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Abstract
A key factor in the transmission of infectious diseases is the structure of disease trans-
mitting contacts. In the context of the current COVID-19 pandemic and with some data
based on the Hungarian population we develop a theoretical epidemic model (susceptible-
infected-removed, SIR) on amultilayer network. The layers include theHungarian household
structure, with population divided into children, adults and elderly, as well as schools and
workplaces, some spatial embedding and community transmission due to sharing communal
spaces, service and public spaces. We investigate the sensitivity of the model (via the time
evolution and final size of the epidemic) to the different contact layers and we map out the
relation between peak prevalence and final epidemic size. When compared to the classic
compartmental model and for the same final epidemic size, we find that epidemics on mul-
tilayer network lead to higher peak prevalence meaning that the risk of overwhelming the
health care system is higher. Based on our model we found that keeping cliques/bubbles in
school as isolated as possible has a major effect while closing workplaces had a mild effect
as long as workplaces are of relatively small size.
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1 Introduction

SARS-CoV-2 and the associated disease COVID-19 has had unprecedented worldwide
impact placing extraordinary strain on health-care sectors and economies [1] with further
negative effect on education and mental health [2]. Typical control measures included full-
blown lockdowns in an attempt to suppress the disease [3–9] combined with test and trace
programs [10] with various success rates. It has now been clear for some time that elimination
of the virus is not possible [11,12] and with new vaccines on their way, regional or country-
wide lockdowns are used to avoid overwhelming health-care systems and to buy more time
to learn about the virus, develop better treatments including a new vaccine/vaccines. Since
the prevalence in most countries is low, partial or full lockdowns are usually followed by
new outbreaks or secondary waves which makes the acceptance of and the compliance with
lockdowns more challenging [13].

In most countries there has been a concerted effort to develop country-specific models of
disease transmission which are often parameterised with relevant data such as age-structure
and mixing between different classes [14,15], mobility data taken from various sources,
existing or new surveys/apps, school [16] and workplace sizes and locations etc. Models
range from simplistic mass action models, with some extended to include age-structure and
realistic incubation and infectious times, and multi-layer network models [17] with realistic
demographic data to country-wide individual-based simulation models that ingest a large
amount of static and dynamic population data [18].

Typically, in most countries scientific evidence for policy making is taken from a range of
models since the uncertainty in most models is high. Any model be it simple or complicated
can be challenged. Simple models tend to lack realism and neglect many features of the
population (e.g. age structure, mixing) and disease (e.g. non-exponential incubation and
infectious periods [19]), but they rely on fewer parameters and aremore transparent. Complex
models need huge amount of data for parameterisation, which is not always available and
assumptions need to bemade.While they tend to bemore realistic, suchmodels are expensive
to run and make scenario testing and parameter inference difficult and are less transparent,
often changes in output are difficult to correlate with changes in input parameters.

In this paper we will use a multilayer network [20] to capture features of contact patterns
which are known tobe relevant for the transmissionofCOVID-19 andother infectious disease.
These are: (1) household structure, (2) schools for children and workplaces for adults, (3)
spatial structure/embedding, and (4) casual contacts (e.g. contacts realised during shopping,
going to the GP, communal places/playgrounds etc). We adapt some of these components to
Hungary, in particular the statistics of the household structure. We then run a susceptible-
infected-recovered (SIR) model on this network and study the impact of interventions such
as closing schools, work or public places. The infection rates in different layers and the sizes
of schools and work places are varied systematically and their effect on the system behaviour
is studied. First, we investigate the time dependence of the number of infected and recovered
individuals as the values of the different parameters are changed. Then we focus on the final
epidemic size and the peak of the epidemic and study how the parameters affect their values.
It is important to understand how a given final epidemic size can be achievedwith the smallest
possible peak and relate this to the structural properties of the network.

The paper is structured as follows. In Sect. 2we describe the construction of the underlying
network, the epidemic dynamics and enumerate parameters whose values can be found /fixed
and those that are subject to investigation. Section 3 contains a systematic investigation of the
impact of parameter values on the time dependence of the number of infected and recovered
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nodes, while in Sect. 4 we study the relation of the peak epidemic prevalence and the final
epidemic size. We also provide some analytical insight into the relation between the values
of peak epidemic prevalence and final epidemic size for the standard SIR model and explore
how this relation changes in the network setting. Finally, in Sect. 5we discuss the implications
of our findings.

2 Model

In this paper the population and interactionbetweenmembers of the population is describedby
a network where each individual is represented by a node and disease-transmitting contacts
are encoded by links/edges between nodes. We mimick some of the relevant features of
realistic contact patterns such as households, schools, workplaces and other casual contacts,
such as shopping or visiting the doctor. These will be implemented as multiple layers over
the same nodes, leading to a network with four layers.

