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FLOWS ON MEASURABLE SPACES

László Lovász

Abstract. The theory of graph limits is only understood to a somewhat satisfactory
degree in the cases of dense graphs and of bounded degree graphs. There is, however,
a lot of interest in the intermediate cases. It appears that one of the most important
constituents of graph limits in the general case will be Markov spaces (Markov
chains on measurable spaces with a stationary distribution). This motivates our goal
to extend some important theorems from finite graphs to Markov spaces or, more
generally, to measurable spaces. In this paper, we show that much of flow theory,
one of the most important areas in graph theory, can be extended to measurable
spaces. Surprisingly, even the Markov space structure is not fully needed to get these
results: all we need a standard Borel space with a measure on its square (generalizing
the finite node set and the counting measure on the edge set). Our results may be
considered as extensions of flow theory for directed graphs to the measurable case.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Flow theory on finite graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Graph limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Graphons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Graphings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Double measure spaces. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Markov spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Auxiliaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Linear functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Potentials, circulations and flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Circulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Circulations and potentials. . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Existence of circulations. . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Optimal circulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.4 Integrality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Research supported by ERC Synergy Grant No. 810115.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-021-00561-9&domain=pdf


L. LOVÁSZ GAFA

4.3 Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Max-Flow-Min-Cut and Supply-Demand. . . . . . . . . . . . . . . . 21
4.3.2 Transshipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Path decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Multicommodity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Metrical linear functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Multicommodity flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Formulation as a single measure. . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Proof of the Multicommodity Flow Theorem. . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1 Introduction

The theory graph limits is only understood to a somewhat satisfactory degree in
the case of dense graphs, where the limit objects are graphons, and (on the opposite
end of the scale) in the case of bounded degree graphs, where the limit objects are
graphings. There is, however, a lot of work being done on the intermediate cases.
It appears that the most important constituents of graph limits in the general case
will be Markov spaces (Markov chains on measurable spaces with a stationary dis-
tribution). Markov spaces can be described by a (boolean) sigma-algebra, endowed
with a measure on its square, such that its two marginals are equal.

A finite directed graph G = (V, E) can be thought of as a sigma-algebra 2V ,
endowed with a measure of V × V , the counting measure of the set of edges. This
motivates our goal to extend some important theorems from finite graphs to mea-
sures on squares of sigma-algebras. In this paper we show that much of flow theory,
one of the most important areas in graph theory, can be extended to such spaces.

In the finite case, a flow is a function on the edges; we often sum its values
on subsets of edges (e.g. cuts), which means we are also using the corresponding
measure on subsets. In the case of an infinite point set J (endowed with a sigma-
algebra A), these two notions diverge: we can try to generalize the notion of a flow
either as a function on ordered pairs of points, or as a measure on the subsets of J×J
measurable with respect to the sigma-algebra A×A. While the first notion is perhaps
more natural, flows as measures are easier to define, and we explore this possibility
in this paper. Note that even the definition of the flow condition “inflow=outflow” in
the infinite case needs some additional hypothesis or stucture: Laczkovich [18] uses
an underlying measure on the nodes, while and Marks and Unger [24] restrict their
attention to finite-degree graphs. Of course, one can get back and force between
measures and functions under under appropriate circumstances (by integration and
Radon-Nikodym differentiation, respectively), but the measure-theoretic formulation
seems to involve the least number of extra conditions.

In particular, we generalize the Hoffman Circulation Theorem to measurable
spaces. This connects us with the theory of Markov spaces, which can be described
as measurable spaces endowed with a nonnegative normalized circulation, called the
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ergodic circulation. Our main concern will be the existence of circulations; in this
sense, these studies can be thought of as preliminaries for the study of Markov spaces
or Markov chains, which are concerned with measurable spaces with a given ergodic
circulation.

Flows between two points, and more generally, between two measures can then
be handled using the results about circulations (by the same reductions as in the
finite case). In particular, we prove an extension of the Max-Flow-Min-Cut Theorem,
and a measure-theoretic generalization of the Multicommodity Flow Theorem by Iri
and Matula–Shahroki.

