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ABSTRACT
The feedback control of automated lane-keeping of passenger cars is analyzed in this paper. The
calculations are based on the single-track vehicle model with the consideration of steering system dy-
namics. A linear feedback controller is used to control the lateral dynamics, while taking into account
feedback delay and the effects of the lower-level steering controller. Subcritical Hopf bifurcations are
detected along the linear stability limits and the emerging branches of periodic orbits are followed
using numerical continuation. It is shown that low amplitude unstable limit cycles exist around the
stable equilibrium of straight-line motion for certain parameter ranges. Based on the limit cycle am-
plitudes, safe and unsafe zones of stabilizing control gains are specified. The unsafe control gain zones
within the linearly stable domain are also identified under laboratory conditions using small-scale ex-
periments on a conveyor belt. The theoretical and the practical results show good accordance with
respect to the domain of attraction of the straight-line motion.

1. Introduction
Unintended lane departures have been identified as one

of the most common causes of passenger car road accidents
[9, 23]. The related advanced driver assistance systems and
autonomous driving functions, such as lane-keeping and lane
changing control have the potential to reduce the severity,
or even completely avoid a large number of such accidents
[39, 31]. The effectiveness of these driving functions de-
pends on the performance of the steering control system used
in the vehicle.

Because of this huge potential with regards to traffic safety,
the control of the lateral dynamics of the vehicle has been
extensively researched in the last few decades [33, 1]. Tra-
ditionally, the reliable methods of linear system theory are
used to design and develop these controllers. Solutions have
been proposed based on most classical methods, including
proportional-integral-derivative [50] and optimal control tech-
niques [30], as well as robust ∞ [5] and adaptive methods
[51]. The pure pursuit [2] and Stanley [18] controllers are
also very widely used solutions to the path following prob-
lem, thanks to their simple geometric considerations without
the need for a more involved vehicle model. Nonlinear con-
trol methods have also been successfully applied to the tra-
jectory tracking problem, including feedback linearization
[25, 48] and utilizing flatness properties [13] in the case of
certain vehicle models. Additional nonlinear approaches in-
clude Lyapunov-based control design [36] and sliding mode
controllers [35, 41], and with the advances in optimization
techniques and computational resources, nonlinearmodel pre-
dictive control is also becoming a viable option [14].

These more sophisticated design techniques can often
inherently lead to better performing and more robust con-
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trollers. However, two important classes of phenomena that
are often only indirectly considered or approximated in the
design process are robustness against nonlinearities and time
delay. It has been shown that both of these aspects have a
non-negligible effect on the dynamics of the controlled ve-
hicle: the presence of time delay (which may include effects
such as sensor delay, processing time and actuator dynam-
ics) greatly reduces the size of stable parameter domains,
which can lead to undesirable oscillations and even stability
loss [17, 46, 19]. Nonlinearities, on the other hand, may lead
to the presence of unstable limit cycles around stable equi-
libria, which means that certain perturbations (which might
stem from e.g. road surface irregularities, wind gusts or sen-
sor noise) can cause instability even if the system is stable
in the linear sense [6, 27, 43, 44, 32]. The most common
sources of nonlinearities in vehicle motion control include
tire force saturation and geometrical nonlinearities. Because
of its safety implications, the nonlinear dynamics of passen-
ger cars have already been widely researched, but the focus
has mostly been on the cornering behavior of the uncon-
trolled vehicle [8, 37] or on the presence of a human driver
[6, 27, 26, 29].

The modeling of the human driver is in fact often ap-
proached from a control theory viewpoint (see [28] and [34]
for examples of human driver models with varying complex-
ity) and a large number of significant results have already
been published with regards to the nonlinear dynamics of the
vehicle driver interaction. The local dynamics near a Hopf
bifurcation point can be analyzed with the help of normal
form calculation. This has been performed in [19] for a four-
wheel-steering vehicle model with the consideration of the
driver’s reaction time delay. A higher-order nonlinear analy-
sis was presented in [26], but the time delay of the driver was
approximated as a first-order system. Bifurcation diagrams
were constructed in [27] using a large number of numeri-
cal simulations where the driver’s action was perturbed by
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a periodic forcing function. As a result, quasi-periodic and
chaotic solutions have been uncovered. The large compu-
tational demand of constructing bifurcation diagrams based
on numerical simulations can be avoided by using continua-
tion methods to follow branches of periodic solutions along
a system parameter. This has been performed in [6, 7] and
[29], thereby uncovering the nonlinear dynamics of the sys-
tem farther away from the bifurcation points. Unsafe zones
inside the linearly stable parameter domains have already
been identified in [6] and [7], but with a focus on differ-
ent parameters and with different modeling considerations
than here. In [29], the nonlinear behavior of a 14 degrees-
of-freedom multibody vehicle model was also analyzed by
simulation studies, and the results were verified in a human
controlled driving simulator.

In this paper, we present an extended analysis and ex-
perimental validation of the subcritical behavior of a lane
keeping controller reported in [44]. The main contribution
of the present work compared to most related research in
the literature is threefold: while in the majority of the cases
[6, 19, 26, 27, 29, 32, 8, 37], the standard bicycle model is
used with a nonlinear tire side force characteristic, our vehi-
cle model includes the dynamics and saturation of the steer-
ing mechanism, the geometrical nonlinearities and the tire
self-aligning moments. We show that this modeling choice
greatly affects the results. Secondly, the time delay in the
system is considered explicitly in our work, instead of ap-
proximating it by a first order lag term (as in e.g. [6, 26, 29]).
Finally, we use numerical continuation methods [24, 40, 11,
42] on the resulting time delay system to highlight unstable
limit cycles (unstable periodic orbits/solutions) that indicate
sensitivity to initial conditions and perturbations in certain,
linearly stable parameter ranges. The resulting bifurcation
diagrams allow the designer to know what kinds of behav-
iors to expect due to large disturbances in different parameter
ranges, which is crucial for reliable and safe control design.

Although only a simple, delayed feedback controller is
considered in this paper, this allows us to gain a deeper un-
derstanding of the controlled system. In particular, the low
number of control parametersmakes it possible to thoroughly
analyze a large domain of stabilizing control gains by per-
forming numerical bifurcation analysis. Additionally, the
control parameters have a clear physical meaning, therefore
the resulting bifurcation diagrams are easier to understand
and more fundamental conclusions can be drawn, that can
be considered during the design of more complex control
systems. The proposed approaches can be used to gain a
deeper understanding of the potential dynamics and verify
the robustness of other control methods too. The presented
techniques can also be used as a basis of comparison between
different controllers.

The sensitivity of the lane-keeping controller to pertur-
bations in certain parameter ranges that our theoretical cal-
culations suggest has been successfully reproduced in a se-
ries of laboratory experiments using a small-scale test rig
originally proposed in [45]. This novel experimental setup
consists of an RC car anchored to the frame of a conveyor

belt using a special fixture that constrains only the longitu-
dinal displacement of the car. The conveyor belt provides the
longitudinal speed of the vehicle, while the steering angle of
the car can be adjusted using a real-time control system.