The population is divided into three age groups, children/young people, adults and elderly
people. They will be grouped into households according to the Hungarian data as it will be
specified later. The members of the population spend different times in different layers of
the network and the strengths of the contacts are also different, hence the transition rates in
different layers are different. This will be taken into account by allocating different weights
on the links in the layers. These weights will be parameters of our model.

2.1 The four layers of the network

Our network consists of four layers: (1) households, (2) schools and workplaces, (3) spatial
structure, and (4) community places (e.g. shopping or medical centers, etc.)

Households are the basic units of our network. It is taken into account that the sizes of
the households and the ages of its members are different. Based on the data available from
theHungarian Statistical Office (http://www.ksh.hu/nepszamlalas/docs/tablak/lakas/06_01_
02_14.xls), we created a list of 16 household types, these are the most frequently occurring in
Hungary. For example, householdswith two adults and two children or households containing
two elderly people. The frequency of each type was also determined from the data. The
number of households is a parameter of our model. Once this number is given, we choose
the different types from this distribution. Each household is considered to be a complete
graph with a given edge weight, denoted by τh, which corresponds to the per-contact relative
infection rate within households.

The layer of workplaces and schools contains links between adults and children. All
workplaces are complete graphs with the same size and with edge weights τwp. The adult
population is divided into groups of the same size randomly, independently of the other layers,
such that each configuration has the sameprobability. Similarly, children population is divided
into schools randomly, independently of the other layers. All schools have the same fixed size.
Schools themselves have two layers: small complete graphs of larger weight, called cliques,
representing the group of children who spend much of their time together, and an underlying
complete graph connecting every pair of students with a smaller weight. This represents
the chance of infection at lunch or sport activities, where any two students can meet each
other. The size of cliques will usually be 10. This is in accordance with the observation that
children spendmost of their time in school in a well-defined small group of size around 6–10.
(We note that detailed data is collected from volunteers by a Hungarian institution about the
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connections of people in different age groups, this data is available at https://covid.sed.hu/
tabs/response.) We will have two parameters here. First, τcls is the proportion of the infection
parameter within a clique and within a household. This will usually be chosen to 1, as sitting
close to each other in the classroom can have the same effect as living in the same household.
On the other hand, τsch will be the proportion of the infection parameter between and within
school cliques. For example, τsch = 20% means that the probability that a children infects
someone from the school outside his clique is 20% of the probability that he infects someone
from the same clique. The case τsch = 0 means that the school consists of perfectly separated
cliques of fixed size. The formulation of cliques within a school is uniform random, every
configuration has the same probability, and this is independent of any other schools or layers.

The spatial or geometric structure is represented by an arbitrary graph, the nodes of
which are the households. If two households are connected with a link then every member
of both household is connected to every member of the other one. The weights of these
edges are denoted by τg representing the relative infection rate between neighbours. In all
our simulations, we choose this graph to be a lattice describing a province-like residental
area, that can be tuned to be more town-like by adding diagonal edges to the lattice in the
middle part of the domain. This represents block of flats and hencemakes the network denser.

The fourth layer of the network is given by community/public places such as shops,
playgrounds, medical centres etc. These belong to different residential areas. The community
places are also work places (e.g. for doctors and nurses), so these are chosen randomly from
workplaces. Their number is calculated as follows. The parameter of the model is the size
of this places, i.e. the number of people visiting each of them. For example, if there are
N = 10000 people in the population and the size of community places is chosen to be
200, then their number is 10000/200 = 50. Hence, 50 of the already existing workplaces is
chosen randomly and their members are considered to be the employees in these community
places. In the next step, the whole population is divided into 50 clusters by using the K-means
clustering algorithm. The members of these clusters are those who visit the same community
place, e.g. a shopping centre. Each member of this cluster is linked to each employee of the
corresponding workplace, forming a star-like graph. The members are not connected to each
other, they can infect each other only through those people whowork there. The edge weights
on these links are denoted by τs. We note that one resident in a cluster is connected to only
one community place.

Finally, we get an adjacency matrix in each layer, where we can have different weights on
the edges. These weights are stored in the corresponding adjacency matrices. The adjacency
matrix of the whole multilayer network is the sum of these four matrices. The structure of
the layers is shown in Fig. 1.

2.2 The parameters of themultilayer network

Here we summarise all parameters of our model.

• The total number of households together with their type and frequency.
• The adjacency matrix of households, representing the spatial structure. In the present

paper this is a lattice with a possibly denser part in the middle. Its parameters are the
horizontal and vertical sizes of the lattice and proportion of households belonging to the
denser part.

• The sizes of the workplaces and the proportion of workplaces that are closed.
• The sizes of cliques in schools and the number of cliques in a school. (Their product

yields the school size.)