A few caveats: Graph limit theory has served as the motivation of these studies,
but in this paper we don’t study how, for a graph sequence that is convergent in
some well-defined sense, parameters and properties of flows converge to those of
flows on the measurable spaces serving as their limit objects.

Also, Markov spaces only capture the edge measure of graphons and graphings;
to get a proper generalization, one needs to add a further measure on the nodes, to
get a double measure space. This node measure is not needed for our development
of measure-theoretic flow theory, but it is clearly needed for extending other graph-
theoretic notions, like expansion or matchings (see e.g. [12]).

Third, our proofs for the existence of various (generalized) flows in this paper
are not constructive, because of the use of the Hahn–Banach Theorem. Of course,
in these infinite structures no “algorithmic” proof can be given, but replacing our
proofs by iterative constructions modeled on algorithmic proofs in the finite setting
would be desirable.

2 Preliminaries

2.1 Flow theory on finite graphs. As a motivation of the results in this
paper, let us recall some basic results on finite graphs in this area.

Let G = (V, E) be a finite directed graph and g : E → R. The flow condition at
node i is that the “inflow” equals the “outflow”; formally,

∑

j: ij∈E

g(ij) =
∑

j: ji∈E

g(ji). (1)

A circulation on G is a function f : E → R satisfying the flow condition at every
node i. Circulations could also be defined by the condition

∑

i∈A,j∈Ac

g(ij) =
∑

i∈Ac,j∈A

g(ij)

for every A ⊆ V (here Ac = V \ A denotes the complement of A). A basic result
about the existence of circulations satisfying prescribed bounds is the following [13].
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Hoffman’s Circulation Theorem. Let a, b : E → R be two functions on the edges
of a directed graph G = (V, E). Then there is a circulation g : E → R such that
a(ij) ≤ g(ij) ≤ b(ij) for every edge ij if and only if a ≤ b and

∑

i∈A,j∈Ac

a(ij) ≤
∑

i∈Ac,j∈A

b(ij)

for every A ⊆ V .

The most important consequence of the Hoffman Circulation Theorem is the
Max-Flow-Min-Cut Theorem of Ford and Fulkerson [10]. Let s, t ∈ V and let c : E →
R+ be an assignment of nonnegative “capacities” to the edges. An s-tcut is a set of
edges from A to Ac, where s ∈ A and t /∈ A. The capacity of this cut is the sum∑

i∈A, j∈Ac c(ij).
An s-tflow is function f : E → R satisfying the flow condition (1) at every node

i �= s, t. The value of the flow is

val(f) =
∑

j: sj∈E

f(sj) −
∑

j: js∈E

f(js) =
∑

j: jt∈E

f(jt) −
∑

j: tj∈E

f(tj).

A flow is feasible, if 0 ≤ f ≤ c.

Max-Flow-Min-Cut Theorem. The maximum value of a feasible s-t flow is the
minimum capacity of an s-t cut.

Instead of specifying just two nodes, we can specify a supply and a demand at
each node, and require that the difference between the outflow and the inflow be the
difference between the supply and the demand.

Suppose that there is a circulation g satisfying the given conditions a(e) ≤ g(e) ≤
b(e) for every (directed) edge e (for short, a feasible circulation). Also suppose that
we are given a “cost” function c : E → R+. What is the minimum of the “total
cost”

∑
e c(e)g(e) for a feasible circulation? This can be answered by solving a linear

program, where the Duality Theorem applies; the condition is somewhat awkward,
we’ll state it later for the general (measure) case.

Let G = (V, E) be a (finite) directed graph. A multicommodity flow is a family
of flows (fst : s, t ∈ V ), where fst is a (nonnegative) s-t flow. Suppose that we are
given capacities c(i, j) ≥ 0 for the edges and demands σ(s, t) ≥ 0 for all pairs of
nodes. Then we say that the multicommodity flow is feasible, if fst has value σ(s, t),
and

∑

s,t

fst(ij) ≤ c(i, j)

for every edge ij. (We may assume, if convenient, that the graph is a bidirected
complete graph, since missing edges can be added with capacity 0.)

