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Abstract  

This paper presents the design and implementation of a small-scale hardware-in-the-loop test environment for lateral vehicle dynamics 

controllers. The test rig consists of a conveyor belt and a 1:10 scale model vehicle. The vehicle is anchored to the frame of the conveyor belt 

using a special fixture, which constrains only the longitudinal displacement of the car. Therefore, the longitudinal velocity of the vehicle is 

provided by the conveyor belt, while the steering is generated by the computational unit, where various control methods can be implemented. 

The test rig is equipped with sensors that provide accurate measurements of the position and orientation of the car, which can be used as 

feedback in the control algorithms. The paper includes a case study, where the analytical stability analysis of a lane-keeping controller is 

verified with experiments on the test rig. The proposed test environment provides a compact, cost effective and versatile framework for the 

testing of various steering control methods in a running vehicle, while maintaining the benefits of a controlled laboratory environment. The 

experimental setup can also be used for educational and demonstrational purposes. 
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1 Introduction 

The development of advanced driver assistance systems 

is a time consuming, resource intensive process. In order to 

guarantee stable and safe operation under all potential 

circumstances, each individual system component, as well 

as their interactions have to be thoroughly tested and 

validated. It is estimated that up to 50% of the total 

development cost of automotive control systems is related 

to verification and validation [1] due to the iterative nature 

of the development process. 

Depending on the stage of development, several 

techniques are available for the validation of automotive 

control systems, with various advantages and disadvantages 

(the so-called V-diagram is often used to illustrate the 

relationship between different stages of development and 

the corresponding validation phases, see [2]). Generally, the 

most cost effective, fast and repeatable verification method 

is the use of numerical simulations. These benefits make it 

suitable for performing fast design iterations and detecting 

potential system defects early on, greatly reducing the time 

requirement and cost of later stage troubleshooting. 

Basic numerical simulations can be extended by 

integrating actual system components and code into the 

simulation, leading to various software-in-the-loop and 

hardware-in-the-loop tests. Some examples from the field 

of vehicle control systems are shown in [3-5]. In addition, 

the interaction between the driver and the control system 

can also be tested in laboratory conditions using driving 

simulators, as in e.g. [6]. A unique solution was shown in 

[1], where a so-called vehicle-in-the-loop concept was 

presented. In the proposed test arrangement, the entire 

vehicle is mounted on a roller test stand, while the relative 

movement of other traffic participants is modeled with 

wheeled mobile robots. Since only relative motions with 

respect to the test vehicle need to be realized, this approach 

allows to test the implementation of the control system in a 

full-scale vehicle with multiple traffic participants, while 

maintaining the benefits of a controlled laboratory 

environment. 

As a final stage of the verification process, the vehicle 

must be evaluated in test drives too (either on the test track 

or in real traffic), to gain a full picture of the control 

system’s behavior in real-life circumstances. Although 

these tests are relatively hard to reproduce, expensive and 

time consuming, they still provide invaluable data, since 

none of the above alternatives can replicate all aspects of a 

real-life driving scenario. 

In this paper, we propose a hardware-in-the-loop 

approach using a small-scale vehicle model running on a 

conveyor belt. The conveyor belt provides the longitudinal 

velocity of the vehicle, while the steering angle can be 

generated by the computational unit. The sensor system of 

the test rig provides accurate measurements of the vehicle’s 

lateral position and yaw angle that can be used as feedback 

for the control algorithm. The proposed setup offers a 

compact, fast and flexible solution to validate vehicle 

motion control systems in a running vehicle at an earlier 

stage of development, without the complexity and expenses 
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of a full-scale vehicle test. As a case study, the stability 

analysis of a lane-keeping controller is provided, where the 

analytical results are verified with experiments on the test 

rig. 

The rest of the paper is organized as follows: in Section 

2, the individual components and features of the 

experimental setup are detailed. Section 3 presents the 

design and stability analysis of a lane-keeping controller 

based on the single-track vehicle model. In Section 4, the 

lane-keeping controller is implemented on the test rig and 

the analytical results are verified with experiments. 