This provides a suitable environment for fast hardware-
in-the-loop testing of various steering control methods un-
der laboratory conditions, before performing full-scale, real
vehicle test drives, as in e.g. [10, 49]. The experimental
comparison of several classical lateral control laws is in-
cluded in [10], while the real vehicle tests in [49] focus on
nonlinear Lyapunov-based controllers. In terms of labora-
tory testing of autonomous driving functions, an elaborate
approach was presented in [15], where the vehicle itself is
mounted on a roller test bench and only the relative move-
ment of other traffic participants is realized using wheeled
mobile robots. Overall, laboratory tests provide a more cost
effective, fast and repeatable way of control system verifica-
tion, potentially allowing faster design iterations before the
eventual real vehicle test drives are performed. Using the
small-scale experimental setup, an extensive series of mea-
surements were carried out to uncover the sensitivity of the
closed loop system to perturbations along the linearly sta-
ble domain of control gains. The results of this unique and
comprehensive experimental nonlinear analysis show very
good qualitative and quantitative agreement with the theo-
retical calculations in terms of safe and unsafe zones of con-
trol gains within the linearly stable region, which can be used
as a guideline when tuning the controller.

The rest of the paper is organized as follows: the vehicle
model with the lane-keeping controller is presented in Sec-
tion 2.1, with a subsequent analysis in terms of both linear
and nonlinear behavior in Sections 2.3 and 2.4, respectively.
The results presented in Section 2 are calculated using the
parameter values of a real passenger car. The experimen-
tal setup is presented in Section 3.1, while the mechanical
model is modified in Section 3.2 to better represent the dy-
namics of the vehicle on the test rig. The differences between
the original and the modified vehicle model are analyzed in
Section 3.3. Section 3.4 is devoted to the experimental re-
sults and our analysis is concluded in Section 4.

2. Single track vehicle model with
lane-keeping control
In this section, an extended single track vehicle model is

presented, which includes the dynamics of the steering sys-
tem, similarly to [3]. The resulting vehiclemodel is equipped
with a linear feedback controller for lane keeping, and the
closed-loop system is analyzed in terms of linear and non-
linear dynamics. This section is intended to represent a real
passenger car (as opposed to the experimental setup in Se-
cion 3) both in terms of mechanical model and parameter
values.
2.1. Mechanical modeling

The single track model of cars, also called in-plane bicy-
cle model, is the most commonly used mechanical model to
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represent the lateral dynamics of a vehicle. Its main assump-
tion is that the tire contact patches are summarized along
each axle into a substitutive contact patch located at the lon-
gitudinal axis of the symmetric vehicle. In addition, the
height of the center of gravity is assumed to be zero, there-
fore, neither the pitching nor the rolling of the vehicle are
considered.

Figure 1: The single-track vehicle model with steering dynam-
ics.

The vehicle model is shown in Fig. 1. We use the global
coordinates xR and yR of the rear axle (point R), the heading
angle  and the steering angle �s as generalized coordinates.The vehicle parameters include the mass m, yaw moment of
inertia JC about the center of mass (point C), and the geo-
metrical parameters f (wheelbase) and d as defined in Fig. 1.
The dynamics of the steering actuation are considered using
the mass moment of inertia JF of the steering system. As-
suming a constant longitudinal speedV (whichmodels a rear
wheel drive vehicle), the following kinematic constraint can
be defined:

ẋR cos + ẏR sin = V . (1)
The presence of this kinematic constraint makes the system
non-holonomic. There is a number of methods available to
derive the equations of motion of such systems [21, 4]. Here,
we use the Gibbs–Appell-method [16], since it leads to the
most compact, first order form of the equations, with the
minimum number of coordinates. This approach requires
the definition of so-called pseudo velocities. Since four gen-
eralized coordinates and one kinematic constraint govern the
system, three appropriately chosen pseudo velocities can de-
scribe the velocity state. Let us define these as the lateral
velocity �1 of point R, the vehicle yaw rate �2 and the steer-ing rate �3. Using the definitions of the pseudo velocities
and the kinematic constraint (1), the time derivatives of the
generalized coordinates can be expressed as

ẋR = V cos − �1 sin , (2)
ẏR = V sin + �1 cos , (3)
 ̇ = �2 , (4)

�̇s = �3 . (5)
The rest of the dynamics are described by the Gibbs–Appell-
equations (see theAppendix for the details of the derivation):
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where the right-hand side consists of
f1 = −FR − FF cos �s − mV �2 , (7)
f2 = −MF −MR − FFf cos �s − mdV �2 , (8)
f3 = −MF +Ms . (9)

Ms denotes the steering torque acting as an internal torque
between the vehicle body and the front wheel. FF(�F) and
FR(�R) are the lateral tire forces, whileMF(�F) andMR(�R)are the self-aligning moments (see Fig.1). Subscripts F and
R refer to the front and rear wheels, respectively. The tire
force and moment characteristics are described by the non-
linear brush tire model (see Fig. 2 and Appendix A for de-
tails) as a function of the side slip angles

�F = arctan

(
(

�1 + f�2
)

cos �s − V sin �s
(

�1 + f�2
)

sin �s + V cos �s

)

, (10)

�R = arctan
(�1
V

)

. (11)
It is worth noting that including the tire self-aligning mo-
ments has a strong effect on the dynamics of the steering
system (see Eq. (9)), therefore, their inclusion in the vehicle
model is essential.

Figure 2: Lateral tire force and self-aligning moment char-
acteristics of the brush tire model with parameters listed in
Table 2.

2.2. Hierarchical lane-keeping control
Without loss of generality, we define our control goal as

stabilizing straight-line motion along the x-axis. To achieve
this, the desired steering angle is generated by feeding back
the lateral position yR and the yaw angle  of the vehicle
using the proportional gains Py and P :

�dess (t) = −PyyR(t − �) − P  (t − �) . (12)
In the above control law, the feedback delay � represents
the total time delay in the system, consisting of sensor de-
lays, sampling times, data processing and communication,
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etc. Note that feeding back the lateral position and yaw an-
gle as in Eq. (12) can be considered as a linearized version of
a basic preview model [47], where the predicted vehicle po-
sition yR(t+T ) is used as feedback using the preview time T .
In case of straight-line trajectory: �dess (t) = −PyyR(t+ T ) ≈
−PyyR(t)−PyV T (t). Therefore, considering PyV T = P ,some preview effect is inherently considered in the gain P ,which is beneficial for compensating the feedback delay �.

In order to realize the desired steering angle �dess , the
steering torqueMs is generated according to the lower-levelPD controller

Ms = −kp
(

�s − sat
(

�dess
))

− kd�3 , (13)
with proportional and derivative gains kp and kd. In order
to prevent unreasonably large steering angles, a saturation
function sat is used to limit �dess to the range of −30◦ to 30◦
(see Appendix B for details). For the sake of simplicity, the
desired steering rate is kept at zero, therefore the derivative
gain kd multiplies only �3 in Eq. (13) and it is assumed that
the time delay of the lower-level controller can be neglected
compared to � in Eq. (12).
2.3. Linear stability analysis

The desired steady state of straight-line motion along the
x-axis corresponds to the generalized coordinate and pseudo-
velocity values

xR(t) = V t, yR(t) ≡ 0,  (t) ≡ 0, �s(t) ≡ 0,
�1(t) ≡ 0, �2(t) ≡ 0, �3(t) ≡ 0.

