,  Nπ π π  are given and the corresponding parame-

ters ip  are unknown is of key importance; this is solved by an iterative method using 

 2O n N  operations per iteration (Chen–Dempster–Liu [1994]). Thus the total num-

ber of operations needed to select a sample with the CP if the first-order inclusion 

probabilities are known amounts to    2kO n N L O N   where k is the number 

of iterations needed to achieve proper convergence, and the ordinary Poisson sam-

pling has to be repeated L times to obtain a sample of size n. Note that there is such 

an alternative algorithm for CP sampling that the term  L O N  is replaced by 

 O nN  (Chen–Dempster–Liu [1994]) . 

Sampford sampling is a rejective method: the first unit 1i  is selected with the 

probability 
1 1i ip π n , and 1n   other units are selected with the probabilities 

1

N

j k
k

λ λ


 , 2 3,  ,  ...,  nj i i i  where  1k k kλ p np  , 1,  2,  ...,  k N . The latter 

units are selected with replacement, and the sample consisting of the units 

1 2 3,  ,  ,  ...,  ni i i i  is accepted only if the units are all different, otherwise it is rejected. 

The probability function pertaining to the method is of the following form: 

 
1 2

1

  ... 1
n h

n

n i i i i
h

p s nK λ λ λ p


 
  

 
  where nK  is a constant. It is pointed out that 

with these definitions iπ  is the first-order inclusion probability of unit i . There is an 

exact closed form representation for nK , this needs  2O N  operations to be com-
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puted. The probability of obtaining an acceptable sample is 

 

 1

1

1 !

n
N

n n i
i

P n K λ





  
    
   

 , and 1 nP  is the expected number of samples that 

must be drawn to obtain an acceptable sample. Therefore, the expected number of 

operations needed to obtain a sample with this method is  

                                                       
 2

n

O n
O N

P


 
.  /16/ 

Comparing the sampling methods considered above from the aspect of run time, 

we see that both the _p ij  method and Sunter’s sequential method use 

   logO N N O N  operations to select a sample of size n. Nevertheless, the _p ij  

method is simpler and therefore also somewhat faster than its sequential counterpart, 

since the latter cannot guarantee the fixed size of the sample without a specific rou-

tine if correction is needed. CP sampling is a frequently used method with favourable 

properties such as high entropy and analytic form of the probability function. As was 

mentioned above, sampling with CP requires    2kO n N L O N   operations 

provided that k  iterations are needed to adjust the parameters ip  of the pf to the 

given first-order inclusion probabilities iπ , and ordinary Poisson sampling should be 

repeated L times to obtain a sample consisting of n different units.  2O n N  and 

 O N  are estimated numbers of operations used per iteration and performing ordi-

nary Poisson sampling once, respectively. Due to expert judgment, k is of moderate 

size, occasionally quite small. In any case, rejection-acceptance methods are usually 

slower than sequential methods. This holds for Sampford sampling, too, though ow-

ing to some improvement that method has become more efficient, i.e. faster (see 

Bondesson–Traat–Lundqvist [2006]). Our conclusion is that from the aspect of run 

time both p_ij and Sunter’s method are faster than CP and Sampford sampling; this is 

reflected also in the bounds /15/ and /16/ of the numbers of operations needed by the 

methods in question. 

Each of the sampling methods considered above is suitable to provide second-

order inclusion probabilities. However, in the case of the current version of Sunter’s 

method, the ijπ ’s are exact only for i j N n   , otherwise they have approxi-

mate values;  2O N  operations are needed to compute them. In case of conditional 

Poisson sampling, exact values of the ijπ ’s can be computed by an explicit formula 
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requiring  2 2O n N  operations for the  1 2N N   probabilities (see Chen–

Dempster–Liu [1994]). Sampford sampling provides also an explicit expression for 

computing the ijπ ’s by means of the probability function. Provided that nK  has 

been computed and the ijπ ’s are needed for the sampled units only, the computation-

al load amounts to  2O n N ; if all second-order inclusion probabilities are needed, 

 3O N  operations should be carried out.    

The p_ij method was introduced on the assumption that for a πps  design feasible 

sets of first- and second-order inclusion probabilities are given. However, if the 

method should be compared with the above standard designs from the aspect of con-

venience when it comes to variance estimation, one needs a tool, that is, some proce-

dure to provide a feasible set of the ijπ ’s if the first-order inclusion probabilities iπ  

satisfying /1/ are given. For the time being, there is no better option than the second-

order inclusion probabilities defined by the relations /8/–/12/ in Chapter 2. They are 

actually very simple, all in all, 2 2N   additive and 23 3N    multiplicative opera-

tions are needed to compute them. Unfortunately, they also have a drawback, namely, 

there is only a sufficient condition on their feasibility: 1 2iπ   for 1,  2,  ...,  i N . 