The question is whether a feasible multicommodity flow exists. This is not really
hard, since the conditions can be written as a system of linear inequalities, treating
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the values fst(i, j) as variables, and we can apply Linear Programming. However,
working out the dual we get conditions that are not too transparent. But for undi-
rected graphs there is a very nice form of the condition due to Iri [14] and to Shahroki
and Matula [25].

Let G = (V, E) be an undirected graph, where we consider each undirected edge
as a pair of oppositely directed edges. Let us assume that the demand function
σ(i, j) and the capacity function are symmetric: σ(i, j) = σ(j, i) and c(i, j) = c(j, i).
Consider a pseudometric D on V (a function D : V → V that is nonnegative,
symmetric and satisfies the triangle inequality, but D(x, y) may be zero for x �= y).
If a feasible multicommodity flow exists, then

∑

s,t∈V

σ(s, t)D(s, t) ≤
∑

ij∈E

c(i, j)D(i, j) (2)

(Just write each s-t flow as a nonnegative linear combination of paths and cycles,
and use that the sum of edge lengths along each path is at least D(s, t).) We call
this inequality the volume condition. When required for every pseudometric, it is
also sufficient:

Multicommodity Flow Theorem. There exist a feasible multicommodity flow
satisfying the demands if and only if the volume condition (2) is satisfied for every
pseudometric D in V .

2.2 Graph limits.

2.2.1 Graphons. Let (J,A) be a standard Borel space, and let W : J×J → [0, 1]
be a measurable function. Let us endow (J,A) with a node measure, a probabil-
ity measure λ. If W is symmetric (i.e. W (x, y) = W (y, x)), then the quadruple
(J,A, λ, W ) is called a graphon. Dropping the assumption that W is symmetric, we
get a digraphon.

The edge measure of a graphon or digraphon is the integral measure of W ,

η(S) =
∫

S

W d(λ × λ).

The node measure and edge measure of a graphon determine the graphon, up to a
set of (λ×λ)-measure zero. Indeed, η is absolutely continuous with respect to λ×λ,
and W = dη/d(λ × λ) almost everywhere.

Graphons can represent limit objects of sequences of dense graphs that are con-
vergent in the local sense [4, 23]. For this representation, we may limit the underlying
sigma-algebra to standard Borel spaces.
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2.2.2 Graphings. Let (J,A) be a standard Borel space. A Borel graph is a simple
(infinite) graph on node set J , whose edge set E belongs to A × A. By “graph” we
mean a simple undirected graph, so we assume that E ⊆ J × J avoids the diagonal
of J × J and is invariant under interchanging the coordinates. A graphing is a Borel
graph, with all degrees bounded by a finite constant, endowed with a probability
measure λ on (J,A), satisfying the following “measure-preservation” condition for
any two subsets A, B ∈ A:

∫

A

degB(x) dλ(x) =
∫

B

degA(x) dλ(x). (3)

Here degB(x) denotes the number of edges connecting x ∈ J to points of B. (It can
be shown that this is a bounded Borel function of x.) We call λ the node measure
of the graphing.

We can define Borel digraphs (directed graphs) in the natural way, by allowing
E to be any set in A×A. To define a digraphing, we assume that both the indegrees
and outdegrees are finite and bounded. In this case we have to define two functions:
deg+

B(x) denotes the number of edges from x to B, and deg−
B(x) denotes the number

of edges from B to x. The “measure-preservation” condition says that
∫

A

deg+
B(x) dλ(x) =

∫

B

deg−
A(x) dλ(x) (4)

for A, B ∈ A. Such a digraphing defines a measure on Borel subsets of J2, the edge
measure of the digraphing: on rectangles we define

η(A × B) =
∫

A

deg+
B(x) dλ(x),

which extends to Borel subsets in the standard way. This measure is concentrated
on the set of E of edges. In the case of graphings, the edge measure is symmetric
in the sense that interchanging the two coordinates does not change it. The node
measure and the edge measure determine the (di)graphing up to a set of edges of
η-measure zero.

Graphings can represent limit objects of sequences of bounded-degree graphs
that are convergent in the local (Benjamini–Schramm) sense [2, 8], but also in a
stronger, local-global sense [11].