2 Experimental setup 

The main purpose of the test rig is to provide a compact 

and versatile experimental framework to help validate 

analytical results of various mechanical models and control 

schemes. With this in mind, the following general 

requirements were defined: 
 The ability to emulate lane-keeping and lane-changing 

scenarios, where the longitudinal velocity of the vehicle 
is significantly larger than its lateral velocity and the 
yaw angles remain small. 

 The test vehicle should have four wheels with rubber 
tires for realistic modeling of the tire-ground contact. 

 Steerable front wheels and adjustable longitudinal 
velocity. 

 Accurate measurement or estimation of the vehicle’s in-
plane position and orientation. 

 Hard real-time scheduling of the control software with 
variable sampling rate. 

 Robust structure, stability loss should not lead to 
personal injuries or equipment damage. 

 Modular design with the potential of future expansion 
for testing related problems. 

Based on the above requirements, the experimental setup 

in Fig. 1 was constructed. In the next subsections, the 

individual functions and their implementation is detailed. 

 
Fig. 1 The experimental setup 

2.1 Road surface 

The most obvious choice for modeling the road surface 

is to simply use the laboratory floor. However, this 

approach limits the usable space and surface 

inhomogeneities may also occur. In order to ensure both 

road surface homogeneity and an unlimited running 

distance, some kind of looped surface can be applied. 

Generally, this either means that the vehicle runs on the 

surface of rolling drums, or on a flat conveyor belt. We 

opted for the latter approach, since it makes it easier to 

realize actual lateral movement of the vehicle. 

In order to reduce development time and cost, a 

commercially available treadmill was chosen with a track 

width of 40 cm. Its original power transmission and the DC 

motor drive have been replaced in order to achieve full 

control over the belt speed. As a result of these 

modifications, the maximum speed was increased to 

20 km/h. 

2.3 Small-scale vehicle 

The test vehicle is based on an RC model car (Tamiya 

M-05, 1:10 scale), which includes sprung wheel 

suspensions and mechanically coupled steering of the front 

wheels, similarly to most passenger cars. The main 

specifications of the test car are listed in Table 1. 

Using this 1:10 scale model, the maximum speed of 

20 km/h of the treadmill corresponds to a top speed of 

200 km/h in a real vehicle. The width of the vehicle enables 

limited experimental tests of lane change maneuvers. 

Table 1 Specifications of the small-scale test vehicle 

Length: 299 mm 

Width: 165 mm 

Wheelbase: 239 mm 

Track width: 140 mm 

Tire width: 25 mm 

Wheel radius: 29.5 mm 

2.4 Fixation of the test vehicle on the conveyor belt 

Instead of allowing the vehicle to run freely on the 

conveyor belt (which would make its accurate localization 

difficult), a custom 5 degrees-of-freedom suspension 

system was designed and built (see Fig. 2). This suspension 

system leads the small-scale vehicle in the longitudinal 

direction of the conveyor belt, while all the other degrees of 

freedom of the vehicle are not constrained. 

The suspension system includes a roller bearing linear 

guide in the lateral direction. The carriage of the linear 

guide is connected to the vehicle using a 3D printed 

mechanism. Ball bearings are implemented at each joint of 

the mechanism to reduce friction. 

2.5 Sensors 

In order to apply lane-keeping control, the localization of 

the vehicle must be solved. To keep the sampling frequency 

on a high level, camera based solutions were excluded. 
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Contact-less laser based sensors are expensive and their 

application can be circumstantial. After considering these 

alternatives, the fixation mechanism was equipped with the 

necessary sensory system. On the one hand, the position of 

the carriage of the linear guide is measured by a magnetic 

linear encoder (type: TMLS-25B) with a resolution of 

0.025 mm, as shown in Fig. 2. On the other hand, the yaw 

and roll angles of the vehicle are measured by magnetic 

rotary sensors (type: Novotechnik RFD-4021-606-211-

401) with a resolution of 0.15°. Figure 3 shows the fixation 

mechanism with the angular position sensors.  