(14)

Since only the coordinates yR and  are used in the control
law in Eq. (12), the vehicle’s position in the x direction will
have no influence on the dynamics and the corresponding
Eq. (2) can be decoupled from the rest of the equations of
motion. The rest of the state variables can be collected into
the state vector

x =
[

yR  �s �1 �2 �3
]T , (15)

where the steady state in Eq. (14) corresponds to x(t) ≡ 0.
For small oscillations around this equilibrium, the linearized
system can be written as ẋ = Ax + Bu, with u = �dess as the
control input, and the state and input matrices

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 V 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 A43 A44 A45 A46
0 0 A53 A54 A55 A56
0 0 A63 A64 A65 A66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (16)

B = −
kp
kd

[

0 0 0 A46 A56 A66
]T , (17)

where the matrix elementsAij are listed in Appendix C.1. Ifthe proportional gains Py and P are collected into the gain
vector

K =
[

−Py −P 0 0 0 0
]

, (18)

then the linear control law in Eq. (12) can bewritten as �dess (t) =
Kx(t− �). Note that from the point of view of designing the
upper-level control law in Eq. (12), the lower-level controller
(13) can be considered as part of the system dynamics, i.e.
it is included in matrices A and B.

The bicycle model with the corresponding lane-keeping
controller can be written in the linear delay differential equa-
tion form ẋ(t) = Ax(t) + BKx(t − �). Using an exponential
trial function, the characteristic equation of this system is of
the form

D(�) ∶= det
(

�I − A − BKe−��
)

= 0 , (19)
where � ∈ ℂ denotes the characteristic exponent and I is the
identity matrix. At the boundaries of stability, there exist
characteristic exponents that lie on the imaginary axis of the
complex plane, i.e. � = ±i!. If ! = 0, a real characteristic
exponent may cross the imaginary axis and a static loss of
stability occurs. This happens if D(0) = 0, leading to:

Pykp
CF(fCR − C̃R) + CRC̃F

mJFJC
= 0 , (20)

i.e. the control gains Py = 0 and kp = 0 correspond to the
boundaries of static loss of stability. Parameters CF, CR, C̃Fand C̃R in Eq. (20) are the parameters of the linearized tire
characteristics, as defined in Appendix A. It can be seen that
for certain vehicle configurations, the numerator of Eq. (20)
can be zero regardless of the control gains, but in this paper,
we are only focusing on the effects of the controller and use
vehicle parameters for which this problem does not occur.

In case of ! > 0, a complex conjugate pair of charac-
teristic exponents may move to the right half plane, and the
system loses its stability by oscillating with the angular fre-
quency !. Substituting � = i! into Eq. (19), the equation
D(i!) = 0 can be separated into its real and imaginary parts.
These two equations can then be solved for two arbitrary
system parameters, resulting in the parametric curves of dy-
namic stability loss (the so-called D-curves, parametrized by
!) in the plane of these two system parameters.

Performing the above calculations, the stable domains of
the control gains Py and P can be generated according to
Fig. 3. The stability charts are plotted for realistic vehicle
parameter values listed in Tables 1 and 2, following [44].
As nominal values, we use a vehicle speed of 80 km/h and
a time delay of 0.25 s, both of which are moderate values
in case of a real passenger car. Panels (a) and (b) show that
further increasing the value of these two parameters greatly
reduces the stable domains. This is less of a problem in case
of the vehicle speed, since it can be measured rather accu-
rately, but neglecting the time delay in the system can lead
to a severe overestimation of the stable domain. Increasing
the lower level control gains kp and kd (panels (c) and (d))
also reduces the range of stabilizing Py and P values. In the
limit, if kp tends to infinity, the lower-level controller com-
pletely overcomes the dynamics of the steering system, and
the resulting stable domain converges to the stability map of
a simpler vehicle model, where the steering angle is directly
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Table 1
Parameter values of a passenger car.

Parameter Value

Vehicle wheelbase (f ) 2.7 m
Distance between rear
axle and center of gravity (d) 1.35 m

Vehicle mass (m) 1430 kg

Yaw moment of inertia (JC) 2500 kgm2

Steering system moment of inertia (JF) 0.25 kgm2

Lower-level steering control
proportional gain (kp)

640 Nm

Lower-level derivative gain (kd) 8 Nms

Longitudinal velocity (V ) 80 km/h

Time delay (�) 0.25 s

assigned as the system input. The stability boundary of this
simpler model is plotted in dotted line in Fig. 3(c); for de-
tails, the reader is referred to [44].
2.4. Nonlinear analysis

The boundaries of dynamic loss of stability determined
in Section 2.3 correspond to Hopf bifurcations in the non-
linear system [24, 40]. This means that limit cycles exist in
the state space for certain parameter ranges, leading to intri-
cate system dynamics that also depend on the initial condi-
tions. If the Hopf bifurcation is subcritical, the domain of
attraction of the stable straight-line motion can be bounded
by an unstable limit cycle. This means that if the system
is sufficiently perturbed, the domain of attraction of the sta-
ble equilibrium is left, and the motion of the vehicle diverges
from the reference path even though the linear stability maps

Figure 3: Stability charts of the control gains Py and P for
various values of (a) vehicle speed V , (b) time delay �, (c)
lower-level proportional gain kp and (d) lower-level derivative
gain kd. The largest stable area is shaded in gray in each panel.
Dashed curves correspond to the nominal parameter values
listed in Table 1, while the dotted line in panel (c) refers to the
stability boundary of the bicycle model with directly assigned
steering angle.

Table 2
Tire parameters of a passenger car.

Parameter Front axle Rear axle

Contact patch half-length (a) 0.05 m 0.05 m

Cornering stiffness (C) 50 kN 67 kN

Sliding friction coefficient (�) 0.88 0.88

Rolling friction coefficient (�0) 0.88 1

Vertical axle load (Fz) 7014 N 7014 N

suggested otherwise.
In order to uncover these unstable limit cycles and map

out the domains of attraction, we use numerical continua-
tion with the help of the Matlab package DDE-Biftool [11,
12, 38]. The limit cycle is calculated using orthogonal col-
location near the Hopf bifurcation point and it is followed
along a system parameter by the pseudo-arclength method
to form a branch of limit cycles in the bifurcation diagram
of the system. To avoid computational challenges, the sat-
uration of the control input in Eq. (13) is smoothed out us-
ing second-order polynomials (see Appendix B), which is a
common technique in case of non-smooth systems (see, for
example, [22]).

The amplitudes of the detected limit cycles are used to
quantify the domain of attraction of the straight-line mo-
tion. In particular, the amplitude yampR of the lateral position
is plotted in the bifurcation diagrams of this study. This,
however, does not coincide with the maximum disturbances
for which the vehicle tends back to the straight-line motion,
i.e. this is not the exact boundary of the domain of attrac-
tion, since that depends on the rest of the state variables too.
Moreover, due to the feedback delay in the controller, the
phase space of the system is in fact infinite dimensional,
therefore we can only show certain sections of the phase
space. Nevertheless, the resulting bifurcation diagrams are
still good indicators of the sensitivity of different parameter
regions to initial conditions and disturbances.

