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It is a fundamental question in disease modeling how the initial
seeding of an epidemic, spreading over a network, determines its
final outcome. One important goal has been to find the seed config-
uration, which infects the most individuals. Although the identified
optimal configurations give insight into how the initial state affects
the outcome of an epidemic, they are unlikely to occur in real life.
In this paper we identify two important seeding scenarios, both
motivated by historical data, that reveal a complex phenomenon.
In one scenario, the seeds are concentrated on the central nodes
of a network, while in the second one, they are spread uniformly
in the population. Comparing the final size of the epidemic started
from these two initial conditions through data-driven and synthetic
simulations on real and modeled geometric metapopulation net-
works, we find evidence for a switchover phenomenon: When the
basic reproduction number R0 is close to its critical value, more indi-
viduals become infected in the first seeding scenario, but for larger
values of R0, the second scenario is more dangerous. We find that
the switchover phenomenon is amplified by the geometric nature
of the underlying network and confirm our results via mathemati-
cally rigorous proofs, by mapping the network epidemic processes
to bond percolation. Our results expand on the previous finding
that, in the case of a single seed, the first scenario is always more
dangerous and further our understanding of why the sizes of con-
secutive waves of a pandemic can differ even if their epidemic
characters are similar.
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Whether a local epidemic becomes a global pandemic
depends on several conditions. Biological (1), environ-

mental (2), and behavioral (3) factors are important but the final
outcome of the epidemic is also strongly determined by the size
and location of the seed population from which it originates
(4–9). If the epidemic strikes first at an isolated place with low
population density and few local transportation connections, it
may become rapidly extinct without causing a major breakout.
The dynamics can be entirely different if the epidemic starts from
a well-connected, more populated place where it can survive and
spread to the rest of the population more easily. Although this
is the broadly accepted picture, we challenge this intuition and
show that seeding an epidemic from the most tightly connected
core of a network does not always lead to a larger epidemic in
the long run, in terms of the number of final infected people: If
the disease transmits easily, seeding the spreading from nodes
selected uniformly at random from the network could reach a
larger population.

Among many factors, similar processes could act in the back-
ground during the early phase of the COVID-19 pandemic: Even
though the circulating severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) epidemic variants had similar transmis-
sion profiles, the number of infections differed significantly in
subsequent waves of the pandemic in several countries (10–12).

This was especially true for Hungary with an order of magnitude
more daily number of detected cases observed at the peak of the
second wave compared to the first outbreak (Fig. 1A). Reasons
behind this variation could be the effect of several factors. This
includes seasonal effects as people may have spent more time
outside during the first wave (13); regulations were followed less
strictly during the second wave that may have potentially induced
a larger number of contacts per person transmitting the disease
(14); the testing capacities also developed considerably since the
beginning of the pandemic, allowing for more observations dur-
ing the second wave; and further, while the first wave of the
epidemic was boosted by institutional outbreaks (e.g., in hospi-
tals and care homes) that were easier to identify and contain
(15), the second wave circulated freely in the population without
effective control (16).

The global and local mobilities of people are among the most
important driving factors behind the spatial spread of most dis-
eases (17–19). How people commute locally or travel between
cities and countries can be well represented by mobility net-
works. Concentrating on Hungary, we consider a spatial mobil-
ity network (Fig. 1C) describing the average number of daily
commuters, who travel to work and school between 1,398 settle-
ments with populations larger than 1,000 inhabitants according
to the 2016 Hungarian microcensus (20). From epidemic data
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Fig. 1. Data-driven observations of the switchover phenomenon. (A) Dynamics of the number of daily infections (orange) and Moran’s I index (purple) for
Hungary. Indicated time points match the observation weeks in B. (B) Distribution of per capita infection probabilities in settlements of different sizes at
different observation times (in weeks). (C) Commuting network map of Hungary with settlements larger than 1,000 inhabitants and commuting links with
more than 25 travelers depicted. Central Hungary (called Center) is highlighted with red. (D) Pandemic size ratios fG(R0, s) measured between the endemic
sizes of simulated SIR epidemic processes seeded from s towns selected from the center or uniformly at random from the whole metapopulation network.
Epidemic seeded from the center may lead to larger outbreaks for small R0 basic reproduction numbers (left bar plot), while uniform seeding results in more
infections for larger R0 (center bar plot). For very large R0 values, differences due to different seeding strategies disappear (right bar plot).

we can follow the daily number of new COVID-19 infection
cases in each of these settlements to explore their spatiotemporal
distribution in this geometric network. The analysis of the epi-
demic on this structure sheds light on a so-far neglected effect
associated to the different initial seeding conditions of the virus,
which may have contributed to the emerging large differences
between the first and the second waves.

The first wave started in March 2020 in Hungary (W1 in Fig.
1A). As in many countries, the disease arrived in the country
via international air travel and first landed in larger cities (21–
24), resulting in outbreaks clumped around highly populated
areas. This is evident from Fig. 1B, where the per-capita infection
probability at the beginning of the first wave (week 1) indicates
that infection cases were concentrated in cities with the largest
populations. To further demonstrate how much of the infection
spreading can be attributed to everyday mobility (as opposed
to atypical mobility patterns, such as going on a vacation), we
computed Moran’s I index on this network (for definition see
Materials and Methods). This is a spatial autocorrelation function,
which has been previously used to measure the spatial associa-
tion of the COVID-19 infections by ref. 24. Looking at the time
dependency of Moran’s I index (Fig. 1A), during the beginning
of the first wave (W1) the index indicates low spatial correla-
tion, meaning that infected cases were concentrated only in a few
places during this initial stage of the epidemic. In contrast, the
second wave in Hungary (and Europe) emerged after the sum-
mer season and was potentially induced by people coming back
from holidays bringing back the virus to their local community,
and thus restarting the pandemic from a significantly different
initial condition. Indeed, at the beginning of the second wave (at
the end of August 2020 in Hungary) (Fig. 1A), new infected cases
were distributed more homogeneously all around the country.
On the one hand, this is evident from Fig. 1B where the cor-
responding probability distribution (week 25) is more stretched
toward smaller population, compared to week 1. On the other
hand, the same conclusion can be drawn from Fig. 1A (W25)
where Moran’s I index starts to grow rapidly from a state where
infections were even more homogeneously distributed than at
the peak of the first wave (W6), although the infection numbers
were comparable. This homogenization of infected cases contin-
ued during the unfolding of the second wave, leading to a fully