 

 
Fig. 2 Small-scale vehicle and its fixation to the conveyor belt 

 
Fig. 3 The applied 5 DoF fixation with the angular position sensors 

measuring the yaw and roll angles of the vehicle 

2.6 Computation 

A National Instruments CompactRio-9039 controller is 

used as a real target computational and signal processing 

unit, see Fig. 1. An NI-9201 (8-channel, 12-bit) analog 

input module digitizes the voltage signal of the rotary 

sensors; NI-9401 digital I/O interfaces are applied for the 

linear encoder, and to generate the PWM reference signal 

for the steering servo of the RC car and for the DC drive of 

the conveyor belt. 

The applied control algorithm was implemented in 

LabVIEW. The controller runs at a fixed sampling rate of 

1 kHz. In the course of each scan period, the controller 

reads and processes the sensor data, calculates the vehicle 

position and generates the control signal. In order to analyze 

the effects of time delay, a First-In Last-Out (FILO) buffer 

is applied by which artificial feedback delay can be added 

to the control loop.  

3 Mathematical model 

In the following, the stability analysis of a lane-keeping 

controller using delayed state feedback is presented. The 

analytical results will be compared to experiments on the 

test rig in Section 4. 
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Fig. 4 Single-track vehicle model 

3.1 Vehicle dynamics 

The calculations are based on the in-plane single-track 

vehicle model (see Fig. 4), which includes the following 

assumptions: 
 The vehicle is symmetric to its longitudinal axis. 
 The tire contact patches are summarized axle-wise 

at the front and the rear axle. 
 The vehicle center of gravity is at the ground level 

(no roll and pitch dynamics). 
 External forces only arise at the tires. 
The equations of motion of the vehicle in the body-fixed 

coordinate system are the following: 

 

𝑚(𝑢̇ − 𝑣𝑟) = 𝐹௫భ
cos 𝛿 − 𝐹௬భ

sin 𝛿 + 𝐹௫మ
,   

𝑚(𝑣̇ + 𝑢𝑟) = 𝐹௫భ
sin 𝛿 + 𝐹௬భ

cos 𝛿 + 𝐹௬మ
, (1) 

𝐽௭𝑟̇ = 𝐹௫భ
𝑎 sin 𝛿 + 𝐹௬భ

𝑎 cos 𝛿 − 𝐹௬మ
𝑏 + 𝑀௭భ

+ 𝑀௭మ
, 

 

where the vehicle states 𝑢, 𝑣 and 𝑟 are the vehicle’s lateral 

and longitudinal velocity, and its yaw rate, respectively. 

Dots refer to derivatives with respect to time. The steering 

angle is denoted by 𝛿. The vehicle parameters include the 

vehicle mass 𝑚, yaw moment of inertia 𝐽௭, and the 

geometrical parameters 𝑎 and 𝑏 that define the location of 

the center of gravity, as shown in Fig. 4. 

𝐹௫೔
 (𝑖 ∈ {1,2}) denote the longitudinal tire forces that can 

be considered as an input (the total driving or braking torque 

is distributed between the front and rear wheels with a given 

transmission ratio). The tire side forces 𝐹௬೔
 are modeled as 

linear functions of the slip angles: 

 

𝐹௬೔
= −𝐶௜𝛼௜  (𝑖 ∈ {1,2}),  (2) 

 

where the side slip angles at the front and rear wheels are 

 

𝛼ଵ = arctan ቀ
௩ା௔௥

௨
ቁ − 𝛿,  (3) 

𝛼ଶ = arctan ቀ
௩ି௕௥

௨
ቁ,  (4) 

 

and 𝐶௜ denote the (axle-wise summarized) tire cornering 

stiffnesses. The self-aligning moments 𝑀௭೔
 are assumed to 

be small, therefore they are neglected. 

Equation (1) describes the dynamics of the vehicle in its 

body-fixed coordinate system, which is independent from 

the vehicle’s position and orientation in the plane. However, 

in order to implement a lane-keeping controller, the position 

information also needs to be considered. Therefore, the 

equations of motion in Eq. (1) are extended with the 

following equations that describe the vehicle’s motion in 

the global coordinate system: 

 

𝑋̇ = 𝑢 cos 𝜓 − 𝑣 sin 𝜓,    

𝑌̇ = 𝑢 sin 𝜓 + 𝑣 cos 𝜓,   (5) 

𝜓̇ = 𝑟.    