123

https://covid.sed.hu/tabs/response
https://covid.sed.hu/tabs/response


The impact of spatial and social structure on an SIR…

Fig. 1 A caricature of the multilayer network where the building blocks are households (see green sets in the
left panel) which are placed on or act as nodes in a square lattice which mimics spatial proximity. Households
in neighbouring lattice nodes can be still connected, for example modelling a block of flats (see orange set
in the left panel). Connections between these larger units to close neigbours are still possible (see pink set in
the left panel). Workplaces and schools are formed by creating groups of adults and children, respectively.
These are created independently of the position of their households on the network (see middle panel with a
workplace example, schools are formed in a similar way). Finally, community contacts are created whereby
individuals from a small percentage of workplaces are selected to act as star nodes where the spokes are found
by a K-means clustering algorithm based on proximity or distance from the star nodes, see the right panel.
(Color figure online)

Table 1 Household composition and frequency in Hungary, based on data from http://www.ksh.hu/
nepszamlalas/docs/tablak/lakas/06_01_02_14.xls. We note that the average household size is 2.43

Configuration 0, 1, 0 0, 2, 0 0, 3, 0 0, 0, 1 0, 0, 2 1, 1, 0 1, 2, 0 2, 2, 0

Frequency 0,17 0,12 0,04 0,12 0,07 0,04 0,09 0,12

Configuration 3, 2, 0 4, 2, 0 1, 0, 1 0, 1, 1 0, 2, 1 1, 1, 1 1, 2, 1 2, 2, 1

Frequency 0,05 0,02 0,01 0,07 0,04 0,01 0,02 0,01

• The capacity of a community place, i.e. the number of people visiting a place.
• The edge weights, i.e. the relative infection rates in the layers:

• The weights of edges within households, τh,
• The weights of edges between households, τg,
• The weights of edges within workplaces, τwp,
• The weights of edges within school cliques, τcls (if this is zero, then schools are

closed),
• The ratio of weights of school edges to within clique edges, τsch,
• The weights of edges in the layer of community places, τst.

The numerical experiments below use the following values of the parameters as default
values. It will be indicated where one or more of these values are modified.

The network of households is a 40×40 size lattice and the proportion of households lying in
the denser region is 20%. There are 16 types of households in ourmodel. Their configurations
and their proportion among all households is given in Table 1. For each configuration, the
triples give the numbers of children, adults and elderly people, respectively.

Furthermore, we have:

• The size of the workplaces is 10 and the proportion of closed workplaces is 0,
• The size of cliques in schools is 10 and the number of cliques in a school is 20,
• The capacity of a community place is 200.
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We assume that the largest relative infection rate is the one within households. This will
be taken to be 1 and the other infection rates are between 0 and 1. We note that an overall
infection rate is applied in the whole network representing the strength of the infection. Its
default value is τ = 0.1. This value multiplies all edge weights in each layer. The default
values of the relative infection rates are: τh = 1, τwp = 1, τcls = 1, τsch = 1/5, τg = 1/10
and τs = 1/10.

2.3 The epidemic model

We apply the standard SIR model for describing the propagation of the infection. Each
member of the population is represented by a node of the network and each node can be in
one of three states: susceptible (S), infected (and infectious) (I) and recovered (R).

The change of state for each node is described by independent Poisson processes the rate
of which depends on the states of neighbouring nodes. The rate of infection of a given node,
i.e. transition from S to I, is the sum of the weights on edges (also called relative infection
rates) ending at that node multiplied by the overall infection rate τ representing the strength
of the infection. The weight of the edge depends on the layer where the edge is lying. The
rate of recovery, i.e. transition from I to R, is γ for each node. (For simplicity, we assume
that this is identical at each node.) As it is well known, 1/γ is the average time spent in state
I.

Since each node can be in three different states, the whole network can be in one of 3N

states, where N is the number of vertices in the network. The evolution of the whole network
is described by a Markov chain on a state space of dimension 3N . The time dependence
of the probabilities of the states is governed by the master equation that is a system of 3N

linear ordinary differential equations. Since this system cannot be handled because of its
size, we run Gillespie simulations on the network. We note that population level mean-field
approximations can also be used for random networks. However, our multilayer networks
have a non-random structure, hence the differential equation approximations cannot capture
the detailed behaviour of the system. In this paper, we do not investigate the accuracy of these
approximations [21].