2.2.3 Double measure spaces. For both graphons and graphings, all essential
information is contained in the quadruple (J,A, λ, η), where the node measure λ
is a probability measure on (J,A) and the edge measure η is a symmetric measure
on (J ×J,A×A). Such a quadruple will be called a double measure space. Graphons
are those double measure spaces where η is dominated by λ × λ; the function W
describing the graphon is the Radon-Nikodym derivative dη/d(λ×λ). Graphings, on
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the other hand, are those double measure spaces whose edge measure is extremely
singular with respect to λ × λ.

It turns out that double measure spaces play a role in other recent work in graph
limit theory, as limit objects for graph sequences that are neither dense nor bounded-
degree, but convergent in some well-defined sense: shape convergence [17] or action
convergence [1]. We don’t describe these limit theories here, but as an example for
which a very reasonable limit can be defined in terms of double measure spaces we
mention the sequence of hypercubes.

We can scale the edge measure of a double measure space to get a probability
measure; if we drop the node measure (or restrict our interest to the case when λ
is the marginal of η), we get to our main object of study, Markov spaces. Except
for the scaling factor, this generalizes regular graphs. To construct limits of non-
regular graphs we need the additional information contained in the node measure;
the marginal of η corresponds to the degree sequence.

2.2.4 Markov spaces. A Markov space consists of a sigma-algebra A, together
with a probability measure η on A2 whose marginals are equal. We call η the ergodic
circulation, and its marginals π = η1 = η2, the stationary distribution of the Markov
space (A, η).

As the terminology above suggests, Markov spaces are intimately related to
Markov chains. To define a Markov chain, we need a sigma-algebra A and a prob-
ability measure Pu on A for every u ∈ J , called the transition distribution from u.
One assumes that for every A ∈ A, the value Pu(A) is a measurable function of
u ∈ J . This structure is sometimes called a Markov scheme.

If we also have a starting distribution on (J,A), then we can generate a Markov
chain, i.e. a sequence of random points (w0,w1,w2, . . .) of J such that w0 is chosen
from the starting distribution, and wi+1 is chosen from distribution Pwi (indepen-
dently of the previous elements w0, . . . ,wi−1 of the Markov chain). Sometimes we
call this sequence a random walk.

A probability measure π on (J,A) is a stationary distribution for the Markov
scheme if choosing w0 from this distribution, the next point w1 of the walk will
have the same distribution. While finite Markov schemes always have a stationary
distribution, this is not true for infinite underlying sigma-algebras. Furthermore, a
Markov scheme may have several stationary distributions. (In the finite case, this
happens only if the underlying directed graph is not strongly connected.)

A Markov scheme (J, {Pu : u ∈ J}) with a fixed stationary distribution π
defines a Markov space, whose ergodic circulation is the joint distribution measure
η of (w0,w1), where w0 is a random point from the stationary distribution. Both
marginals of this ergodic circulation equal to the stationary distribution π.

The ergodic circulation η determines the Markov scheme (except for a set of
measure zero in the stationary measure). Using the Disintegration Theorem (Propo-
sition 3.3 below), one can show that every Markov space is obtained by this con-
struction from a Markov scheme with a stationary distribution.
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It is clear that if (A, η) is a Markov space, then (A, η∗) is a Markov space with
the same stationary distribution. The corresponding Markov chain is called the
reverse chain. A Markov space is reversible, if η = η∗. A Markov space (A, η) is
indecomposable, if η(A × Ac) > 0 for every set A ∈ A with 0 < π(A) < 1.

Flow problems on graphons and graphings can be formulated as flow problems
on double measure spaces; we’ll see that many of them can be formulated as flow
problems on Markov spaces, without reference to the node measure. The solutions
we obtain yield solutions in the settings of graphings and graphons, via Radon–
Nikodym derivatives. However, as mentioned in the introduction, these are just
“pure existence proofs” (cf. also Remark 4.5).

3 Auxiliaries

3.1 Measures. Let (J,A) be a sigma-algebra. Unless specifically emphasized
otherwise, we assume that (J,A) is a standard Borel space of continuum cardinality;
in particular, A is separating any two points, and it is countably generated. Since the
sigma-algebra A determines its underlying set, we can talk about the standard Borel
space as a sigma-algebra (where, in the case of the sigma-algebra denoted by A, the
underlying set will be denoted by J). We denote by M(A) the linear space of finite
signed (countably additive) measures on A, and by M+(A), the set of nonnegative
measures in M(A). We denote by δs the Dirac measure, the probability distribution
concentrated on s ∈ J .