In order to verify the results of numerical continuation
and to detect possible disconnected branches of limit cy-
cles, a comprehensive series of numerical simulations was
performed along the amplitude and control gain regions de-
picted in the bifurcation diagrams. Although a large number
of initial conditions in terms of yR was used for the simu-
lations, the infinite dimensional phase space makes it very
hard to thoroughly verify the (non-)existence of additional
solutions. Nevertheless, the simulations confirmed the limit
cycles uncovered using numerical continuation, while no ad-
ditional solutions were found in the region depicted in the
bifurcation diagrams.

Figure 4 shows the results of the nonlinear analysis for
the vehicle parameters in Tables 1 and 2. For the investigated
setup, the linear stability boundary of dynamic stability loss
corresponds to subcritical Hopf bifurcations, which means
that unstable limit cycles are present in the phase space of
the nonlinear system. Panels (a)-(d) show bifurcation dia-
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Figure 4: Bifurcation analysis of the controlled vehicle. Pan-
els (a)-(d) show individual bifurcation diagrams for different
sections of the stability chart, while the coloring in panel (e)
refers to the amplitudes yampR of the unstable limit cycles in the
linearly stable control gain domain. Red plus sign denotes the
optimal gain setup of the linear closed-loop system.

grams using the control gain Py as bifurcation parameter for
different fixed values of the control gain P . Solid green and
solid red horizontal lines at yampR = 0 m correspond to lin-
early stable and unstable straight-line motions, respectively,
and are separated by the Hopf bifurcation points marked by
black stars. The branches of unstable limit cycles are de-
noted by dashed red curves. Based on the bifurcation dia-
gram, the linear stability chart is extended in panel (e) with
a colormap that indicates the amplitude of the unstable limit
cycles in the linearly stable domain of control gains. In the
bright yellow range, the system can leave the domain of at-
traction of straight-line motion even for small perturbations,
while in the dark blue rangemuch larger perturbations are re-
quired to do this. As the coloring shows, although the system
is stable in the linear sense, the domain of attraction can be-
come dangerously small, especially for larger values of the
control gain P (cf. panels (a)-(d) and the corresponding
horizontal dashed lines in panel (e)). Hence, we call this re-
gion of the linearly stable domain of the control gains unsafe
zone.

We have also calculated the optimal control gain setup
based on traditional linear design (denoted by a red plus sign
in panel (e)), where the rightmost characteristic exponent of
the linear closed-loop system has the smallest (negative) real
part, i.e. the system has the largest damping. This optimal
setup ensures the fastest decay of the vibrations in the lin-

ear domain, but the domain of attraction of the straight-line
motion is relatively small and the closed-loop system is vul-
nerable to disturbances.

In the gray parameter range of panel (e), the amplitude
of the limit cycles exceeds 3.5 meters (the width of a sin-
gle lane on a normal road). We refer to this region as a
safe zone, where, without leaving the domain of attraction of
the desired straight-line motion, one can accomplish a lane
change manoeuvre simply by changing the controller’s ref-
erence signal to the center line of the adjacent target lane. In
addition, the amplitude of the limit cycles in this gray area
start to increase very strongly, leading to physically less rel-
evant results.

As shown in Fig. 4, the domain of attraction of the straight-
line motion is strongly limited in a major part of the linearly
stable control gain domain. Without the detailed nonlin-
ear analysis of the system, one could introduce a significant
safety hazard into the motion control of the vehicle by choos-
ing the control gains based on the linear stability analysis
only. In the next section, the existence of this safety issue is
demonstrated in laboratory experiments.

3. Small-scale experimental setup
3.1. Test rig

Figure 5: The experimental setup.

The experiments were performed on a small-scale test
environment that was originally proposed and presented in
detail in [45]. The experimental setup consists of a con-
veyor belt and a 1:10 scale model car with mechanically cou-
pled front wheel steering and sprung wheel suspensions (see
Fig. 5). The vehicle is attached to the frame of the conveyor
belt using a custom 5-degrees-of-freedom suspension sys-
tem that only constrains the vehicle’s motion in the longi-
tudinal direction of the vehicle. The suspension mechanism
consists of a roller bearing linear guide with a linear encoder
and a custom 3D printed mechanism with ball bearings and
magnetic rotary sensors. The sensors in the suspension sys-
tem provide measurements of the vehicle’s lateral position,
as well as yaw and roll angles at a high sampling frequency.

The running conveyor belt provides the relative longi-
tudinal displacement of the road surface with respect to the
vehicle, while the steering system is actuated by a servo mo-
tor with the steering torque controller (13). The higher-level
control algorithm (12) is running on a National Instruments
CompactRio 9039 unit, which is also used for data acqui-
sition. The sampling frequency was set to 1 kHz, and an
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Table 3
Parameter values of the test rig.

Parameter Value

Distance between hitch point
and front axle (l) 0.22 m

Vehicle wheelbase (f ) 0.239 m
Distance between rear
axle and center of gravity (d) 0.146 m

Vehicle mass (m) 0.92 kg

Yaw moment of inertia (JC) 0.018 kgm2

Steering system moment of inertia (JF) 4.5⋅10−6 kgm2

Lower-level steering control
proportional gain (kp)

0.0017 Nm

Lower-level derivative gain (kd) 1.35⋅10−4 Nms

Longitudinal velocity (V ) 8.3 km/h

Time delay (�) 0.25 s

Linear dissipation in linear guide (b) 0.6 Ns/m

Nonlinear dissipation parameter (") 0.02 m/s

artificial feedback delay was applied in the control unit. For
this study, we used the time delay � = 0.25 s and run the
conveyor belt at the speed of V = 8.3 km/h in the experi-
ments.

The parameters of the test rig were determined in a series
of measurements, and they are collected in Table 3. The tire
parameters were identified in a caster-wheel setup, where a
constant lateral force was applied to a pair of wheels being
towed on the running conveyor belt while measuring the side
slip angle. The measurement points (plus signs and crosses)
with the fitted brush tire model characteristics (blue and red
curves) are shown in Fig. 6 for the front and rear tires. The
resulting tire parameters are listed in Table 4.

Figure 6: Tire characteristics of the model vehicle: (a) mea-
sured side forces (plus signs and crosses) and the fitted brush
tire side force characteristics for the front and rear axles, (b)
the self-aligning moment curves of the fitted brush models.

3.2. Modeling of vehicle on conveyor belt
The anchoring of the vehicle in the experimental setup

modifies its dynamics compared to the bicycle model de-
tailed in Section 2.1, therefore the measurement results can-
not be viewed as direct verification of the analysis of Sec-
tion 2. In order to account for the differences between the
vehicle moving on a road and the vehicle on the conveyor

Table 4
Tire parameters of the test rig at the front and rear axles.

Parameter Front axle Rear axle

Contact patch half-length (a) 0.002 m 0.002 m

Cornering stiffness (C) 84.9 N 65.3 N

Sliding friction coefficient (�) 1.24 1.18

Rolling friction coefficient (�0) 1.24 1.18

Vertical axle load (Fz) 5.5 N 3.5 N

Figure 7: Comparison of (a) a traditional vehicle model and
(b) the mechanical model of the experimental setup.

belt, the mechanical model of Section 2 is modified in two
ways.