uniform distribution—corresponding to population densities—
at the peak (W38 in Fig. 1 A and B). Surprisingly, the first wave
that started from the most tightly connected, central, and largest
populations led to a significantly smaller number of infections
compared to the second wave that reached an order of mag-
nitude more people, even though it was initiated from more
uniformly distributed populations of the network.

To better understand this phenomenon, we build a metapop-
ulation network (25) using the spatial commuting network of
Hungary (20). In such a network we consider n nodes, which
represent populations of individuals (which we also call towns
or settlements from now on), connected by weighted edges,
encoding the number of people traveling between them. On
this network we simulate one of the most basic models for an
epidemic spreading (26), a susceptible-infected-recovered (SIR)
process, where each individual can be in one of three mutu-
ally exclusive states (S, susceptible; I, infected; or R, recovered).
In an SIR model on a metapopulation network, the epidemic
evolves in two phases in each iteration. During the reaction
phase, individuals inside each town mix homogeneously and, if
infected, pass the disease to susceptible others with probability
β. Meanwhile, an infected individual may recover with probabil-
ity µ, after which the individual would never get infected again.
This simple SIR dynamic is often characterized by the basic
reproduction number, defined as the average number of people
infected by one ill person in a fully susceptible town (R0 =β/µ).
Subsequently, during the diffusion phase, individuals (possibly
infected) are selected with probability pm to move to neighbor-
ing nodes in the metapopulation network, this way migrating
the epidemic to other towns (for a more formal definition see
Materials and Methods). Note that we concentrate on the conven-
tional SIR model to demonstrate a phenomenon. However, our
observations hold for more realistic models too, including the
susceptible-exposed-infected-recovered (SEIR) model with an
additional compartment of exposed (E) state, better describing
the reaction scheme of the SARS-Cov-2 disease.

To capture the observed structural distinction of the central
towns in the case of the spatial commuting network of Hun-
gary, we identify a central node set C, containing the districts
of Budapest and its suburbs (red nodes in Fig. 1C), which rep-
resent about 30% of the total population of the country (27).
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While this definition of C relies on the specific urban structure of
Hungary, we could find more general definitions for C that are
based solely on the network structure. The simplest formal def-
inition would be to take a prescribed number of nodes with the
highest degrees. We could also use the core of the network for
this purpose (for definition see Materials and Methods), which is
obtained by repeatedly deleting all nodes with the lowest degrees
as long as only nodes with prescribed degrees remain. Later we
exploit all these definitions to identify C when studying different
types of model network structures.

Once we have selected C, we consider two initial conditions
to seed the SIR process in the metapopulation network, starting
the spreading from the same number of towns and individuals
in both cases. In one case, we choose s (< |C|�n) number of
towns selected randomly from the C central set, while in the other
case we choose s towns uniformly at random from the whole net-
work. To initiate the spreading, we infect a small i0 fraction of
the total population selected uniformly at random from the cho-
sen s towns, irrespective of their size. This way, for both seeding
strategies (centralized or uniform), each seeded town is infected
on average with the same number of agents (i0/s fraction of the
total population). To observe the relative effects of the two seed-
ing scenarios, we look at the experimental pandemic size ratio
fG(R0, s) that we define as the ratio of average final infection
sizes of epidemic processes seeded from central or uniformly
randomly selected towns (for a related but more formal defini-
tion see Theoretical Results). Interestingly, as shown in Fig. 1D,
we find fG(R0, s)> 1 for small R0' 1, which means that the epi-
demics seeded from the C central set lead to larger outbreaks.
However, as we increase R0, the fraction fG(R0, s) falls under
1, and thus seeding from uniformly random selected towns over
the whole country induces a larger outbreak. This switchover
phenomenon appears in the slightly supercritical regime, where
R0 is not too large and where the epidemic never reaches the
total population. Instead, due to network effects, it stays clus-
tered around the seeded towns until it dies out. The differences
in the infected cluster sizes induced by the two seeding scenarios
lead to the observed switchover phenomenon in this regime. On
the other hand, if R0 grows larger, the difference between these
seeding scenarios vanishes as the epidemic reaches essentially
the whole population in each case.

The switchover phenomenon challenges the commonly
accepted intuition that the size of the epidemic is always the
largest if seeded from the best-connected subgraph or from the
largest degree nodes of a network. In the remaining sections of
this paper, we show that the switchover phenomenon is ubiq-
uitous in various network models and argue that the geometric
nature of the underlying network plays an important role in
amplifying the size of the phenomenon. We perform data-driven
and synthetic simulations of spreading processes on real, geomet-
ric, and random metapopulation networks and provide a rigorous
proof of the phenomenon after mapping it to a bond percolation
problem. Our results open a research direction toward under-
standing why real epidemics that started from seemingly similar
conditions may have significantly different outcomes.