 

 
Fig. 5 Difference in constant speed dynamics between the mathematical 

vehicle model (a) and the vehicle on the test rig (b) 

 

The main difference between the above, general vehicle 

dynamics model and the mechanical model of the towed RC 

car on the proposed test rig is illustrated in Fig. 5. During 

the analysis of constant speed motion, the longitudinal 

velocity 𝑢 of the vehicle is assumed to be constant in our 

mathematical model (see Fig. 5 (a)). The conveyor belt, on 

the other hand, generates a towing effect on the vehicle, 

which fixes the 𝑋 component of the velocity vector in the 

hitch point J (see Fig. 5 (b)). It can be shown, however, that 

near the equilibrium corresponding to straight-line motion 

along the 𝑋 axis (i.e. in the linear sense), the kinematic 

constraints of the two different models in Fig. 5 become 
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equivalent. Therefore, this difference in modeling does not 

affect the linearized dynamics, and the linear stability 

analysis in the following section will lead to the same 

results in both cases. 

3.2 Control design 

The governing equations of the vehicle model consisting 

of Eq. (1) and Eq. (5) are linearized around the equilibrium 

of straight-line motion along the 𝑋 axis with a constant 

longitudinal speed of 𝑉. This corresponds to the state values 

𝑢 = 𝑉, 𝑣 = 0, 𝑟 = 0, 𝑋 = 𝑋଴ + 𝑉𝑡, 𝑌 = 0 and 𝜓 = 0, with 

the vehicle inputs 𝛿 = 0 and  𝐹௫భ
= 𝐹௫మ

= 0. In the linear 

case, the longitudinal dynamics can be decoupled from the 

lateral dynamics, and the design of the steering controller 

can be based on the reduced linear system 

 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖,   (6) 

 

where the state vector 𝒙 = (𝑣 𝑟 𝑌 𝜓)୘ and the input 

𝒖 = 𝛿 include small deviations from the equilibrium. The 

system and input matrices are 

𝑨 =

⎝

⎜
⎛

−
஼భା஼మ

௠௏
−

஼భ௔ି஼మ௕

௠௏
− 𝑉 0 0

−
஼భ௔ି஼మ௕

௃೥௏
−

஼భ௔మା஼మ௕మ

௃೥௏
0 0

1 0 0 𝑉
0 1 0 0⎠

⎟
⎞

,  (7) 

𝑩 = ቀ
஼భ

௠

஼భ௔

௃೥
0 0ቁ

୘

.  (8) 

In order to control the above linearized lateral dynamics 

of the vehicle, the feedback controller 

 

𝒖(𝑡) = 𝑲𝒙(𝑡 − 𝜏)   (9) 

 

is applied, where 𝜏 denotes the feedback delay. Note that 

the delay term can also be interpreted as the reflex delay of 

a human driver [7]. Therefore, the above model is also 

suitable for modeling the dynamics of a human controlled 

vehicle. 

Since in the experimental test rig the directly measured 

quantities are the lateral displacement 𝑌 and the yaw angle 

𝜓, the gain vector 𝑲 is chosen as 

 

𝑲 = (0 0 −𝑘௬ −𝑘ట).  (10) 

 

The characteristic equation of the closed loop system is 

 

𝐷(𝜆) ≔ det൫𝜆𝑰 − 𝑨 − 𝑩𝑲𝑒ିఒఛ൯ = 0, (11) 

 

where 𝜆 ∈ ℂ denotes the characteristic exponent. 