First, the fixed speed V is now generated by the conveyor
belt instead of the drivetrain of the vehicle, therefore, the lon-
gitudinal speed of the vehicle is not kept constant anymore
but it changes depending on the yaw angle  (see Fig. 7).
Consequently, the kinematic constraint in Eq. (1) needs to
be modified so that the global x component of the velocity
of the hitch point A is fixed:

ẋR − (f + l) ̇ sin = V , (21)
where l denotes the distance between the front axle F and
the hitch point A (see Fig. 7). This modified kinematic con-
straint changes the derivatives of the generalized coordinates
to

ẋR = V + (f + l)�2 sin , (22)
ẏR = �1 sec + (V + (f + l)�2 sin ) tan , (23)
 ̇ = �2 , (24)
�̇s = �3 . (25)

Note that when linearized around the straight-line motion,
both Eq. (1) and Eq. (21) leads to ẋR = V , and the kinemat-
ics of the two models in Fig. 7 coincide for small vibrations.

The other change compared to the original vehicle model
is that we need to consider the additional active force FA at
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the hitch point, see Fig. 7(b). This accounts for the over-
all dissipation arising in the roller bearing linear guide, in-
cluding effects such as friction, rolling resistance and vis-
cous damping. To describe the nonlinear characteristic of
the dissipation force, which saturates at high speeds, we use
the formula

FA = −b" tanh
(vA
"

)

, (26)

where vA denotes the velocity of point A in the y direction,
calculated as

vA = ẏR + (f + l) ̇ cos . (27)
Note that when linearized, Eq. (26) leads to FA = −bvA,therefore, parameter b determines the slope of the force char-
acteristic at vA = 0, while " can be used to adjust the sat-
uration level, i.e., supvA∈ℝ FA = b". Therefore, in case of
small amplitude oscillations, FA acts as viscous damping,
while at higher lateral speeds, it has dry friction-like tenden-
cies. The force characteristic (26) is plotted in Fig. 8. Note
that a similar friction force characteristic was reported in e.g.
[20] for a linear ball guide. Since the necessarymeasurement
setup was not available to experimentally determine the val-
ues of b and " in the test rig, these parameters were identified
indirectly, making sure that the resulting FA curve remains
physically plausible. As listed in Table 3, we used the values
of b = 0.6 Ns/m and " = 0.02 m/s, which corresponds to a
maximum dissipation force of 0.012 N. Although the magni-
tude of FA remains relatively small, it still has a strong effect
on the nonlinear dynamics of the system.

Figure 8: Characteristic of the dissipation force arising in the
linear guide.

With the above detailedmodifications, theGibbs–Appell-
equations of the vehicle model change to (cf. Eq. (6)-(9)):

⎡

⎢

⎢

⎣

m11 m12 0
m21 m22 JF
0 JF JF

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̇1
�̇2
�̇3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

f1
f2
f3

⎤

⎥

⎥

⎦

, (28)

with the elements of the generalized mass matrix
m11 = m sec2  ,

m12 = m21 = m((f + l) tan2  + d) ,

m22 = JF + JC + md2 + m(f + l)2 tan2  ,

(29)

and the right hand side
f1 = − FR − FF cos( + �s) sec + FA sec 

− mV �2 sec3  − m�1�2 tan sec2  

− m�22
(

(f + l)(1 + sec2  ) − d
)

tan ,
f2 = −MF −MR + FA(f + l) sec 

+FF
(

(f + l) sin �s tan − f cos �s
)

− mV �2
(

(f + l) tan2  + d
)

sec 

− m�1�2
(

(f + l) tan2  + d
)

tan 

− m�22 (f + l)
2 tan sec2  ,

f3 = −MF +Ms .

(30)

As in the original vehicle model of Section 2, the tire side
forces FF(�F) and FR(�R) as well as the self-aligning mo-
mentsMF(�F) andMR(�R) are determined using the nonlin-
ear brush tire model (see Appendix A). Due to the modified
kinematics, however, the calculation of the side slip angles
changes to:

�F = arctan
(vF,⟂
vF,∥

)

, (31)

�R = arctan
(

�1 cos 
V + (�1 + (f + l)�2) sin 

)

, (32)

where the perpendicular (vF,⟂) and parallel (vF,∥) velocitycomponents of the front wheel are
vF,⟂ = (�1 + f�2) cos cos �s

−
((

�1 + (f + l)�2
)

sin + V
)

sin �s ,
(33)

vF,∥ = (�1 + f�2) cos sin �s
+
((

�1 + (f + l)�2
)

sin + V
)

cos �s ,
(34)

respectively. Some additional details about the derivation of
the equations of motion can be found in Appendix C.2.
3.3. Linear and nonlinear analyses

It was already mentioned previously that the modified
kinematic constraint on the test rig does not change the lin-
ear dynamics. It might, however, influence the nonlinear be-
havior of the vehicle, and in addition, the dissipation force
FA appears in the linearized system too. Therefore, this sec-
tion aims to highlight the differences between the two vehicle
models both in terms of linear stability and nonlinear dynam-
ics. The parameter values of the test rig (see Tables 3 and 4)
are used for the original and the modified vehicle model as
well.

Linearizing the mechanical model of the test rig around
x = 0 (where the state vector x is the same as in Eq. (15))
leads to the state matrix structure

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 V 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 A42 A43 A44 A45 A46
0 A52 A53 A54 A55 A56
0 A62 A63 A64 A65 A66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (35)
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while the structure of the input matrix B is the same as in
Eq. (17). However, the individualmatrix elementsAij (listedin Appendix C.2) are now slightly different due to the pres-
ence of the dissipation force FA.

Figure 9: Stable control regions for different values of the dis-
sipation parameter b. Vehicle parameters are listed in Tables 3
and 4.

Figure 9 shows the effect of the dissipation parameter b
on the linear stability of the system. It clearly shows that the
dissipation in the linear guide has a stabilizing effect, and it
can even prevent stability loss for zero (and even some neg-
ative) values of the feedback gain P . The b = 0 case means
that no dissipation force arises in the linear guide, in which
case there is no difference between the two mechanical mod-
els in the linear sense, therefore the stability boundaries are
also identical.

To compare the nonlinear dynamics of the two vehicle
models, we use the same figure structure as in Fig. 4. Fig-
ure 10(a)-(c) show bifurcation diagrams at fixed values of
the control gain P . Thin and thick bifurcation branches of
limit cycles correspond to the original and modified models,
respectively. The bifurcation diagram in Fig. 10(a) is qual-
itatively very similar to what was observed for real vehicle
parameters in Section 2, namely the whole linearly stable do-
main is bounded by an unstable limit cycle. However, stable
limit cycles also emerge at larger amplitudes, through fold
points of periodic orbits. In case of the free vehicle model,
the stable limit cycle forms a disconnected branch in the bi-
furcation diagram, since it connects to the lower amplitude
branch in the Py < 0 region. We remark that no such discon-
nected branches were identified for the real vehicle parame-
ter set in the amplitude and control gain region depicted in
Fig. 4.

As the value of P is decreased in panel (b), the fold
points where the unstable branches change direction move to
larger values of Py. Consequently, the domain of attraction
of the linearly stable straight-line motion is unbounded in
some ranges of the control gains. If P is further decreased,
see panel (c), the direction of the branches become almost
vertical near the linear stability limit of the original vehicle
model, and the limit cycle amplitudes quickly grow to ranges
with little practical relevance.