Results
Simulation Results. In the Introduction, we demonstrated the
existence of the switchover phenomenon on a metapopulation
model parameterized by the Hungarian commuting network,
which is a spatially embedded geometric network (see Fig. 1C
for Hungary) featuring various structural heterogeneities (for
a detailed data description see Materials and Methods). Geo-
metric constraints inducing commuting connections at various
distances, link weights coding the daily commuting frequencies
between towns, the number of commuting connections of each
settlement (also called the node degree in the network), and the
size of the different towns are all network characteristics taking

values ranging over orders of magnitude. These properties may
all contribute to the emergence of the observed switchover phe-
nomenon of simulated spreading processes (an SIR model in our
case), with central vs. random seeding in the metanetwork.

To identify which underlying network characteristics are the
most important to play a role, we use random reference net-
work models (28). We homogenize the network in different
ways to remove certain structural heterogeneities and compare
the outcome of the experimental pandemic size ratio of simu-
lated spreading processes on the randomized structures to our
observations on the empirical network (see curve with blue
dots in Fig. 3A). First, to reduce the effects of weight het-
erogeneities, we reset edge weights to the mean weight of all
outgoing edges of each node (see curve with green diamonds in
Fig. 3A). Although this way of homogenization changes some-
what the pandemic size ratio function, it does not have dramatic
effects on the observed phenomena. Second, to remove the
effects of heterogeneous town sizes and the varying number of
commuting individuals from different settlements, we set each
town’s population to the system average (N= 6,581) and choose
the fraction of commuters to be the same (i.e., to pm = 0.001)
for each town. Interestingly, this way of homogenization makes
the switchover phenomenon even stronger (see curve with red
squares in Fig. 3A). Finally, we reshuffle the ends of network
links using the configuration network model (28). This removes
any structural correlations from the network beyond degree het-
erogeneity, including geometric effects such as long-distance
connections, the central-periphery structure, structural hierar-
chy, and locally dense subgraphs. Due to this shuffling process
the switchover phenomenon disappears or becomes too small to
be observed (see curve with yellow triangles in Fig. 3A), indi-
cating that geometric correlations play a central role behind its
emergence.

Geometric Inhomogeneous Random Graphs. The specific effect of
an underlying geometry can be studied by using geometric net-
work models, opening directions for an analytical description
of the phenomenon. Geometric inhomogeneous random graph
(GIRG) models (29) provide a good framework to generate
structurally heterogeneous synthetic metapopulation structures
embedded in geometric space (for detailed definition see Mate-
rials and Methods). GIRGs have two robust parameters that
control the qualitative features of the emerging network. The
parameter τ determines the variability of the number of neigh-
bors of individual nodes (smaller values of τ correspond to more
variability, while keeping the average degree the same). This
is apparent when comparing Fig. 2 A–C where all parameters
of the simulated network structures are identical, and only τ is
increased gradually, leading to the disappearance of hubs, i.e.,
nodes with a large number of neighbors. The other robust param-
eter of GIRG, α, controls the number of long-range connections
in the network coding the possible travels between far-apart
nodes. If α' 1, many long-range edges appear, resembling an
ageometric (or mean-field) structure (Fig. 2B), but when α is
increased, the number of long-range contacts is reduced, and
the network exhibits a more apparent underlying geometry as
demonstrated in Fig. 2C. The values of (τ ,α) determine different
universality classes of GIRGs with respect to average distance
in the network (see more detailed definition and explanation in
Materials and Methods).

To distinguish the central set C from the rest of the network,
we adopt here the concept of core decomposition (for definition
see Materials and Methods). Formally, this procedure provides
the highest core as a subgraph with nodes having at least k
neighbors inside the core, for the largest possible k (for def-
inition see Materials and Methods). Similar to the data-driven
simulations, we start the spreading process from two seeding con-
ditions: by initially selecting s towns within the highest core of the
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A B C

Fig. 2. GIRG models. (A) Model networks with connection parameter τ = 2.5 and geometry parameter α= 2.3. In case τ < 3 the network appears with
high degree variability and dominant hubs connected via (light blue) long-range edges. (B) By increasing τ > 3 (here τ = 3.5) and decreasing α= 1.3, hubs’
sizes reduce and long-range interactions become more random. (C) With parameter α= 2.3 (and τ = 3.5) the network is strongly geometric with (dark blue)
short-range interactions and no long-range links. Networks were generated over the same N = 1,000 nodes randomly distributed in a unit square and the
highest k-cores of each graph are colored in red. Red clusters highlight the largest k-cores in each network.

metapopulation network (corresponding to the central set C) or
by selecting the same number of towns uniformly at random from
the whole structure and infecting on average the same number
of agents (i0/s fraction of the total population) in each selected
town in both scenarios.