An individual-based stochastic Gillespie simulation is run as follows.We start the network
from a random state with a given number of infected nodes, the remaining nodes are taken to
be susceptible. At each iteration or update the rate of transition of each node is determined
based on the given state of the network. The time to the next event then is chosen from an
exponential distribution with the parameter being the sum of all the transition rates. Then
according to the Gillespie algorithm a node is chosen at random but proportionally to the
value of its transition rate. This step is repeated until there are no infected nodes in the
system. At the end of the process, all nodes are either recovered or susceptible. The number
of recovered is called the final epidemic size. The result of a run is a series of time points,
where the state of a node changed and the values of S, I and R at those time points. Thus we
can plot the time dependence of S, I and R for each run, or we can plot the average of those
for several simulations.
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Fig. 2 The evolution of the proportion of infected and recovered with the different perturbations of the
household distribution (average of 24 runs). The parameters are fixed according to Sect. 2.2, the household
network is a grid of size 40 × 40, the population size N is approximately 4000

3 Results: the impact of contact layers on the time course of the
epidemic

In this sectionwe perform computer simulations to study the effect of the different parameters
of our model, such as the relative infection rates in different contact layers and the sizes of
schools and workplaces. Since some of these parameters can be controlled (e.g. with closing
some of the schools or workplaces, or decreasing the frequency of going to stores by a
partial curfew), this may lead to useful conclusions about the effectiveness of different social
distancing strategies.

The stochastic simulations are run on several networks in this section. For each parameter
set, we randomised 4 graphs with the given parameters and run 6 Gillespie simulations on
each of them. Then the average of these 24 runs is shown in the Figures.

3.1 Household distribution

Since we used only estimated data about the distribution of the number and ages of people
living together in a household, we examine the effect of small changes in this input data. We
simply added perturbations of 1–2% to the original frequency vector (either at random, or by
increasing/decreasing the weight of the more frequent configurations), see Table 1. In Fig. 2
we can see the average of 24 simulations as explained above.We can see that the difference in
the outcome has approximately the same magnitude as the perturbation. However, the main
characteristics of the process remain the same. Hence, the error coming from rounding the
proportions of different configurations most likely does not lead to absolute errors of more
than 1–2%.

3.2 Effect of infections at school

Next we examine how the intensity of infections at school affects the spread of the epi-
demic. First, we changed the parameter τcls, which describes the intensity of infections within
the cliques of size 10, and which also has an effect on the intensity of infections between
cliques, as the latter is 20% of τcls in the baseline scenario. The case τcls = 0 corresponds
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Fig. 3 The evolution of the proportion of infected and recovered with different school clique relative infection
rates τcls. Other parameters are fixed according to Sect. 2.2, the household network is a grid of size 40 × 40,
the population size N is approximately 4000

Fig. 4 The evolution of the proportion of infected and recovered individuals for different clique sizes with
fixed total size of the school (200 students). Other parameters are fixed according to Sect. 2.2, the household
network is a grid of size 40 × 40, the population size N is approximately 4000

to the case of closed schools, while τcls = 1 means that the probability of infection within
a small clique at school is the same as in the households. Again, the number of households
was 1600, arranged in a 40 × 40 grid, which means a population of approximately 4000
individuals. For each parameter τcls, we run 24 simulations as explained above. The results
presented in Fig. 3 are obtained as the average of the 24 different curves.

We can see that this parameter has a significant effect on the epidemic: With all schools
open, and τcls = 1, the maximal proportion of infected is approximately five times the
corresponding value with closed schools. This means that closing schools seems to be an
effective social-distancing strategy in our model. Between the two extremes, i.e. closing all
schools or leave all of them open, the value of the peak epidemic and the total proportion of
recovered individuals are both monotone functions of the intensity, as expected.

Our next question is about the effect of the internal structure of schools on the spread of
the epidemic. Now we increased the size of cliques within the schools. At the same time, we
decreased the number of cliques in each school, so that their total size (200 students in each
of the five schools) remains fixed. Results can be seen in Fig. 4. All other parameters and the
number of iterations were same as in the previous case.
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Fig. 5 The evolution of the proportion of infected and recovered individuals for different values of the total
size of the school and different clique sizes

Fig. 6 The evolution of the proportion of infected and recovered individuals for different values of the relative
infection rate between school cliques (τsch)

We can see that under these conditions, the sizes of the cliques do not have a significant
impact on the evolution of the process. We remark that when we run the simulations on a
smaller graph, the effect of the clique size was more noticeable, and we could also see the
monotonicity property: larger clique size meant larger epidemics.

Going further in this direction, we compared different school sizes with different clique
sizes. The results can be seen in Fig. 5. In this setup, we see that the total size of the schools
can have a significant effect on the maximum number of infected individuals: schools with
200 students lead to an increase of approximately 40%. Here we see that clique sizes can
have larger effect in the case when schools are smaller (150 students instead of the original
200).