If μ ∈ M(A) and f : J → R is a μ-integrable function, then we define a signed
measure f · μ ∈ M(A) and a number μ(f) by

(f · μ)(A) =
∫

A

f dμ (A ∈ A), μ(f) = (f · μ)(J) =
∫

J

f dμ.

We endow the linear space M(A) with the total variation norm

‖α‖ = sup
A∈A

α(A) − inf
B∈A

α(B). (5)

We note that the supremum and the infimum are attained, when J = A ∪ B is a
Hahn decomposition of α. With this norm, M(A) becomes a Banach space. This
norm defines a metric on M(A), the total variation distance

dtv(α, β) = ‖α − β‖.

Warning: if α and β are probability measures, then supA∈A(α(A) − β(A)) =
− infA∈A(α(A) − β(A)), and so dtv(α, β) = 2 supA(α(A) − β(A)). In probability
theory, the total variation distance is often defined as supA(α(A) − β(A)), a factor
of 2 smaller.

For μ ∈ M(A) and A ∈ A, we define the restriction measure μA ∈ M(A) by
μA(X) = μ(A ∩ X). We denote the Jordan decomposition of a signed measure
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α ∈ M(A) by α = α+ − α−, and its total variation measure by |α| = α+ + α−. So
‖α‖ = α+(J)+α−(J) = |α|(J). For two measures α, β on A, we consider the Jordan
decomposition of their difference α−β = (α−β)+ −(α−β)− = (α−β)+ −(β −α)+,
and define the measures

α \ β = (α − β)+, α ∧ β = α − (α − β)+ = β − (β − α)+.

The measure α ∧ β is the largest nonnegative measure γ dominated by both α and
β.

If A is a sigma-algebra, we denote by A2 = A × A the product sigma-algebra
of A with itself; A3 etc. are defined analogously. Sometimes it will be necessary
to distinguish the factors (even though they are identical), and we write A3 =
A1 × A2 × A3 = A{1,2,3} etc. For a measure μ ∈ M(An), and T ⊆ {1, . . . , n}, we
let μT denote its marginal on all coordinates in T . To simplify notation, we write
μ34 = μ{3,4}, etc.

We need some further definitions for the sigma-algebra A2 and for measures on
it. For X ⊆ J ×J , let X∗ = {(x, y) : (y, x) ∈ X}. For a function f : J ×J → R, we
define f∗(x, y) = f(y, x). For a signed measure μ on A×A, we define μ∗(X) = μ(X∗).
A measure μ on J × J that is symmetric if μ∗ = μ.

We set μB(A) = μ(A×B). So μ1 = μJ and μ2 = (μ∗)J for μ ∈ M(A2). If μ1 = λ1

and μ2 = λ2, then we say that μ is coupling the measures λ1 and λ2.
A circulation is a finite signed measure α ∈ M(A2) with equal marginals: α1 =

α2. Every symmetric measure is a circulation in a trivial way. We’ll return to circu-
lations in the next section. We say that a measure β ∈ M+(A2) is acyclic, if there
is no nonzero circulation α such that 0 ≤ α ≤ β. Every measure in M+(A2) can be
written as the sum of a nonnegative acyclic measure and a nonnegative circulation
(this decomposition is not necessarily unique).

We need some well-known facts about measures.

Lemma 3.1. Let (J,A) be a standard Borel space, and ψ ∈ M+(A). Let μ1, μ2, · · · ∈
M(A) be signed measures with |μn| ≤ ψ. Then there is a subsequence n1 < n2 < . . .
of natural numbers and a signed measure μ ∈ M(A) such that |μ| ≤ ψ and μni

(A) →
μ(A) for every A ∈ A.

It follows easily that, more generally, μni
(f) → μ(f) for every bounded measur-

able function f : J → R.