We observe a similar but stronger switchover phenomenon
of the pandemic size ratio fG in GIRGs compared to the data-
driven simulations. As seen in Fig. 3B, the “shape” of fG(R0, s)
as the function of R0 strongly depends on the network proper-
ties controlled by the parameters of the model. If the network
parameter τ ≥ 3, the modeled epidemic processes, which were
initiated from uniform random seeds, reach larger populations,
reflected by fG (blue curve in Fig. 3B) falling well below 1 for
a broad range of R0. This is because the hubs in the network
have relatively smaller degrees compared to the case when τ < 3.
They are too far away from each other to form direct connec-
tions, and thus the highest cores are localized around some of
them as demonstrated in Fig. 2 B and C. Although high-degree
seed nodes in these cores should have an advantage to effec-

tively induce a larger outbreak, this effect is not strong enough
to compensate for the disadvantage of starting the infection from
a localized setup. Beyond localized cores, long-range interac-
tions also have important effects on the network structure. Rare
long-range connections (induced by higher α values) reduce the
number of edges leaving the localized cores, which leads to net-
works with dominant local geometric structures (as shown in
Fig. 2C). This makes it even harder for the infection to spread
from a localized setup. Thus, for τ ≥ 3, increasing α enhances
the danger of the random seeding scenario, as evident from Fig.
3B where the (red) curve with τ = 3.5 and α= 2.3 dives below 1
more than a similar curve with α= 1.3. Finally, when τ ∈ (2, 3)
(green curve in Fig. 3B), the pandemic size ratio fG goes well
above 1 for R0' 1 values and goes barely below 1 for larger R0.
In this case the highest-degree nodes are so dominant that they
connect to each other even when they are spatially remote, and
this way they induce a delocalized core (Fig. 2A). Simulations on
these networks with delocalized cores resemble the phenomenon
that is closest to our data-driven simulations (Fig. 3A) where the

B CA

Fig. 3. The pandemic size ratio fG as a function of R0. (A) Simulation results on the real commuting network of Hungary and its three homogenized versions
as explained in the main text. Each data point is an average computed from 150 independent simulations, shown with 81% confidence interval. For each
of them, initially s = 97 settlements are selected according to one of the seeding scenarios (central or uniform). Then, we infect i0 = 0.0005 fraction of the
107 agents in the total population, and we distribute these agents in the s settlements uniformly at random, irrespective of the size of the settlements. (B)
Pandemic size ratio computed on three geometric inhomogeneous random graph models corresponding to the three main universality classes with respect
to graph distance. When (τ ,α) = (2.5, 2.3), the core is delocalized, and the switchover is weak. When (τ ,α) = (3.5, 1.3) or (3.5, 2.3), the underlying geometry
is more apparent, and the core is localized, so the parameter range for R0 where random seeding is more dangerous (fG < 1) is more spread out. In C, we
see fG on configuration model networks, where the switchover phenomenon appears weaker. For B and C the sizes of the metapopulation networks are
n = 1,000 and each town is set with n = 2,000 individuals. Each pandemic size ratio data point is computed on 25 networks, with 35 simulations on each
network, with i0 = 0.0005 and s = 30. In all simulations we set pm = 0.001, which means that 0.1% of the population moves in each iteration.
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effects of the geometry are somewhat reduced due to the inter-
connectedness of larger cities all over a country. For τ ∈ (2, 3),
the parameter α does not have a significant effect on the network
structure.

For comparison, we also study the phenomenon on metanet-
works sampled from the configuration model, a uniform distribu-
tion over networks with a given power-law degree sequence. The
configuration model has no underlying geometry and features
heterogeneity only in its degree distribution, parameterized by
the exponent of the power-law distribution τ (details in Materi-
als and Methods). For a fair comparison with the results obtained
on GIRGs, we take τ = 2.5 to obtain a configuration model with
plenty of hubs and τ = 3.5 for a model with reduced degree
heterogeneity. These cases correspond to two different univer-
sality classes (in both GIRGs and configuration models) with
respect to average distance (Materials and Methods). To keep
the average degree and the number of nodes the same for the
configuration model networks as in GIRGs, we obtain them
by swapping randomly the links of the GIRG structures, while
keeping the total number of connections for each node the
same. Interestingly, when larger hubs are present in the struc-
ture (the case of τ = 2.5 in Fig. 3C), the switchover phenomenon
is recovered, even though the structure is fully uncorrelated.
However, the switchover appears weaker, similar to the case
in GIRGs where the effect of the geometry is suppressed due
to the high interconnectedness of the network. We provide a
heuristic explanation of this observation during the derivation of
our theoretical results below. In summary, our simulation results
demonstrate that while the emergence of the switchover phe-
nomenon requires only degree heterogeneity in the network, it
is certainly amplified by geometric correlations of the underlying
structure.

Theoretical Results. To explain rigorously the switchover phe-
nomena, we developed a mathematical framework relying on
percolation theory.
Epidemics and percolation on metapopulation networks. The
pandemic size (i.e., the final number of recovered individuals) of
an SIR model with deterministic, unit recovery time (e.g., 1 d) on
a (non–meta)network G has a useful connection with the com-
monly used simple mathematical framework of bond percolation.
In such an SIR model, every edge of the network G transmits the
disease at most once, when one endpoint is infected but the other
is still susceptible. Equivalently, one may decide about every edge
in advance, independently with probability p, whether it will do
so. This is called retaining the edge, and p is then the retention
probability of the model. The retained edges form the perco-
lated random subgraph Gp of G . If a set S of nodes is selected
as infected seeds in the network, then the epidemic will spread
exactly over the connected components (also called clusters) of
Gp that contain at least one node of S .

Metapopulation models are more difficult to treat mathemat-
ically, but a fundamental result in refs. 30 and 31 connects the
behavior of SIR on metapopulation models to bond percolation.
Following the arguments in refs. 30 and 31, once a large outbreak
occurs in a town A, the proportion of infected people within
the town concentrates around some r∞ ∈ (0, 1) (called local out-
break ratio). Infected people during the local pandemic carry the
infection to a neighboring town B and cause a large outbreak
there with a certain—computable—probability

pAB = 1− exp

−NpmwABr∞
(

1− 1
R0

)
µ

, [1]

where N is the size of each population. Note that the depen-
dence on A and B can be neglected if we assume an unweighted
network. Since herd immunity is reached in each town after the

first large local epidemic outbreak of size r∞N , later infections
in a town are no longer able to cause macroscopically visible out-
breaks. Therefore, after time rescaling, the towns themselves go
through an S→ I →R progression with unit recovery times and
infection probability p. Consequently, the metapopulation model
can be approximated by a simple SIR model on the network of
towns and in turn with a bond percolation process with retention
probability p.