The extended linear stability charts of the two mechan-
ical models are plotted in Fig. 10(d) and (e). The colormap
refers to the amplitude yampR of the detected unstable limit
cycles. In order to concentrate on the physically more rele-
vant, lower amplitude range, the bifurcation diagrams and

Figure 10: Bifurcation analyses of the original (’on road’) and
modified (’on the conveyor belt’) vehicle models. Panels (a)
to (c) show individual bifurcation diagrams along different sec-
tions of the stability charts, while the coloring in panels (d) and
(e) refers to the amplitudes yR of the unstable limit cycles in
the linearly stable control gain region. Original vehicle model:
thin lines and blue symbols in panels (a)-(c), stability chart in
panel (d); vehicle model of the test rig: thick lines and black
symbols in panels (a)-(c), stability chart in panel (e). Red plus
signs denote the optimal control gains of the linear models.

the color coding are limited to a maximum amplitude of
0.35 m. If the unstable limit cycle amplitudes are above this
limit (or if the system is globally stable), then the control
gains are considered safe against disturbances and the cor-
responding region of the stable domain is colored in gray.
Note that for these specific system parameters, the optimal
control gain setup of the linear model (denoted by red plus
signs) is inside this safe zone, therefore, if the controller is
tuned based only on the dominant poles of the linear model,
the nonlinear system will also be sufficiently robust against
disturbances.

It is worth mentioning that the additional linearly stable
area due to the effect of the dissipation force FA is enclosed
by small amplitude unstable limit cycles. Thus, although
dissipation effects in the linear guide make the straight-line
motion stable for larger control gains, the domain of attrac-
tion of the stable equilibrium is so small in these ranges that
the vehicle can very easily lose its stability due to perturba-
tions. This difference between the linear and nonlinear be-
havior of the test setup could be explained by the saturating
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Figure 11: Measurement results for different perturbation levels ypertR . The coloring of the
tiles refers to the root mean square error (RMSE) of the lateral position. Parameter points
A to F correspond to the time series shown in Fig. 14.

force characteristic shown in Fig. 8, where the equivalent
linear damping is decreased for increasing amplitudes. In
the linearly stable control gain domain of the original vehi-
cle model, the limit cycles of the two models start to follow
each other relatively closely, indicating similar nonlinear dy-
namics in both cases.

Overall, even though the linearly stable parameter region
is much larger in our experimental setup, the numerical con-
tinuation results indicate that the nonlinear behavior of the
original system is qualitatively preserved.
3.4. Experimental results

In order to experimentally validate the theoretical results
of the nonlinear analysis, the domain of attraction of the
straight-line motion of the vehicle was identified using the
experimental rig at different control gain setups in the fol-
lowing way. The perturbation of the system was carried out
by shifting the reference value of yR in the controller by the
level of ypertR . If the parallel shift (’lane-change maneuver’)
could be performed by the controller and the motion of the
vehicle tended to the straight-line motion at the new refer-
ence value, the perturbation level ypertR was assumed to be
within the domain of attraction of the equilibrium of straight-
line motion. If the vibrations of the vehicle did not decay in
time (or the vehicle left the conveyor belt), then the pertur-
bation level ypertR was presumed to be outside the domain
of attraction. We swept the parameter domain of interest of
the control gains applying four different perturbation levels
ypertR ∈ {1.25, 2.5, 5, 7.5} cm.

The results of the four measurement series with the dif-
ferent perturbations can be seen in Fig. 11, where colored
tiles refer to stable measurements, while red crosses denote
the smallest Py values for which the vehicle lost its stabil-
ity at a given value of P . Increasing the perturbation level
leads to a decrease in the domain of stabilizing control gains,
which agrees with the subcritical behavior that is predicted
by the theoretical investigation. Therefore, in order to deter-
mine the linear stability limit with experiments, very small
perturbations would have to be used to avoid the effect of the
unstable limit cycles. However, some physical limitations of
the test rig prevent the use of perturbations under a certain

level. Small perturbations generate small desired steering
angle values in Eq. (12) and small steering torque in Eq. (13)
that might have no effect due to the freeplay and dry friction
that occur in the steering mechanism of the model vehicle.

The presence of dry friction and freeplay directly affect
the residual error of the controller too, which is illustrated
by the color scheme in Fig. 11. The colors correspond to the
root mean square error of the controller’s lateral error, after
cutting the first 20 seconds of the approximately 60 seconds
long measurement signals to allow for transients to decay. It
can be seen in all four panels that the largest errors occur for
small values of Py. In these cases, even though the vehicle
is relatively far from the reference position, the large error
signal is multiplied by a small value of Py, leading to a small
desired steering angle, which is unable to show up at the
wheels due to dry friction and freeplay. Based on the colors
in the upper right area of the stable regions in panels (b) and
(c), the best accuracy can be achieved if both Py and P is
sufficiently large. However, according to panel (d), if the
reference path is too far away (the perturbation level is large),
such large control gains can already lead to instability.

Figure 12 shows a comparison of the measurement re-
sults with the theoretical bifurcation analysis. For each value
of P a measurement series was performed with, the corre-
sponding bifurcation branch is plotted in the panels. Keep in
mind that due to the infinite dimensional nature of the sys-
tem, the limit cycle amplitudes do not exactly correspond to
the boundary of the domain of attraction of stable straight-
line motion, but they still exhibit qualitatively very similar
tendencies. In particular, large values of Py can ensure sta-
ble straight-line motion only for smaller perturbation levels
because of the presence of low amplitude unstable limit cy-
cles. Conversely, at lower values of Py and P , where no un-stable limit cycle is present, the measurements consistently
remained stable even for the largest perturbation level. For
large values of P , where the whole linearly stable interval
of Py is enveloped by an unstable limit cycle, increasing the
perturbation level can very quickly lead to stability loss.

The comparison between the analytical andmeasurement
results can be seen from another point of view in Fig. 13,
where the color of a specific tile in the Py-P plane corre-
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Figure 12: Bifurcation diagrams with measurement results. The theoretical bifurcation
branches of the unstable limit cycles are compared to the perturbation levels used in the
experiment. Parameter points A to F correspond to the time series shown in Fig. 14.

Figure 13: Comparison of limit cycle amplitudes and measure-
ment results. Measurement points are denoted by tiles, where
the coloring refers to the largest perturbation that did not push
the system out of the stable manifold of straight-line motion.
Colored curves show sections of the theoretical unstable limit
cycles at the corresponding amplitudes in yR. Red plus sign
denotes the optimal gains suggested by the linear model.

sponds to the maximum perturbation that resulted in a sta-
ble measurement with those gains. In addition, sections of
the bifurcation diagrams at the corresponding amplitudes are
also plotted with similarly colored lines, as well as the ana-
lytical linear stability limit in black. Comparing Fig. 13 and
Fig. 10, it can be seen that the parts of the linearly stable
region where no stable measurement could be performed is

in fact covered by a very small amplitude unstable limit cy-
cle, where possibly even our smallest perturbation pushed
the system outside the domain of attraction of the straight-
line motion.