Finally, we examine the effect of the relative infection rate between the cliques in the
schools, that is, the sensitivity of the model to the parameter τsch. In this case, one of the
extreme cases is τsch = 0, when the cliques are completely separated from each other. The
other extreme is τsch = 1, when the relative infection rate is the same within and between
groups, that is, the school consists of one large clique. As we can see in Fig. 6, this parameter
has a significant effect with a five fold difference in the value of peak epidemic. In addition,
the difference between τsch = 0 and τsch = 0.2 is much larger than the difference between
the latter and the case of τsch = 1, when connection between any two students is as strong as
household connections. Therefore, even a weak connection of students belonging to different
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Fig. 7 The evolution of infected and recoveredwith differentworkplace size distributions: constant 10, uniform
from {1, 2, . . . , 19}, and binomial with n = 40 and p = 0.25. Other parameters are fixed according to Sect.
2.2, the household network is a grid of size 40 × 40, the population size N is approximately 4000

classes can lead to a strong epidemic wave, and keeping different school classes isolated, or
in a bubble, seems to be an effective control measure.

3.3 The effect of infection at work

In this section we examine the effect of infections at workplaces. All other parameters
(including the number of iterations of randomizing the graph and the Gillespie algorithm)
are the same as in the previous section.

Before studying the effect of the different parameters, it is worth examining the role of
equal workplace sizes. More precisely, in this first simulation, we compare the evolution of
the epidemic when the workplace size is a fixed constant, and when it is chosen randomly.
We have chosen two probability distributions with mean 10, which is the fixed size in the
constant case. In particular, we run simulations in the case when the workplace size is chosen
uniformly at random from the set {1, 2, . . . , 19}, and when it has binomial distribution with
parameters n = 40 and p = 0.25 (this can be viewed as a distribution “between” the
deterministic and the uniform one). As Fig. 7 shows, until the distribution is bounded and
does not have a large variance, the results are very similar to the deterministic case. In the
sequel, we continue with the latter, where all workplace sizes are fixed and equal to each
other.

Figure 8 shows the effect of the relative infection rate τwp. The model is not too sensitive
with respect to the values of this parameter, however, we can see some differences and
monotonicity in the proportion of recovered individuals. Notice that the workplace infection
intensity could be as large as the infection intensity at home, and this did not lead to a
significant difference in the epidemic spread. This emphasises the importance of stabilising
the groups of people who meet each other regularly: in our model, workplaces are of size ten,
but their members were always the same. This is similar to the case where the school cliques
are completely separated, and we could see that this can be an effective control strategy with
group of size 10.

In Fig. 9, we can see the dependence of the spread of the epidemic on the size of the
workplaces. The model is moderately sensitive to this parameter; groups of size 18 instead of
size 4 lead an increase of a factor of two in the total proportion of recovered people. Compared
to the case of schools, the effect of this parameter is much more significant. This may be due
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Fig. 8 The evolution of infected and recovered with different workplace relative infection rates τwp. Other
parameters are fixed according to Sect. 2.2, the household network is a grid of size 40 × 40, the population
size N is approximately 4000

Fig. 9 Evolution of the proportion of infected and recovered with different workplace sizes. Other parameters
are fixed according to Sect. 2.2, the household network is a grid of size 40 × 40, the population size N is
approximately 4000

to the fact that public places are also workplaces in our model, and if the infection can spread
within a larger group of employees, then they can cause a huge number of infection among
the customers. Hence, as we already assumed a weak connection between any two student
of a school, strengthening some of these by increasing the number of cliques may have a
smaller effect than increasing the probability that the infection spreads at a public place with
more people.

Finally, in Fig. 10 we see how the partial closure of workplaces affects the spread of
the epidemic. It turns out that the differences are not significant. This seems to imply that
workplaces which are completely separated from other groups (other than households) do
not have an important role in the process. However, we assumed that the public places
(stores, medical centres etc.) cannot be closed, and in our model, this represents 40% of the
workplaces. As the employees of these have much more contact with other people, these can
have a more significant effect. On the other hand, the closure of all workplaces is equivalent
to setting the infection parameter τwp to 0, which had some effect, as we could see in Fig. 8.

To sum up, we note that the size of workplaces has the most significant impact followed by
the relative infection rate (edge weight) in workplaces. Closing workplaces that are separated
from other people does not seem to be an effective control measure.
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Fig. 10 Evolution of the proportion of infected and recovered after partially closing workplace. Other param-
eters are fixed according to Sect. 2.2, the household network is a grid of size 40 × 40, the population size N
is approximately 4000

Fig. 11 The proportion of infected and recovered individuals for different relative infection rates τs corre-
sponding to public services. Other parameters are fixed according to Sect. 2.2, the household network is a grid
of size 40 × 40, the population size N is approximately 4000

3.4 Effect of public or community places

As for public places, we considered two parameters: the capacity (number of visitors) of the
units (e.g. stores), and the intensity of infection, measured by the relative infection rate τs; if
τs = 1, then the rate of infection in public paces and households is the same.