The connection between metapopulation models and bond
percolation allows us to understand the switchover phenomenon
of the pandemic size ratio using a theoretical analysis of perco-
lation cluster sizes, which have been extensively studied both in
the mathematics and the physics literature for various network
models, because they show a remarkable phase transition in the
edge retention probability p. At a critical value pc two phases
are separated, where for p< pc all clusters are small, while for
p> pc a single giant cluster emerges that contains a positive
proportion of all nodes, while all other clusters are small. The
critical parameter pc depends only on the structure of the net-
work G . For some networks, pc can only be measured using
numerical simulations. However, for the configuration model,
the critical pc can be explicitly computed, given the degree distri-
bution of the network, as pc =E[deg(v)]/E[deg(v)(deg(v)− 1)],
which is asymptotically nonzero when τ > 3. Using Eq. 1, the
critical parameter pc translates back to a critical basic repro-
duction number Rglob

c > 1 for the infection process. For R0< 1
the epidemic is subcritical already within a single town, while
for 1<R0<Rglob

c the epidemic is supercritical within towns but
subcritical globally in the metanetwork (hence outbreaks con-
taining only a few towns are possible). Finally, for R0>Rglob

c

the epidemic is supercritical in the entire network.
Beyond percolation cluster sizes, we also need to understand

how the different seedings (central or uniform) interact with the
clusters to explain the switchover phenomenon of the pandemic
size ratio. Slightly deviating from the experimental setup, where
central seeding corresponded to the highest core, here we define
the central seeding set CI0(s) as the s highest-degree nodes. This
can be done as the two definitions are strongly correlated in the
network models we focus on in this section (32–34). For the uni-
form seeding, just as earlier, we choose the seed set UI0(s) as
s nodes sampled uniformly at random in the whole network. In
both setups we look at Ep [Cl(CI0(s))] and Ep [Cl(UI0(s))], the
average percolation cluster sizes of the initially infected nodes,
when edges are retained with probability p. This corresponds to
the average number of populations that experience local large
outbreaks in the two seeding scenarios. The percolation pan-
demic size ratio function is then defined as the ratio of these two
averages,

fG(p, s) =Ep [Cl(CI0(s))]/Ep [Cl(UI0(s))], [2]

similar to the earlier defined experimental function.
We define two approaches to the switchover phenomenon on

a metanetwork of n cities. In the weak switchover phenomenon,
we require that there exists a seed count s ≤n and link-retention
probabilities 0< p1, p2< 1 with

fG(p1, s)> 1 + c, and fG(p2, s)< 1− c, [3]

for some constant c that might depend on the network size.
Meanwhile, in the strong switchover phenomenon, we require
that the constant c does not depend on the network size n
and thus holds across a whole model class (e.g., GIRG or con-
figuration model with fixed-degree heterogeneity). When the
switchover occurs for a seed count s , we say that the switch
happens at retention probability pswitch if fG(p, s)> 1 for p<
pswitch, while fG(p, s)< 1 for p> pswitch.
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While the switchover phenomenon in GIRGs is hard to study
analytically due to the lack of percolation theory developed for
this model, we borrow concepts from a simpler conventional
network model, called the stochastic block model (SBM), to
observe the strong switchover phenomenon. The SBM is able
to mimic the central and rural areas of a town network, since
it contains a “hidden geometry”: We group towns into two sets
of central or rural areas. Within areas we assume ageometric
random networks; i.e., each pair of nodes is connected with the
same probability, while the edge density between the two areas
is lower.

Theorem 1. In the stochastic block model with appropriately scaled
parameters and sn = Θ(n) the strong switchover phenomenon
happens. (For a proof see SI Appendix.)

In the case of the ageometric configuration model, we are able
to prove the weak switchover, already observed experimentally
in Fig. 3C. Further, we are able to give quantitative bounds on
c in Eq. 3 as a function of the size n of the population net-
work G , the parameter τ expressing the prevalence of hubs,
and the initial seed number s = sn that may also depend on the
network size.

Theorem 2. In the configuration model with exponent τ ∈ (2, 4) and
1� sn�n the weak switchover phenomenon appears with pswitch

slightly above the critical percolation parameter pc . (For a proof see
SI Appendix.)

While Theorem 2 is valid for τ ∈ (2, 4), the two regimes τ ∈
(2, 3) and τ ∈ (3, 4) quantitatively differ. In the former case,
also called the scale-free regime, pc tends to zero as the net-
work size grows and the region of the parameter space where
seeding from nodes selected uniformly randomly is more dan-
gerous is described by different linear equations compared to
the τ ∈ (3, 4) case. The switchover phenomenon disappears when
τ > 4 as hubs become too small and separated from each other
to produce the desired effect.

An interpretation of our rigorous derivations yields the
following heuristic explanation of the switchover phenomenon:

1) Below the percolation threshold, as demonstrated in Fig. 4A,
the connected components of the central area seed nodes
(indicated as red nodes in Fig. 4A) will be much larger than
the components of the uniformly randomly selected seed
nodes; however, they do not yet form a giant component.
Nodes selected uniformly at random (blue nodes in Fig. 4A)
are not likely to be in these large components; hence the
union of the connected components of seeds selected uni-
formly at random from the network will be smaller than the
pandemic that started from the central area. For very small
values of p, seeding the highest-degree nodes is the most
dangerous on every graph.