For larger perturbations, while at the lower and upper
limits of P good accordance can be observed between the
analytical and experimental results, stability loss occurred
significantly earlier for middle values of P than the model
would suggest. This difference could possibly indicate some
parameter mismatches or that certain nonlinearities are not
perfectly accurate in our model. For example, the brush
model is one of the more simple nonlinear tire models and
the dissipation force characteristic could also be inaccurate.
In addition, the domain of attraction of the stable equilibrium
depends on the rest of the variables too, while the bifurca-
tion diagrams only show a section of the phase space, which
could also explain the differences. Nevertheless, the overall
tendencies in terms of nonlinear dynamics are very similar
between the mechanical model and the test rig.

We selected some measurement points, marked also in
Figs. 11 and 12, to show a few representative time series
data from our measurements. In Fig. 14, the evolution of the
lateral position of the model car is plotted in these points.
The horizontal dashed lines refer to the desired lateral po-
sition given by the perturbation levels. The measurement at
point A is a typical example where the desired steering angle
(due to the small value of Py) probably remained within the
limits of the steering system freeplay, therefore no steering
action showed up at the wheels and the vehicle practically
remained in its initial position during the whole measure-
ment. A similar scenario can be observed at point B, but in
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Figure 14: Time series of the rear axle position yR from a few
representative measurements.

this case possibly themeasurement noise pushed the steering
system over the freeplay limits in the middle of the measure-
ment, and the vehicle eventually performed the lane-change
maneuver as intended. The time series at point C shows a
smooth but slower settling of the vehicle, while at point D
a more dynamic lane change can be seen with some strong
overshoot. Point E shows some decaying oscillations near
the stability limit, and in point F an oscillatory stability loss
can be observed.

We have also checked the frequency components of the
measurement signals to compare them to the frequencies pre-
dicted by our mathematical models. Distinct peaks in the
frequency spectrum could only be identified near the stabil-
ity boundary, where the vehicle visibly oscillates. At these
points, the measured frequencies were mostly in the range of
0.4–1.2 Hz, while the frequencies corresponding to the the-
oretical linear stability boundary are in the range of 0.25–
0.8 Hz. On the one hand, due to the presence of the low
amplitude unstable limit cycles, the detected vibrations oc-
curred far from the parameter range of the linear stability
boundary. This makes the frequency values hard to compare.
On the other hand, it is also not trivial how the measured fre-
quencies could be compared with the theoretical limit cycle
time periods. Since the unstable limit cycle is repelling the
system, even if we managed to start the measurement from
a nearby point of the phase space, the system would only
move farther from the limit cycle in time. Thus, instead of
measuring the frequency of the unstable periodicmotion, the
frequency components of some transient dynamics are cap-
tured. This can also be seen in the time series of point F
in Fig. 14, where the oscillation frequency clearly increases
during the measurement.

We remark that due to the anchoring of the vehicle in
the experimental setup, the measurement results cannot ver-
ifiably prove the existence of the showcased phenomena in
real vehicles. However, since the identified unsafe zones are

in good qualitative and quantitative accordance with the the-
oretical results of the vehicle model on the conveyor belt, it
can be assumed that the results of the nonlinear analysis of
the vehicle on the road scenario similarly apply in practice.

4. Conclusion
An extensive linear and nonlinear analysis of a lane-keeping

controller with time delay was presented in this paper. We
showed that including the dynamics of the steering system is
an important modeling choice, since it greatly increases the
domain of stabilizing control gains compared to the standard
bicycle model where the steering angle is directly assigned.
The optimal control gains corresponding to the fastest decay
of oscillations in the linearized system can also be found in
this extended domain of the stable control parameters.

We also showed that relying only on the results of the lin-
ear analysis can be misleading: dangerously low-amplitude
unstable limit cycles exist around the linearly stable straight-
line motion in the stable region of control gains. This means
that if the vehicle is sufficiently perturbed to leave the do-
main of attraction of the stable equilibrium (due to e.g. mea-
surement noise, road surface irregularities, wind gusts, etc.),
then it will not be able to converge back to the reference
path, and unwanted large amplitude vibrations occur. A safe
zone of control gains was identified within the linearly sta-
ble region where the unstable limit cycle amplitudes are the
largest, therefore the system is the most resilient against dis-
turbances. It was shown that the optimal control gains deter-
mined using linear analysis do not necessarily fall into this
safe zone, therefore neglecting the nonlinear behavior of the
system can introduce significant safety risks.

The strong subcritical behavior suggested by the calcula-
tions was successfully reproduced in a series of small-scale
laboratory measurements. The bifurcation diagrams created
by numerical continuation show good accordance with the
experimental results as the domain of control gains stabiliz-
ing the vehicle at increasing perturbation levels reduces with
similar tendencies.

Overall, both the theoretical and themeasurement results
indicate a strong sensitivity of the system to disturbances in
certain regions of the linearly stable domain of control pa-
rameters. This behavior cannot be uncovered by the tradi-
tional methods of linear analysis. Therefore, it is even more
critical that engineers are aware that such unsafe zones exist
within the linearly stable ranges of control gains.

A. Brush tire model
In order to account for the saturation of the tire forces at

large side slip angles, the nonlinear brush tire model is used
in our analysis. Assuming a parabolic pressure distribution
along the contact patch due to the vertical wheel load, the
lateral tire forces are calculated as

F (�) =

{

�1 tan � + �2sgn � tan2 � + �3 tan3 � , 0 ≤ |�| < �crit ,
�Fzsgn � , �crit < |�| ,

(36)
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with coefficients
�1 = C,

�2 = −
C2

3�0Fz

(

2 −
�
�0

)

,

�3 =
C3

9�20F
2
z

(

1 −
2�
3�0

)

.

(37)

The parameters of the brush model include the half-length of
the tire-ground contact patch a, the distributed lateral stiff-
ness k, the vertical axle load Fz, as well as the sliding and
rolling coefficients of friction � and �0 between the tires andthe road. �crit denotes the critical side slip angle where total
sliding starts, which is calculated as �crit = arctan 3�0Fz2a2k and
C = 2a2k is the so-called cornering stiffness.

The tire self-aligning moments can also be calculated
with the brush tire model, using the formula

M(�) =

⎧

⎪

⎨

⎪

⎩

�1 tan � + �2sgn � tan2 � + �3 tan3 � + �4sgn � tan4 � ,
0 ≤ |�| < �crit ,

0 , �crit < |�| ,
(38)

where the coefficients are
�1 = −

a
3
�1,

�2 = −a�2,
�3 = −3a�3,

�4 =
aC4

27�30F
3
z

(

4
3
−
�
�0

)

.

(39)

When linearized, the tire side force and self-aligningmo-
ment characteristics simplify to F = C� and M = −C̃�
respectively, where C̃ = a

3C is the slope of the self-aligning
moment characteristic around zero side slip angle.

B. Saturation function
In order to avoid computational challenges during nu-

merical continuation, the saturation of the desired steering
angle in Eq. (13) was implemented as

sat(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xmin if x ≤ xmin − c ,

x + (xmin−x+c)2

4c if xmin − c < x < xmin + c ,
x if xmin + c ≤ x ≤ xmax − c ,

x − (xmax−x−c)2

4c if xmax − c < x < xmax + c ,
xmax if x ≥ xmax + c ,

(40)
where we used ±30◦ as the maximum steering angle and
c was set to 5 ⋅ 10−5. The saturation function is plotted in
Fig. 15.

Figure 15: The saturation function used for limiting the desired
steering angle.