Figure 11 illustrates the effect of τs on a network consisting of approximately 4000 vertices.
We can see that this parameter can have a significant effect only if the intensity of infection
in public places and within the households are approximately equal to each other, which does
not seem to be the case in real life. Assuming that the infection intensity is 25% or 20% of
the intensity within households, then this parameter does not have a notable effect on the
evolution of the epidemic spread.

3.5 The effect of geometric structure

Concerning the geometric structure, we had two parameters: the adjacency matrix of the
households, and the relative infection rate between neighbouring households, τg ∈ [0, 1].
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Fig. 12 The proportion of infected and recovered individuals for different values of relative infection rate τg
between neighbouring households. Other parameters are fixed according to Sect. 2.2, the household network
is a grid of size 40 × 40, the population size N is approximately 4000

Fig. 13 The evolution of the proportion of infected and recovered individuals by changing the size of the
population (nr is the size of the grid); the size of the population is approximately 4000, 6000, 8500 and 12000
in the four cases respectively

The value τg = 1 means that members of households next to each other have the same
probability to infect each other as members of the same household.

The effect of parameter τg can be seen in Fig. 12, on a network of size 4000. We have
similar conclusions as in the previous case, for public places: we see monotonicity, and the
geometric structure has a significant effect only if the relative infection rate is at least 25%
that of within households.

3.6 The effect of the size of the population

By increasing the size of the population, the running time of the computer simulation also
increases. Hence we compare the epidemic process on networks of the same structure, but
different size. In particular, the model described in Sect. 2.1 was studied, from 40 × 40 to
70 × 70 grids. This is the graph of households, with the dense middle part. The number of
individuals was approximately 4000, 6000, 8500 and 12000. The effect of this parameter can
be seen in Fig. 13. Since the effect is not significant, the conclusions formulated above based
on the simulations on 40 × 40 grids presumably hold for other reasonable population sizes
as well.
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4 Results: peak and final epidemic size

We have seen that the model parameters have significant effect on the time dependence of
the number of susceptible and infected nodes. However, in order to understand the effect of
the different parameters, it is useful to investigate important variables that have decisive role
in the model. The widely used and important variables that we will consider here, are

• R(∞), the final epidemic size yielding the number of recovered nodes at the end of the
epidemic, and

• maxt I (t), the maximal number of infected nodes during the process.

We note that there are other important quantities, for example, the number of daily new
cases, that will not be considered here. The significance of R(∞) originates from the fact that
the probability of a possible second wave of the epidemic depends strongly on the number
of people affected by the first wave [13,14]. The maximal number of infected individuals
during the process determines the load on the health care system. Hence, when controlling an
epidemic is not straightforward and where many individuals will be affected by the end of the
epidemic, it is beneficial to at least control the value of the peak prevalence so that the health
care sector is not overwhelmed. Therefore, we are interested to map out and understand how
the relation between peak prevalence and final epidemic size is affected by an individual or
combination of layers in our multilayer network. For example, given a final epidemic size
we are interested in what is the range of achievable peak prevalence values.

First, we revisit the relation of the final epidemic size and the maximal number of infected
nodes in the simple compartmental model. Then we investigate numerically how these quan-
tities are related in the network model as the different parameters are varied.

4.1 The relation of the final size and peak prevalence in the compartmental model

Let us consider the SIR compartmental model in its usual form.

Ṡ(t) = −β I (t)
S(t)

N
, (4.1)

İ (t) = β I (t)
S(t)

N
− γ I (t), (4.2)

Ṙ(t) = γ I (t), (4.3)

where β and γ denote the infection and recovery rates and N is the size of the population.
It is known that this model yields a relation between the final epidemic size and the

maximal number of infected nodes, however, for the sake of completeness we present here a
simple derivation of this formula.

Observe that writing the first equation in the form Ṡ(t)+ β
N S(t)I (t) = 0 and multiplying

with the integrating factor exp
( β
Nγ

R(t)
)
yields that the quantity S(t) exp

( β
Nγ

R(t)
)
is constant

in time. The value of this constant is given by the initial condition. Assuming R(0) = 0 and
using that S(∞) + R(∞) = N we obtain the implicit equation

N − R∞ = S(0) exp

(
− β

Nγ
R∞

)
, (4.4)

for R(∞). Applying the approximation S(0) = N we get that the ratio x = R∞/N satisfies
the equation

1 − x = e−x R0 , (4.5)
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Fig. 14 The relation of R∞/N
and Imax/N in the
compartmental model,
(4.1)-(4.3). (Color figure online)

where R0 = β/γ is the basic reproductive ratio.
Let us turn to deriving themaximal number of infected nodes, Imax = maxt I (t). Equation

(4.2) implies that S = N/R0 holds when I is maximal. On the other hand, using the first
integral

S(t) exp

(
β

Nγ
R(t)

)
= S(0) = N ,

we have R0R/N = ln(N/S) = ln(R0) at the maximum of I . Hence

Imax = N − S − R = N − N

R0
− N

R0
ln(R0).