2) Slightly above the percolation threshold, there will be a single
“giant component” of nodes experiencing a local pandemic,
containing most of the central nodes. Thus, when seeding
starts from the central nodes, their components will contain
this giant component and a small portion of smaller compo-
nents. In the uniform seeding scenario, it is likely that a few
of the random seed nodes will also belong to the giant com-
ponent, while the other seeds, spread out randomly over the
rest of the network, will be contained in lots of additional
smaller components. Hence the union of the components of
the uniformly chosen nodes will be larger, as shown in Fig. 4B.

3) Well above the percolation threshold (Fig. 4C), there is essen-
tially only one connected component; thus each node gets
infected regardless of the position of the seed nodes in the
network.

The phenomenon in explanation 2 is stronger when there are
relatively few edges leaving the central area, which can be due to
lack of long-range interactions amplifying local geometric effects
(as observed in GIRGs) (Fig. 3). However, in Theorem 1 the
geometry induced by the two blocks is already enough to cause
a strong switchover. On the contrary, there is nothing to limit
the number of edges leaving the central area in the configuration
model (the degree–degree correlation coefficient is close to 0)
(35–37); hence, the switchover phenomenon appears weak.

A B C

D

E F

Fig. 4. A–C show the heuristic explanation of the switchover of the pandemic size ratio function fG. D shows the phase diagram of the function fG for
3<τ < 4, for values of p slightly above the percolation threshold and for various values of s. The asymptotic of fG is different in parameter regions with
different colors. The precise values of ζi in the key in D are included in Materials and Methods, and the phase diagram for 2<τ < 3 is included in SI
Appendix. E shows the three-dimensional plot the limit function of logn(fG) for τ = 3.5, as the number of nodes in network G tends to infinity, and F shows
the corresponding simulation results on configuration model networks with n = 107 nodes (each datapoint is an average of 1,000 independent percolation
instances on 10 independent random networks, after outlier removal is performed as explained in SI Appendix). The coloring in E follows the coloring
on the phase diagram in D. Since in the configuration model we have only weak switchover, the green part of the surface logn(fG) (which corresponds
to fG < 1) converges to 0. For a visualization of the precise deviation of logn(fG) below 0, in E and F, Insets, we plot the function logn(fG) for fG > 1 and
− logn(1− fG)− 1 for fG < 1.
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Quantitative results for the configuration model. For geometric
networks with various node degree distributions, critical expo-
nents have been already proposed earlier (38, 39), with some
of them proved rigorously for the configuration model (possibly
with power-law degree distribution) (40–43), as well as for rank-
1 inhomogeneous random graphs (44–46) and for Erdős–Rényi
graphs (47). Based on these results, we can prove that, after
appropriate scaling, the pandemic size ratio fG of the configura-
tion model (simulated in Fig. 3C for fixed s) converges to a two-
dimensional limit function, which can be precisely determined.
To state our result, let us reparameterize fG(p, s) as a func-
tion of x , y , where p = pc +nx for x ∈ (−(τ − 3)/(τ − 1), 0) and
s = sn =ny for y ∈ (0, 1); i.e., we consider f̃G(x , y) : = fG(pc +
nx ,ny). For τ ∈ (3, 4), we divide the parameter space into five
triangular regions A1 to A5 illustrated in Fig. 4D (defined pre-
cisely in SI Appendix). For τ ∈ (2, 3), the picture is similar, except
there is an extra triangular region A6.

Theorem 3. In the configuration model with exponent τ ∈ (2, 4),
logn(f̃G(x , y)) converges to a function ζ(x , y). In each triangular
region Ai , ζ(x , y) can be expressed as a different linear function
ζi(x , y).

Theorem 3 implies that the percolation pandemic size ratio
fG(pc +nx ,ny) = Θ(nζi (x ,y)) on Ai for each i = 1 to 5. We give
the formula for each ζi in Materials and Methods and the proof of
Theorem 3 in SI Appendix. A three-dimensional illustration of ζ
can be seen in Fig. 4E. The limiting function ζ is discontinuous at
the boundary line between A1 and A2 and between A3 and A4,
respectively. These discontinuities correspond to a discontinuous
phase transition of the system’s behavior at those boundaries.
Curves in Fig. 3 correspond to horizontal cross-sections of the
two-dimensional fG function for fixed s values. We experience
this phase transition on the curves of Fig. 3 dropping steeply from
above 1 to below 1 when slightly increasing R0. Our result implies
that the curves will look steeper and steeper as n , the size of the
network, increases.

We also show that fG(pc +nx ,ny) = 1−Θ(nη(x ,y)) in region
A2. Hence, the scaling logn(f̃G) in Theorem 3 is not appropri-
ate in region A2, which is reflected by the fact that the limiting
function ζ2 is identically 0 in this regime. To be able to compute
how much fG (Eq. 2) goes below 1 in A2, i.e., how much more
dangerous uniform seeding can be compared to central seeding,
we extract the limiting exponent η(x , y) using a different nor-
malization for fG and give the formula in Materials and Methods.
This different normalization is used on the area A2 (green) in
Fig. 4E, Inset, which in turn demonstrates that fG falls below
1 in this regime. Finally, we validate our theoretical results for
the configuration model by simulations in Fig. 4F (48). Despite
the finite size of the simulations (n = 5× 106), the resemblance
to the theoretical predictions is already apparent.