C. Derivation of the equations of motion
C.1. Vehicle on road

The equations of motion of the vehicle model in Eq. (6)
can be derived using the Gibbs–Appell-equations, which are
defined as

)G
)�̇i

= Γi (41)

for each pseudo-acceleration �̇i, whereG denotes the energy
of acceleration (or Gibbs-function) and Γi are the so-calledpseudo forces. The energy of acceleration of the vehicle
model in Section 2.1 is

G = 1
2
JF( ̈ + �̈s)2 +

1
2
JC ̈

2

+ 1
2
m(−ẍR + d ̇2 cos + d ̈ sin )2

+ 1
2
m(ÿR − d ̇2 sin + d ̈ cos )2 .

(42)

Substituting the first and second time derivatives of the gen-
eralized coordinates based on Eq. (2)-(5), the energy of ac-
celeration can be written as

G = 1
2
JF(�̇2 + �̇3)2 +

1
2
JC�̇

2
2

+ 1
2
m(�̇1 + d�̇2)2 + mV �2(�̇1 + d�̇2) +… ,

(43)

where terms not depending on the pseudo accelerations are
not spelled out. This leads to the partial derivatives

)G
)�̇1

= m(V �2 + �̇1 + d�̇2), (44)
)G
)�̇2

= mdV �2 + md�̇1 + (JF + md2 + JC)�̇2

+ JF�̇3,
(45)

)G
)�̇3

= JF(�̇2 + �̇3) . (46)

The right-hand side of Eq. (41) can be derived from the vir-
tual power of the active forces:

�P = FF �vF + FR �vR −MF �(�2 + �3)
−MR ��2 +Ms �(�2 + �3) −Ms ��2,

(47)

where � refers to virtual quantities and it was taken into ac-
count that the steering torqueMs acts as an internal torque
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between the chassis and the steered wheels. The tire side
forces in the vehicle coordinate system (x1, y1, z1) are

FF =
⎡

⎢

⎢

⎣

FF sin �s
−FF cos �s

0

⎤

⎥

⎥

⎦

, FR =
⎡

⎢

⎢

⎣

0
−FR
0

⎤

⎥

⎥

⎦

(48)

and the virtual velocity vectors of points F and R are

�vF = �
⎡

⎢

⎢

⎣

V
�1 + f�2

0

⎤

⎥

⎥

⎦

, �vR = �
⎡

⎢

⎢

⎣

V
�1
0

⎤

⎥

⎥

⎦

. (49)

Substituting the above into Eq. (47), the coefficients of the
virtual pseudo-velocities in �P form the pseudo forces:

Γ1 = −FR − FF cos �s , (50)
Γ2 = −MF −MR − FFf cos �s , (51)
Γ3 = −MF +Ms . (52)

Equating Eq. (44)-(46) to Eq. (50)-(52) leads to the equations
of motion in Eq. (6).

The elements of the state matrix A of the linearized sys-
tem in Eq. (16) are the following:

A43 =
CF(md(d − f ) + JC) − mdkp

mJC
,

A44 =
(C̃R − (CF + CR)d + CFf )dm − (CF + CR)JC

mV JC
,

A45 =
CFf (md(f − d) − JC)

mV JC
− V ,

A46 = −
dkd
JC

,

A53 =
CF(f − d) + kp

JC
,

A54 =
(CF + CR)d − CFf − C̃R

V JC
,

A55 = −
CFf (f − d)

V JC
,

A56 =
kd
JC

,

A63 =
C̃FJC − CF(f − d)JF − kp(JF + JC)

JFJC
,

A64 =

(

C̃R − (CF + CR)d + CFf
)

JF − C̃FJC
JFJCV

,

A65 =
f
(

CFJF(f − d) − C̃FJC
)

JFJCV
,

A66 = −kd
JF + JC
JFJC

.

(53)

C.2. Vehicle on conveyor belt
The energy of acceleration of the vehicle model on the

test rig can be written in the same form as in Eq. (42), but
the first and second time derivatives of the generalized co-
ordinates should be substituted according to Eq. (22)-(25),

which leads to a lengthier expression that we are not includ-
ing here for the sake of brevity. The partial derivatives of the
Gibbs-function are:

)G
)�̇1

= m�̇1 sec2  + m�̇2((f + l) tan2  + d)

+ mV �2 sec3  + m�1�2 tan sec2  

+ m�22
(

(f + l)(1 + sec2  ) − d
)

tan ,

(54)

)G
)�̇2

= m�̇1((f + l) tan2  + d) + (JF + JC)�̇2

+ m�̇2((f + l)2 tan2  + d2) + JF�̇3
+ mV �2

(

(f + l) tan2  + d
)

sec 

+ m�1�2
(

(f + l) tan2  + d
)

tan 

+ m�22 (f + l)
2 tan sec2  ,

(55)

)G
)�̇3

= JF(�̇2 + �̇3) . (56)

The virtual power can be written as
�P = FF�vF + FR�vR −MF �(�2 + �3) −MR ��2

+Ms �(�2 + �3) −Ms ��2 + FA�vA,
(57)

where the only additional term compared to Eq. (47) is the
virtual power of the dissipation force. The virtual velocity
of point A can be written as

�vA = �
((

V sin + �1 + (f + l)�2
)

sec 
)

. (58)
The rest of the terms in �P are the same as previously, with
the exception of the virtual velocity vectors that change to:

�vF = �
⎡

⎢

⎢

⎣

(

V + (�1 + (f + l)�2) sin 
)

sec 
�1 + f�2

0

⎤

⎥

⎥

⎦

, (59)

�vR = �
⎡

⎢

⎢

⎣

(

V + (�1 + (f + l)�2) sin 
)

sec 
�1
0

⎤

⎥

⎥

⎦

. (60)

From the virtual power in Eq. (57), the the pseudo forces of
the vehicle on the conveyor belt can be calculated as

Γ1 = −FR − FF cos( + �s) sec + FA sec , (61)
Γ2 = −MF −MR + FA(f + l) sec 

+FF
(

(f + l) sin �s tan − f cos �s
)

,
(62)

Γ3 = −MF +Ms. (63)
After linearizing the equations of the mechanical model
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on the test rig, the elements of matrix A in Eq. (35) are:
A42 = V b

(

d(f − d + l)
JC

− 1
m

)

,

A44 =
(

md
(

C̃R − CRd + CF(f − d) + b(f − d + l)V
)

−(CF + CR + bV )JC
)

∕(mV JC) ,

A45 = −
(

CFf
(

md(d − f ) + JC
)

+ V
(

mV JC + b(f + l)

⋅
(

d(d − f − l)m + JC
)))

∕(mV JC) ,

A52 =
V b(d − f − l)

JC
,

A54 =
CRd − C̃R + CF(d − f ) + V b(d − f − l)

V JC
,

A55 =
CFf (d − f ) + V b(d − f − l)(f + l)

V JC
,

A62 =
bV (f − d + l)

JC
,

A64 =
(

JF
(

C̃R − CRd + CF(f − d) + bV (f − d + l)
)

−JCC̃F
)

∕(V JFJC) ,

A65 =
(

JFCFf (f − d) + JFbV (f + l)(f − d + l)

−JCC̃Ff
)

∕(V JFJC) ,

(64)

while elementsA43,A46,A53,A56,A63 andA66 are the same
as in Eq. (53).
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