Thus the ratio y = Imax/N satisfies the equation

y = 1 − 1 + ln(R0)

R0
. (4.6)

This way, we have derived a relation between x and y, that is between R(∞) and maxt I (t)
via R0. Namely, we can solve (4.5) for R0 as

R0 = − ln(1 − x)

x

and then substitute this expression for R0 in (4.6). The relation is shown in Fig. 14. We can
see that e.g. for a final epidemic size of 80% the peak prevalence is around 15%. It can be
verified easily that this relation is monotone, that is an increase in the value of R(∞) leads
to an increasing value of Imax.

4.2 The relation of the final size and peak prevalence in the networkmodel

Now we run individual based stochastic simulations on the network given in Sect. 2 and
determine the values of R(∞) and Imax for different values of the model parameters. We will
plot the obtained pairs (R(∞), Imax) together with the curve in Fig. 14 and compare the pairs
obtained from the stochastic simulation to those obtained from the compartmental model.

For a given parameter set we generate 10 networks and run stochastic simulations on these
until the epidemic ended. Thenwe determine the final epidemic size R(∞) and themaximum
value of the number of infected nodes Imax. Each pair (R(∞), Imax) will be plotted with the
same colour in the Figures. The average of the 10 pairs will also be shown (with a black
diamond).
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Fig. 15 The pairs (R(∞), Imax) obtained from stochastic simulation as τcls (left panel) and τsch (right panel)
is varied. The average of the 10 pairs computed for a given network is shown with a black diamond. Other
parameters are fixed according to Sect. 2.2, the household network is a grid of size 40 × 40, the population
size N is approximately 4000. The curve obtained from the compartmental model and shown in Fig. 14 is
shown with continuous blue line. (Color figure online)

4.2.1 Effect of infection at schools

First, we investigate the effect of the parameters τcls and τsch representing the relative infection
rate within school cliques and its ratio to the relative infection rate within schools. The left
panel in Fig. 15 shows the (R(∞), Imax) pairs for 10 networks as τcls is varied from zero,
corresponding to closed schools, to τh , the relative infection rate at homes. We can observe
that the averages (black diamonds) form a curve similar to that given by the compartmental
model, however, lying to left of this and with higher values of Imax. The maximum value of
I , belonging to a given final size, is roughly three times larger in the network compared to
the compartmental model.

The right panel in Fig. 15 shows these pairs as τsch is varied from zero, corresponding
to schools containing separated cliques, to τcls, corresponding to a school given by a fully
connected graph. The curve formed by the averages (the black diamonds) is not as obvious
as in the previous case and we can observe that the setup corresponding to separated cliques
is quite far from the other scenarios. Increasing the within school infection rate above 20
% does not increase the final size, but increases Imax significantly. Thus we can say that
separating the cliques within a school prevents the spread of the infection more effectively
than decreasing the relative infection rate within cliques.

Since we have seen in Fig. 4 that the clique size does not have a strong effect on the
propagation, we do not consider this parameter here.

4.2.2 Effect of infection at workplaces

Now we investigate the effect of the parameters τcwp, representing the relative infection
rate within workplaces, and the size of workplaces. The left panel in Fig. 16 shows the
(R(∞), Imax) pairs as τcwp is varied from zero, corresponding to closed workplaces, to τh , the
relative infection rate at homes. We can observe that the averages (the black diamonds) form
a nearly horizontal curve, i.e. Imax is slightly affected by this infection rate. The maximum
value of I , belonging to a given final size, is roughly three or four times larger for the network
propagation than for the propagation in the compartmental model.
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Fig. 16 The pairs (R(∞),max I ) obtained from stochastic simulation as τcwp (left panel) and the size of work
places (right panel) is varied. The average of the 10 pairs computed for a given network is shown with a black
diamond. Other parameters are fixed according to Sect. 2.2, the household network is a grid of size 40 × 40,
the population size N is approximately 4000. The curve obtained from the compartmental model and shown
in Fig. 14 is shown with continuous blue line. (Color figure online)

The right panel in Fig. 16 shows these pairs as theworkplace size is varied from4 to 18. The
curve formed by the averages (black diamonds) is similar to that given by the compartmental
model. We can observe that for larger work places the averages get closer to the curve given
by the compartmental model.

Since we have seen in Fig. 10 that closing a part of the workplaces does not have a strong
effect on the propagation, we do not consider this parameter here.

4.2.3 The effect of community places and the geometric structure

Now we investigate the effect of the parameters τs and τg, representing the relative infec-
tion rates at public places and between households. Now only the average of the pairs
(R(∞), Imax) is plotted. The left panel in Fig. 17 shows these pairs as τs is varied from
zero, corresponding to closed public places, to τh , the relative infection rate at homes. We
can observe that the points form a curve similar to that given by the compartmental model,
but lying to the left of this. The maximum value of I , belonging to a given final size, is
roughly two or three times larger for the network compared to compartmental model.