Research is underway to find an algorithm for computing ijπ ’s not subject to this 

restriction. Summarising the conclusions of the comparisons above, the following 

can be stated: the p_ij method is faster than the designs using the rejection-

acceptance method such as conditional Poisson sampling and Sampford sampling. It 

is at least as fast as Sunter’s sequential method and, in contrast with that method, 

always yields exact results. From the aspect of variance estimation with the Sen-

Yates-Grundy formula, the p_ij method combined with the formulae /8/–/12/ is more 

efficient than Sunter’s method, the conditional Poisson sampling as well as the 

Sampford sampling provided that 1 2iπ   is satisfied for each first-order inclusion 

probability.  

Besides the above comparisons, there is a by-product of the p_ij method and the 

Theorem that may deserve some attention. There are several publications on πps  

designs under titles similar to that of the present paper, e.g. “Sampling with pre-

scribed second-order inclusion probabilities” (see Bondesson [2012], Gabler–

Schweigkoffer [1990], Herzel [1986], Sinha [1973], Lundqvist–Bondesson [2009], 

etc.). The goal of their authors is similar: given the sets of appropriate second-order 

inclusion probabilities, define a sampling design so that the units of the universe and 

pairs of them may be included in a sample of fixed size with the given probabilities. 

The aim of using prescribed second-order inclusion probabilities is to control the size 

of the variance of some specific estimates on the one hand and to achieve high entro-
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py of the design on the other. The difference between this approach and that of the 

present paper was stressed in the introduction. Up to now, the usual approach to treat 

the problem has been the following: choose a design with known probability function 

and adjust the parameters of the pf so that the units of the universe may have the 

inclusion probabilities specified in advance.  

The following important result of this trend of research was achieved by Bondes-

son [2012]: for a set of ijπ ’s satisfying the necessary and sufficient conditions on 

second-order inclusion probabilities, there is a set of the parameters ija  of the proba-

bility function of the conditional Poisson design of order 2 yielding the prescribed 

second-order inclusion probabilities. In addition, the entropy of this design is maxi-

mal among the designs having the same second-order inclusion probabilities. Our 

Corollary is simpler than the necessary and sufficient conditions used in Bondesson’s 

paper on second-order inclusion probabilities, and might replace them. The condi-

tional Poisson design of order 2 is a modified version of CP with probability function 

   ,exp i j ij i jp s a x x  , ija  is symmetric, , 1,  2,  ...,  i j N ,  i j ;  its appli-

cation uses considerably long run time. 

Appendix 

1. Randomised systematic sampling 

Arrange the N units of the universe in random order, and compute cumulated to-

tals of the quantities representing their size in the following way: 1 1t a , 

2 1 2t t a  , 3 2 3,  ...,t t a   1N N NT t t a    Introduce the pace d T n   

where n denotes sample size. Choose a positive real number 1k d  and define the 

sequence 1k , 2 1k k d  , 3 2k k d  , 4 3k k d  , … The unit ν  will be 

selected in the sample if there is such an element lk  in the sequence that 

1ν l νt k t    (the case 0 0t   is not excluded). The unit ν  is included in the 

sample with a probability proportional to 1ν ν va t t   . The quantities ia  repre-

senting the size of the units of the universe may be identical with the first-order in-

clusion probabilities. 

2. Poisson sampling   

“Poisson sampling is a sampling process where each element of the population 

that is sampled is subjected to an independent Bernoulli trial which determines 

whether the element becomes part of the sample during the drawing of a single sam-

ple. Each element of the population may have a different probability of being includ-

ed in the sample. The probability of being included in a sample during the drawing of 
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a single sample is denoted as the first-order inclusion probability of that element. If 

all first-order inclusion probabilities are equal, Poisson sampling becomes equivalent 

to Bernoulli sampling, which can therefore be considered to be a special case of 

Poisson sampling. Mathematically, the first-order inclusion probability of the ith
 

element of the population is denoted by the symbol iπ , and the second-order inclu-

sion probability that a pair consisting of the ith
 and jth element of the population that 

is sampled is included in a sample during the drawing a single sample is denoted by 

ijπ . The following relation is valid during Poisson sampling: ij i jπ π π  .” (Wik-

ipedia [2008]) 

References 

BONDESSON, L. – TRAAT, I. – LUNDQVIST, A. [2006]: Pareto sampling versus conditional Poisson 

and Sampford sampling. Scandinavian Journal of Statistics. Vol. 33. Issue 4. pp. 699–720. 

http://dx.doi.org/10.1111/j.1467-9469.2006.00497.x 

BONDESSON, L. [2012]: On sampling with prescribed second-order inclusion probabilities. Scandi-

navian Journal of Statistics. Vol. 39. Issue 4. pp. 813–829. http://dx.doi.org/10.1111/j.1467-

9469.2012.00808.x 

BREWER, K. W. R. [1963]: A model of systematic sampling with unequal probabilities. Australian 

Journal of Statistics. Vol. 5. Issue 1. pp. 5–13. http://dx.doi.org/10.1111/j.1467-

842X.1963.tb00132.x 

CHEN, X. H. – DEMPSTER, A. P. – LIU, J. S. [1994]: Weighted finite population sampling to maxim-

ize entropy. Biometrika Vol. 81. No. 3. pp. 457–469. http://dx.doi.org/10.1093/biomet/81.3.457 

DURBIN, J. [1967]: Design of multi-stage surveys for estimation of sampling error. Applied Statis-

tics. Series C. Vol. 16. No. 2. pp. 152–164. http://dx.doi.org/10.2307/2985777 

GABLER, S. – SCHWEIGKOFFER, R. [1990]: The existence of sampling designs with pre-assigned 

inclusion probabilities. Metrika Vol. 37. Issue 1. pp. 87–96. 