Discussion and Conclusions
Different seeding of an epidemic can lead to significantly dif-
ferent outcomes, depending on the actual value of the basic
reproduction number R0. While R0 is defined by the biological
parameters of the spreading disease, it is only one factor deter-
mining the effective reproduction rate Rt , which characterizes
the actual speed of reproduction during an ongoing epidemic.
In the case of an influenza-like disease, Rt depends on many
other factors, including the actual number of interactions of peo-
ple, the actual interventions, the self-protection measures (e.g.,
masks, sanitizing, etc.), or even the seasonal variance of temper-
ature and humidity. Considering the distribution of the initial
seeds and the actual Rt values, our theory may suggest coun-
terintuitive effects during the consecutive waves of a pandemic.
This could be the case in Hungary, where the first wave of the
COVID-19 pandemic was initiated from large, well-connected

towns, while social distancing was very effective at the time,
causing a smaller actual Rt value during this period. Thus, the
clumped initial seeds and the somewhat low Rt could set rel-
atively favorable conditions for the epidemic to reach a larger
population, compared to a uniformly seeded situation. Mean-
while, at the beginning of the second wave, seeded towns were
more distributed all around the country, while social distancing
was not followed rigorously. This induced larger Rt values, which
yet again set relatively easier conditions for the epidemic to reach
a larger population, now seeded from a uniform initial state.

In this paper we studied the effects of epidemic seeding
on geometric metapopulation networks. We were interested
in the long-term behavior of spreading processes and showed
that the relative danger of infecting a larger population when
starting the process from the core or uniformly at random in a
network has a nonmonotonous dependency on R0. We explored
a switchover phenomenon and demonstrated it on real and
synthetic networks via numerical simulations. We provided a rig-
orous proof for the existence of this phenomenon on a large set
of random graphs, while we are confident that our theory can be
extended to a more general set of graphs, which resembles cer-
tain structural constraints. Importantly, we identified the spatial
geometry of the underlying structure as an important amplifying
factor of the switchover phenomenon.

We build our theory on some results (38, 39), which are
broadly accepted by the network science community, yet it has
not been proved rigorously for all network structure (for excep-
tions see SI Appendix). This implies certain limitations for our
results, although assuming these results to hold, our proposed
theory has been derived rigorously. In addition, we made some
assumptions for the simplicity of our presentation but their
generalization is possible. We demonstrated experimentally the
switchover phenomenon on directed networks, while we assume
undirected structures in our theory, which can be extended for
directed structures easily. Moreover, we conjecture that the
observed phenomenon occurs in most networks where a “cen-
tral” region can be meaningfully distinguished in the structure.
While metapopulation networks are generally used to model
spreading phenomena at global spatial scales where towns are
well separable, they provide a useful tool to study epidemics
at shorter spatial distances too (49). In our case, we applied
metapopulation networks on the country level but we carefully
separated the scales of flows inside and between towns (by set-
ting pm = 0.001), this way evidently separating towns from each
other. We concentrated on the conventional SIR model for the
demonstration of the switchover phenomenon, but this observa-
tion holds for more realistic models, including the SEIR model
with an additional compartment of E state, better capturing the
reaction scheme of the SARS-Cov-2 disease. Our goal in this
paper was to identify, verify, and mathematically prove the exis-
tence of the observed switchover phenomenon, not to provide
predictions. Accordingly, we worked with the simplest mod-
els and ignored the effects of possible interventions, seasonal
weather conditions, superinfection events, permanent residence
changes, etc. It indicates the fundamental nature of our observa-
tions, that surprisingly they occurred even under these simplified
circumstances.

Beyond scientific merit, our results may contribute to the
better designs of epidemic forecasts and intervention strategies
in a country during an ongoing pandemic. We highlight the
importance to follow not only the rate but also the spatial dis-
tribution of new infection cases of a spreading disease or its
variants during the early phase of an epidemic. This could lead
to inventive testing strategies, which disclose the spatial distri-
bution of the epidemic during its initial phase, as this was the
case in some countries (like Denmark) (50) from the beginning
of the COVID-19 pandemic. Based on these early-time obser-
vations our theory provides understanding about the long-term
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consequences of an epidemic by considering the commonly over-
looked convoluted effects of epidemic seeding and the geometric
structure of human populations and mobility.

Materials and Methods
Data Description.
Settlement-level daily COVID-19 infection data for Hungary. For the anal-
ysis presented in Fig. 1 we used a dataset recording the daily number of
newly infected cases in 3,118 Hungarian settlements. These data match the
officially reported total number of daily cases (51, 52); however, just as
in the official data, they suffer from some observational bias due to the
limited capacity of testing in the country during certain periods of the pan-
demic. For the analysis presented in Fig. 1 we considered all settlements and
obtained their population sizes from data shared by the Hungarian Statis-
tical Office (53). A version of these data aggregated on the county level is
openly available (52).
Daily commuting network of Hungary. For the data-driven simulations of
the Hungarian epidemic we use a microcensus collected and released by the
Hungarian Statistical Office in 2016 (20). The data contain the number of
people commuting to work or school on a daily basis between the 3,186 set-
tlements in Hungary, with the districts of the capital considered as separate
towns. In our analysis we concentrated only on settlements with populations
larger than 1,000 inhabitants and kept commuting links with at least 25
daily commuters. From these data we constructed an undirected metapop-
ulation commuting network with 1,398 settlements as nodes (of which 97
were from the capital and its suburbs) and 8,322 commuting edges with
weights computed as the average number of commuters between pairs of
towns. The total population size of the network contained 95% (9,285,286
individuals) of the Hungarian population. Despite the sparsity of the net-
work (0.85% of the possible edges are present), 19% of individuals commute
between settlements on a daily base.