The right panel in Fig. 17 shows these pairs as τg is varied from zero, corresponding to
separated households, to τh , the relative infection rate at homes. The curve formed by the
points is similar to that given by the compartmental model. We can observe that for larger
values of τg the averages get closer to the curve given by the compartmental model.

4.2.4 The combined effect of all parameters

Finally, we varied the values of the parameters together. (In the previous sections one param-
eter was varied, while the values of the others were fixed.) The relative infection rates across
the different layers were chosen uniformly at randomly from the interval [0, 1], the sizes of
the cliques in schools were chosen uniformly at randomly from the numbers 4, 6, 10, 15, 25,
the school sizes were fixed at 200, the work place sizes were 4 and 18 and the capacity of the
public places was one of the numbers 100, 150, 200, 250, 300. Ten networks were created
randomly for each parameter set and five stochastic simulations were run on each graph until
the propagation process finished. Then we determined the final epidemic size, R(∞) and the
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Fig. 17 The pairs (R(∞),max I ) obtained from stochastic simulation as τs (left panel) and τg (right panel)
is varied. The average of the 10 pairs computed for a given network is shown. Other parameters are fixed
according to Sect. 2.2, the household network is a grid of size 40×40, the population size N is approximately
4000. The curve obtained from the compartmental model and shown in Fig. 14 is shown with continuous blue
line. (Color figure online)

Fig. 18 Left panel: the pairs (R(∞),max I ) obtained from stochastic simulation for ten randomly chosen
parameter sets. The range of the parameters is given in the text. The average of 5 simulations is shown with
black diamonds. The household network is a grid of size 40 × 40, the population size N is approximately
4000. The curve obtained from the compartmental model and shown in Fig. 14 is shown with continuous red
line. Right panel: time dependence of I for each parameter set. (Color figure online)

maximum value of the number of infected nodes, Imax. The results are presented in Fig. 18.
The black diamonds in the left panel show the average of five simulations. For some cases, the
results of each simulation are shownwith coloured dots. The corresponding time dependence
of I is shown in the right panel. We can observe that the ten networks and parameter sets
yield very different (R(∞), Imax) pairs, however, they form a curve similar to that obtained
from the compartmental model, but lying to the left of this.

5 Discussion

In this paper we studied the impact of population contact structure, in the form of a multilayer
network, on the time course and the outcome of an SIR epidemic. The contact network was
comprised of multiple layers including households, schools and workplaces, spatial/physical
embedding of the individuals and casual contacts during shopping, visits to general practice,
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communal play areas etc. While this is an idealised model it nevertheless incorporates some
of the principal routes of spread for infectious disease such as COVID-19. In this study,
we mainly used simulations since the networks are highly structured featuring clustering
of contacts and spatial structure and thus are not amenable to for the development of good
quality mean-field approximations.

Based on our interpretation of contact structure and assumptions behind our multilayer
network we found that compared to the compartmental model and fixed final epidemic size,
epidemics on networks lead to higher values of peak epidemic prevalence. Intuitively, this
is due to the heterogeneity in contact where highly connected nodes are found early and
produce many infections early on (i.e. super-spreading events [22]), leading to high values
of Imax. However, such nodes are few and after these have been infected the epidemic is
now unfolding over the less-well connected part of the network. These nodes are harder to
reach and therefore the final epidemic size will be smaller compered to the compartmental
model case. This can be seen in the left panels of any of the Figs. 15, 16, 17 and 18, where
fixing a value of Imax for the network model leads to a higher final epidemic size in the
compartmental model with the same peak prevalence. It could be the subject of further study
how the network properties determine the curve formed by the pairs (R(∞),max I ) in the
above Figures.

For schools, the biggest impact was attained where the clique sizes were small and with
little interaction with other cliques. Furthermore, even a weak connection of students belong-
ing to different cliques can lead to a strong epidemic wave. Hence keeping different school
cliques isolated, or in a bubble, seems to be an effective control measure. We found that
workplaces had a small impact on the epidemic. The most important characteristic turned
out to be the size of the work places. Closing the workplaces partially seems to have a little
effect.

Of course, further refinements of themodel could include care homes and other vulnerable
parts of the society. Moreover, the epidemic dynamics can be made more realistic by adding
extra stages to depart from the non-exponential infectious times or to model explicitly those
that are symptomatic/asymptomatic and those that need hospitalisation with eventual recov-
ery or death. Furthermore, the network itself could be made dynamic or adaptive [14,23]
since during an epidemic the contact structure is dynamic, especially with different types of
lockdowns put in place for different amounts of time.
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