HÁJEK, J. [1964]: Asymptotic theory of rejective sampling with varying probabilities from a finite 

population. The Annals of Mathematical Statistics. Vol. 35. No. 4, pp. 1491–1528. 

http://dx.doi.org/10.1214/aoms/1177700375 

HÁJEK, J. [1981]: Sampling from a Finite Population. Marcel Dekker. New York. 

HARTLEY, B. G. – RAO, J. N. K. [1962]: Sampling with unequal probabilities and without replace-

ment. The Annals of Mathematical Statistics. Vol. 33. No. 2. pp. 350–374. 

http://dx.doi.org/10.1214/aoms/1177704564 

HERZEL, A. [1986]: Sampling without replacement with unequal probabilities: Sample designs with 

preassigned joint inclusion probabilities of any order. Metron. Vol. XLIV. No. 1. pp. 49–68.  

HORVITZ, D. G. – THOMPSON, D. J. [1952]: A generalisation of sampling without replacement from 

a finite universe. Journal of the American Statistical Association. Vol. 47. pp. 663–685. 

http://dx.doi.org/10.1080/01621459.1952.10483446 

JAYNES, E. T. [1963]: Information theory and statistical mechanics. In: Ford, K. (ed.): Statistical 

Physics. W. A. Benjamin. New York. pp. 181–218. 

http://dx.doi.org/10.1111/j.1467-9469.2006.00497.x
http://dx.doi.org/10.1111/j.1467-9469.2012.00808.x
http://dx.doi.org/10.1111/j.1467-9469.2012.00808.x
http://dx.doi.org/10.1111/j.1467-842X.1963.tb00132.x
http://dx.doi.org/10.1111/j.1467-842X.1963.tb00132.x
http://dx.doi.org/10.1093/biomet/81.3.457
http://dx.doi.org/10.2307/2985777
http://dx.doi.org/10.1214/aoms/1177700375
http://dx.doi.org/10.1214/aoms/1177704564
http://dx.doi.org/10.1080/01621459.1952.10483446


98 MIHÁLYFFY: ON SELECTING A SAMPLE BY PROBABILITY PROPORTIONAL TO SIZE 

HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 20 

LUNDQVIST, A. – BONDESSON, L. [2009]: On sampling with desired inclusion probabilities of first 

and second order. Research report in mathematical statistics. Umeå University. Umeå. 

http://snovit.math.umu.se/Forskning/MathStat/reports/Lundqvist05-3.pdf 

RAO, J. N. K. [1965]: On two simple schemes of unequal probability sampling without replacement. 

Journal of Indian Statistical Association. Vol. 3. No. n. d. pp. 173–180. 

SAMPFORD, M. R. [1967]: On sampling without replacement with unequal probabilities of selection. 

Biometrika. Vol. 54. Nos. 3–4. pp. 499–513. http://dx.doi.org/10.2307/2335041 

SEN, A. R. [1953]: On the estimate of variance in sampling with varying probabilities. Journal of 

the Indian Society of Agricultural Statistics. Vol. 5. No. 2. pp. 119–127.  

SINHA, B. K. [1973]: On sampling schemes to realize preassigned sets of inclusion probabilities of 

first two orders. Calcutta Statistical Association Bulletin. Vol. 22. Nos. 85–88. pp. 89–110. 

SUNTER, A. B. [1977]: List sequential sampling with equal or unequal probabilities without re-

placement. Applied Statistics. Vol. 26. No. 3. pp. 261–268. http://dx.doi.org/10.2307/2346966 

SUNTER, A. B. [1986]: Solutions to the problem of unequal probability sampling without replace-

ment. International Statistical Review. Vol. 54. No. 1. pp. 33–50. 

http://dx.doi.org/10.2307/1403257 

Wikipedia [2008]: Poisson sampling. https://en.wikipedia.org/wiki/Poisson_sampling 

YATES, F. – GRUNDY, P. M. [1953]: Selection without replacement from within strata with probabil-

ity proportional to size. Journal of the Royal Statistical Society. Series B. Vol. 15. No. 2. pp. 

253–261. 

http://snovit.math.umu.se/Forskning/MathStat/reports/Lundqvist05-3.pdf
http://dx.doi.org/10.2307/2335041
http://dx.doi.org/10.2307/2346966
http://dx.doi.org/10.2307/1403257
https://en.wikipedia.org/wiki/Poisson_sampling