Substituting 𝜆 = 0 into Eq. (11) leads to the boundary of 

static loss of stability 𝑘௬ = 0, where a real characteristic 

root crosses the imaginary axis, and a divergent loss of 

stability occurs. At parameter values where 𝜆 = ±𝑖𝜔 (𝜔 ∈

ℝା), a complex conjugate pair of roots may move to the 

right half plane and the vehicle loses its stability with 

oscillations. Separating the real and imaginary parts of the 

equation 𝐷(𝜆 = 𝑖𝜔) = 0, the parametric expressions 

𝑘௬(𝜔) and 𝑘ట(𝜔) can be expressed that form a boundary in 

the ൫𝑘௬, 𝑘ట൯ plane, separating stable and unstable parameter 

regions. Among other ways, the stable regions can be 

verified using Stépán’s formulae [8] or the semi-

discretization method [9]. The stable domain and the D-

curves are plotted in Fig. 6, along with the frequency of the 

arising oscillations along the boundary of dynamic stability 

loss (which is determined by the imaginary part of the 

critical roots, 𝑓 = 𝜔/2𝜋). 

 

 
Fig. 6 Stability boundaries in the plane of control gains for various 

amounts of time delay (a) and vehicle speed (c). The shaded area 

corresponds to the stable parameter domain for 𝜏 = 0.1 s (a) and 𝑉 = 4 

km/h (c). Panels (b) and (d) show the vibration frequencies along the 

stability boundaries. Vehicle parameters are listed in Table 2. 

4 Experimental results 

In this section, the lane-keeping controller is 

implemented in the test rig to verify the analytical results 

from the previous section. 

First, the vehicle parameters corresponding to the 

experimental setup had to be determined. These are listed 

in Table 2. The vehicle mass and center of gravity was 

measured in the same position as in the test rig, including 

the fixture connecting the car to the linear guide, as well as 
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its support. The yaw moment of inertia was calculated by 

first approximating the vehicle as a cuboid with given mass, 

width, and length, then increasing this value to account for 

the fixation and the carriage. 

 

 
Fig. 7 Means (denoted by crosses) and standard deviations of measured 

side slip angles (𝛼) at given normalized lateral force values (𝐹௬,୬୭୰୫), and 

the result of fitting a line to the measurements. The measurements were 

performed at various vertical load values (𝐹௭), which are differentiated by 

colors. 

The side force characteristics of the tires of the model 

vehicle were determined by experiments: while towing a 

pair of wheels on the running conveyor belt, a constant 

lateral force was applied and the resulting yaw angle was 

recorded. Since the running direction of the conveyor belt 

is fixed, the yaw angle corresponds to the side slip angle of 

the tires. Performing this measurement while increasing the 

lateral force in steps leads to the lateral tire characteristic 

curve of the wheels. The cornering stiffness values at the 

front and rear axles were determined by normalizing the 

lateral force for small side slip angles with respect to the 

vertical load and fitting a line to the measurement results 

(see Fig. 7). Multiplying the slope of this fitted line with the 

vertical load at the front and rear axles of the model vehicle 

lead to the cornering stiffness values listed in Table 2. 
Table 2 Parameter values corresponding to the experimental setup 

Vehicle mass (𝑚) 0.92 kg 

Yaw moment of inertia (𝐽௭) 0.025 kgm2 

Distance between center of gravity and front axle 
(𝑎) 

0.0932 m 

Distance between center of gravity and rear axle (𝑏) 0.1458 m 

Cornering stiffness, front wheels (𝐶ଵ) 65 N/rad 

Cornering stiffness, rear wheels (𝐶ଶ) 41.8 N/rad 

 

The goal of the experiments was to determine the stable 

domain of control parameters in practice for a given 

combination of vehicle speed and feedback delay. Since the 

sampling frequency was 1 kHz, the feedback delay was 

implemented artificially from the software side, while 

sensor delays and the dynamics of the steering system were 

neglected.  

Before starting each measurement, the vehicle was 

steered into the equilibrium position to ensure identical 

initial conditions and to reduce the effects of possible 

nonlinear phenomena. The control gains were increased in 

small steps between each measurement, starting from stable 

values near the boundary of static loss of stability. Once the 

equilibrium of stable straight-line motion was reached, a 

small perturbation was applied to verify the stability of a 

given pair of 𝑘௬ and 𝑘ట. The perturbation was added in the 

form of either increasing the steering angle by 0.5-1° for a 

small amount of time (<1 s) or by applying some lateral 

force at the front axle by hand. The latter method was 

necessary in case perturbing the steering angle had no effect 

due to freeplay. As a result of the perturbation, the system 

either regained its stability, or it started oscillating with an 

increasing amplitude. The measurements were repeated by 

increasing either 𝑘௬ or 𝑘ట in small steps, until oscillations 

were observed. In some cases, stability loss occurred 

without perturbing the system, due to measurement noise. 