Proof. We may assume that μn ≥ 0 (just add ψ to every measure). Let B be a
countable set algebra generating A. The sequence (μn(B) : n = 1, 2, . . . ) is bounded
for every B ∈ B, so choosing an appropriate subsequence, we may assume that there
is a function μ : B → R such that μn(B) → μ(B) for all B ∈ B. Clearly μn is
a pre-measure on B. We claim that μ is a pre-measure on B. Finite additivity of
μ is trivial, and so is 0 ≤ μ(B) ≤ ψ(B) for B ∈ B. If B1 ⊇ B2 ⊇ . . . (Bi ∈ B)
and ∩kBk = ∅, then μ(Bk) ≤ ψ(Bk), and since ψ(Bk) → 0 as k → ∞, we have
μ(Bk) → 0 as well.
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It follows that μ extends to a measure on A. Uniqueness of the extension implies
that 0 ≤ μ ≤ ψ on the whole sigma-algebra A. Let S ∈ A; we claim that μn(S) →
μ(S) (n → ∞). For every ε > 0, there is a set B ∈ B such that ψ(B�A) ≤ ε/3.
This implies that |μn(S) − μn(B)| ≤ μn(S�B) ≤ ψ(S�B) ≤ ε/3, and similarly
|μ(S) − μ(B)| ≤ ε/3. Thus |μn(S) − μ(S)| ≤ |μn(B) − μ(B)| + 2ε/3. Since μn(B) →
μ(B) by the definition of μ, we have |μn(S) − μ(S)| ≤ ε if n is large enough. ��

The following fact follows by a very similar argument.

Lemma 3.2. Let (J,A) be a standard Borel space, and let λ1, λ2 be probability mea-
sures on (J,A). Let μn ∈ M(A2) (n = 1, 2, . . . ) be measures coupling λ1 and λ2.
Then there is an infinite subsequence μn1 , μn2 , . . . and a measure μ coupling λ1 and
λ2 such that μni

(A × B) → μ(A × B) for all sets A, B ∈ A. ��

We need a special version of the important construction of disintegration; see
[3, 6, 7, 15] for more details.

Proposition 3.3. Let (J,A) be a standard Borel space, and let ψ ∈ M(A × A).
Then there is a family of signed measures ϕx ∈ M(A) (x ∈ J) such that ϕx(A) is a
measurable function of x for every A ∈ A, and

ψ(B) =
∫

J

ϕx(B ∩ ({x} × J)) dϕ1(x)

for every B ∈ A2. ��

One can think of ϕx as ψ conditioned on {x}×J , even though the condition has
(typically) probability 0, and so the conditional probability in the usual sense is not
defined.

3.2 Linear functionals. We need some simple facts of Banach space theory;
for completeness, we include their simple derivations from standard results.

Lemma 3.4. Let K1, . . . , Kn be open convex sets in a Banach space B. Then K1 ∩
· · · ∩ Kn = ∅ if and only if there are bounded linear functionals L1, . . .Ln on B and
real numbers a1, . . . , an such that L1 + · · · + Ln = 0, a1 + · · · + an = 0, and for each
i, either Li = 0 and ai = 0, or Li(x) > ai for x ∈ Ki, and for at least one i, the
second possibility holds. ��

If Li = 0 and ai = 0 for some i, then already the intersection of the sets Kj

(j �= i) is empty.

Proof. The sufficiency of the condition is trivial. To prove the necessity, consider the
Banach space B′ = B⊕· · ·⊕B (n copies) and the open convex set K ′=K1×· · ·×Kn ⊆
B′. If any Ki is empty, then the conclusion is trivial, so suppose that K ′ �= ∅.Also
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consider the closed linear subspace (“diagonal”) Δ = {(x, . . . , x) : x ∈ B} ⊆ B′.
Then Δ∩B′ = ∅. By the Hahn–Banach Theorem, there is a bounded linear functional
L on B′ such that L(y) = 0 for y ∈ Δ, and L(y) > 0 for y ∈ K ′.