Moran’s I Statistic. We compute Moran’s I statistic at time t as

I(t) =
n
∑

i,j wij(yi(t)− ȳ(t))(yj(t)− ȳ(t))∑
i,j wij

∑
i(yi(t)− ȳ(t))2

, [4]

where n is the number of nodes, wij is the edge weight between the nodes
i and j, yi(t) is the number of new infected cases at node i at time t, and
ȳ(t) = (1/n) ·

∑
i yi(t).

Generating Geometric Inhomogeneous Random Graphs. GIRG(τ , α) networks
were generated by the following process: The locations of n nodes are
sampled uniformly at random from the square [0, 1]2, and each node u is
assigned a “fitness” value (wu) sampled from a power-law distribution with
exponent τ . Each pair of nodes is connected by an edge with a probability

P(u, v) = p min
{(

Cwuwv

n‖xu− xv‖2

)α
, 1
}

, [5]

which after only the largest connected component of the network is kept.
To generate models with different parameters comparable to each other,
we fix the number of edges to 5,000, by selecting the constant C and p
accordingly, since these two parameters are responsible for the edge density.
For the exact implementation see ref. 54. When the fitness distribution wu is
set to be a power law, node degrees also satisfy a power law. The abundance
of long-range connections is tuned by α in Eq. 5: The smaller α is, the more
likely are long-range connections. The power-law exponent τ and the long-
range parameter α tune the average graph distance in the network Dist(n)
(55–58):

Dist(n) =


Θ(log log n) when τ ∈ (2, 3),α> 1

Θ(polylog n) when τ > 3,α∈ (1, 2)

Θ(
√

n) when τ > 3,α> 2.

Comparing this to the average distance in the configuration model, where
only the first two regimes are possible [Θ(log log n) when τ ∈ (2, 3), Θ(log n)
when τ > 3], and to distances in lattice models (where DistN is polynomial in
n), we observe that the underlying geometry of GIRGs with the long-range
connections play a role when τ > 3, and the model interpolates between
the small-world configuration model and the lattice.

Generating Random Networks from the Configuration Model. We generate a
uniform sample from the set of graphs with power-law degree distribution
with degree exponent τ by first generating a GIRG with given param-
eter τ (and α= 2.3), and we swap the endpoints of randomly selected

pairs of edges (59) to remove all geometric and structural correlations
from the structure, while conserving the degree of each node. We per-
form 10× number of edges swaps, which mixes the edges enough so that
the resulting network becomes close to a uniform sample from the set of
networks that have exactly the same degree sequence as the original GIRG
network (60).

Core Decomposition and Seed Selection. In metapopulation network models,
we use k-shell decomposition to identify the largest k-core of the network
(61, 62) and to select seeds in the central area. This algorithm computes the
k-shell by recursively removing each node of the network that has degree
less than k, until no more nodes can be removed. We take the largest k
for which at least s nodes remain, and we select s nodes from this k-shell
uniformly at random as our seed set in the central area. For the uniform
seeding scenario, we select s nodes of the network uniformly at random.
Finally, we infect i0 = 0.0005 fraction of the agents in the total population,
and we distribute these agents in the s settlements uniformly at random,
irrespective of the size of the settlements.

In the theoretic computations and simulations, the s highest-degree
nodes are selected for the central area, and s uniformly random nodes are
selected for the uniform seeding scenario. Node degrees and core number
of nodes in configuration network models are strongly correlated, allowing
us to make this approximation.

SIR Model on Metapopulation Networks. To make our simulations somewhat
realistic, we set the hometown of each of Ni agents to the agent’s initial
settlement i. Each agent is assigned exactly one hometown, and the home
assignments do not change for the rest of the simulation. We initialize the
infection according to one of the seed selection scenarios and proceed with
the simulation in each iteration t in three steps. In the diffusion step, each
agent who is at its hometown i is selected to move to another town with
probability pm. The selected agents then choose a target town j with prob-
ability proportional to the weight wij of the link connecting town i to j and
move there. We set pm = 0.001 in all simulations, which means that 0.1% of
the total population moves in each iteration.

Agents that are not at their hometown simply move back to their home
settlement. In the reaction step, each susceptible agent in town i becomes
infected with probability 1− (1− β/Ni)

Ii , where Ii is the number of infected
agents in town i at iteration step t and β is the infection rate. In the
final recovery step, each infected agent recovers with rate µ. For the exact
implementation see ref. 48.

The Limiting Function of the Percolation Pandemic Size Ratio. In Theorem
3, we identified the scaling of fG(p, s) = fG(pc + nx , ny ) = Θ(nζ (x, y)), where
ζ(x, y) is a piecewise linear function. On each region A1 to A6, ζ is given as
follows:

ζ(x, y) =



ζ1(x, y) = 1 +
(

1
|τ−3| + 1τ∈(3,4)

)
x− y on A1

ζ2(x, y) = 0 on A2

ζ3(x, y) = 1τ∈(3,4)x +
(

1− 1
τ−1

)
(1− y) on A3 ∪A6

ζ4(x, y) =− 1
|τ−3| x−

1
τ−1 (1− y) on A4

ζ5(x, y) = 1
(τ−1)(τ−2) (1− y) on A5.

Finally, on region A2, fG(pc + nx , ny ) = 1−Θ(n−η(x,y)), where

η(x, y) =

(
1

|τ − 3|
+ 1τ∈(3,4)

)
x− y.

Data Availability Previously published data were used for this work
(50–52).
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