 

 
Fig. 8 Experimentally determined stability maps of the lane-keeping 

controller for 𝑉 = 8 km/h. The shaded regions correspond to the 

analytically calculated stable domains. 

 

Figure 8 shows the results at the speed of 8 km/h for two 

different values of time delay. It clearly shows from the 

experimental results that increasing the feedback delay 

leads to a decrease in the stable region, similarly to the 

analytical results. However, both the shape and the size of 

the experimentally determined stable areas are different 

from what the analytical model showed. In addition, there 

is some disparity between the oscillation frequencies 

predicted by the model and those observed on the test rig: 

as an example, in point A of Fig. 8 (a) a main frequency 

component of 0.7 Hz was observed instead of the 1 Hz 

predicted by the model (see Fig. 6 (b)). 
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There can be a number of reasons for this difference. 

First, the exact value of certain parameters (cornering 

stiffnesses and moment of inertia) were only estimated in 

the model, which affects the shape of the analytical D-

curves. 

Second, subcritical Hopf-bifurcations have been 

identified at the boundaries of dynamic stability loss [10], 

which is often the case in time delay systems [11,12]. This 

means that an unstable periodic orbit exists around the 

equilibrium of straight-line motion in some regions of the 

stable domain. If the perturbation (or even the measurement 

noise) is large enough to push the system outside the stable 

manifold of the equilibrium, the vehicle will lose its 

stability even if the control gains are chosen from the 

linearly stable domain. This phenomenon was clearly 

observed in the experimental results. Moreover, stable 

periodic orbits have also been found both in the 

mathematical model and on the test rig for certain parameter 

combinations. A thorough exploration of the nonlinear 

dynamics of the system is a main subject of our future 

research. 

The mathematical model also includes a lot of 

simplifications compared to the real system. Apart from the 

idealizations of the bicycle model, the presence of dry 

friction and freeplay in the steering mechanism may have 

the most significant effect in altering the results. Even 

though smaller perturbations may be used to avoid unstable 

limit cycles, if the applied perturbation is too small, it will 

have no effect due to dry friction. Similarly, if the actuated 

steering angle is too small, the freeplay of the steering 

system will prevent it from showing up at the wheels. An 

additional unmodeled dissipation in the linear guide might 

also cause some discrepancies between the theoretical and 

the measurement results. 

The dynamics and the lower-level control of the steering 

actuation were also neglected in our model. In particular, 

the quantization effects of the digital servo might have a 

strong influence on the overall dynamics of the system [13]. 

Nevertheless, the experimental results show good 

qualitative accordance with the calculations. The position, 

shape and size of the stable regions are comparable to what 

the analytical model suggested, and the negative effects of 

time delay are clearly visible in the experiments too. 

5 Conclusion 

A small-scale test environment was presented for the 

experimental analysis of certain autonomous driving 

functions. The main benefits of the proposed setup are that 

it is cost effective, and it can provide faster, safer and more 

easily reproducible experimental results than full-scale 

vehicle tests. Thanks to its modular framework, the system 

can be easily upgraded with better sensors, a higher quality 

vehicle model or a wider conveyor belt to cover more road 

surface. Apart from the experimental verification of 

academic results, the test rig also provides a good 

framework for educational and demonstrational purposes.  

As a case study, the stability analysis of a lane-keeping 

controller was presented with experimental validation on 

the test rig. Good accordance was found between the 

analytical and experimental results, with some quantitative 

differences. The results could be improved with the use of 

more accurate vehicle parameters (cornering stiffness, 

moment of inertia), and a more advanced mechanical model 

(dry friction, freeplay). In addition, the nonlinear analysis 

of the system can uncover a more in-depth explanation for 

the observed results (Hopf-bifurcations, periodic orbits). 

The consideration of the above is the subject of future 

research. 
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