Define Li(x) = L(0, . . . , 0, x, 0, . . . , 0) and ai = infx∈Ki
Li(x). Then Li is a

bounded linear functional on B, and L(x1, . . . , xn) = L1(x1) + · · · + Ln(xn). The
condition that L(y) = 0 for y ∈ Δ means that L1(x)+ · · ·+Ln(x) = 0 for all x ∈ B.
For each i, either Li = 0 and ai = 0, or Li(x) > ai for i ∈ Ki (as Ki is open).
Since L(y) > 0 for y ∈ K ′, there must be at least one i with Li �= 0. Furthermore,
a1 + · · · + an = infy∈K′ L(y) ≥ 0. We can decrease any ai to get equality in the last
inequality. ��
Proposition 3.5. Let B1 and B2 be Banach spaces and T : B1 → B2, a bounded
linear transformation whose range is closed in B2. Let L : B1 → R be a bounded
linear functional. Then L vanishes on Ker(T ) if and only if there is a bounded linear
functional K : B2 → R such that L = K ◦ T . ��
Proof. The “if” direction is trivial. To prove the converse, note that Ker(T ) is a
closed linear subspace of B1, and so B0 = B1/Ker(T ) is a well defined Banach space.
The maps T and L induce bounded linear maps T0 : B0 → B2 and L0 : B0 → R

(since L vanishes on Ker(T )). Furthermore, T0 is bijective. Since Rng(T0) = Rng(T )
is closed in B2 and therefore a Banach space, the Inverse Mapping Theorem implies
that T −1

0 is bounded. So we can define K on Rng(T ) by K(x) = L0(T −1
0 (x)). By the

Hahn–Banach Theorem, K can be extended to B2. ��
We will need linear functionals on the Banach space of measures. These func-

tionals do not seem to have a useful complete description, but the following fact is
often a reasonable substitute.

Proposition 3.6. Let L be a bounded linear functional on M(A) and ψ ∈ M+(A).
Then there is a bounded measurable function g : J → R such that L(μ) = μ(g) for
every μ ∈ M(A) with μ � ψ. ��
Proof. We define a functional N : L1(A, ψ) → R by N (f) = L(f · ψ) for f ∈
L1(A, ψ). Then N is a bounded linear functional on L1(A, ψ), and so there is a
bounded measurable function g on (J,A) such that N (f) = ψ(fg) for all f ∈
L1(J, ψJ).

The condition that μ � ψ implies that the Radon-Nikodym derivative h =
dμ/dψ ∈ L1(A, ψ) exists, and h · ψ = μ. Thus

L(μ) = N (h) =
∫

J

dμ

dψ
g dψ = μ(g). ��

We conclude with a technical lemma.

Lemma 3.7. Let L be a bounded linear functional on M(A2). Then there is a bounded
linear functional Q on M(A) such that for all ψ ∈ M+(A),

Q(ψ) = sup{L(μ) : μ ∈ M+(A2), μ1 = ψ}.
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Proof. The formula in the lemma defines a functional on M+(A2); we start with
showing that this is bounded and linear on nonnegative measures. For every μ ∈
M+(A2) with μ1 = ψ, we have ‖μ‖ = ‖ψ‖, and so L(μ) ≤ ‖L‖ ‖μ‖ = ‖L‖ ‖ψ‖. Thus
Q(ψ) ≤ ‖L‖ ‖ψ‖. It is also clear that Q(cψ) = cQ(ψ) for c > 0.

Let ψ = ψ1 + ψ2 (ψi ∈ M+(A)); we claim that

Q(ψ) = Q(ψ1) + Q(ψ2). (6)

For ε > 0, choose μi ∈ M+(A2), so that μ1
i = ψi and L(μi) ≥ Q(ψi) − ε. Then

Q(ψ) ≥ L(μi + μ2) = L(μ1) + L(μ2) ≥ Q(ψ1) + Q(ψ2) − 2ε.

Since this holds for every ε > 0, this proves that Q(ψ) ≥ Q(ψ1) + Q(ψ2). To prove
the reverse inequality, let μ ∈ M+(A2) with μ1 = ψ. Define the measures

μi(U) =
∫

U

dψi

dψ
(x) dμ(x, y) (U ∈ A2).

It is easy to check that

μ1 + μ2 = μ, and μ1
i = ψi (i = 1, 2). (7)

It follows that

L(μ) = L(μ1) + L(μ2) ≤ Q(ψ1) + Q(ψ2).

Since this holds for every μ ∈ M+(A2) with μ1 = ψ, we get that Q(ψ) ≤ Q(ψ1) +
Q(ψ2). This implies (6).

Thus Q is nonnegative, positive homogeneous and linear on M+(A). We extend
it to M(A) by Q(μ) = Q(μ+)−Q(μ−). In particular, if μ ≤ 0, then Q(μ) = −Q(−μ).
This implies that the extended Q is homogeneous.

Let ϕ, ψ ∈ M(A2); we claim that

Q(ϕ + ψ) = Q(ϕ) + Q(ψ). (8)

We know that this holds if ϕ, ψ ≥ 0, and it follows that it holds if ϕ, ψ ≤ 0. If ϕ ≥ 0,
ψ ≤ 0, and ϕ + ψ ≥ 0, then Q(ϕ) = Q(ϕ + ψ) + Q(−ψ) = Q(ϕ + ψ) − Q(ψ), so
(8) holds true. This implies easily that (8) holds whenever neither one of ϕ, ψ and
ϕ + ψ changes sign.

To verify the general case, we consider the common refinement of the Hahn
decompositions for ϕ, ψ and ϕ+ψ. We get a partition P into at most 8 parts, where
neither one of ϕ, ψ and ϕ + ψ changes sign on any partition class. Then

Q(ϕ) = Q(ϕ+) − Q(ϕ−) =
∑

X∈P: ϕX≥0

Q(ϕX) −
∑

X∈P: ϕX≤0

Q((ϕ−)X) =
∑

X∈P
Q(ϕX).
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(Note: (8) has been applied to the restrictions of ϕ to subsets of the positive support,
and separately to subsets of the negative support.) Similarly,

Q(ψ) =
∑

X∈P
Q(ψX), and Q(ϕ + ψ) =

∑

X∈P
Q((ϕ + ψ)X).

Since we know already that Q((ϕ + ψ)X) = Q(ϕX) + Q(ψX), this proves that Q is
additive.

Clearly |Q(ϕ)| ≤ |Q(ϕ+)| + |Q(ϕ−)| ≤ 2‖L‖ ‖ϕ‖, so Q is continuous. ��

4 Potentials, circulations and flows

4.1 Potentials. Let (J,A) be a measurable space. A measurable function F : J×
J → R is a potential, if there is a measurable function f : J → R such that F (x, y) =
f(x) − f(y). It is easy to see that a bounded measurable function F : J × J → R

is a potential if and only if F (x, y) + F (y, z) + F (z, x) = 0 for all x, y, z ∈ J .
Of particular importance will be cut potentials of the form 1A(x) − 1A(y) =

1A×Ac(x, y)−1Ac×A(x, y), where A ∈ A. Every potential F can be expressed by cut
potentials as

F (x, y) =

C∫

−C

(1At
(x) − 1At

(y)) dt, (9)

where C is an upper bound on |F |, and At (−C ≤ t ≤ C) is a measurable subset
of J such that At ⊆ As for t < s, ∩tAt = ∅ and ∪tAt = J . To see this, let
F (x, y) = f(x) − f(y) for some bounded measurable function f , and define At =
{x ∈ J : f(x) ≥ t} (−C ≤ t ≤ C).

4.2 Circulations.

4.2.1 Circulations and potentials. Recall that α ∈ M(A2) is a circulation if its
two marginals α1 and α2 are equal. This is clearly equivalent to saying that

α(X × Xc) = α(Xc × X) (∀X ∈ A) (10)

(just cancel the common part X × X in α(X × J) = α(J × X)). Circulations form
a linear subspace C = C(A) of the space M(A2) of finite signed measures.

In the finite case, circulations of the form δx1x2 + · · · + δxn−1xn
+ δxnx1 generate

the space of all circulations (even those with n ≤ 3 do). In the measure case, this is
not always so, as the next example shows.

Example 4.1 (Cyclic graphing and digraphing). For a fixed a ∈ (0, 1), let Ca be
the graphing on [0, 1] obtained by connecting every point x to x + a (mod 1) and
x − a (mod 1). If a is irrational, this graph consists of two-way infinite paths; if a is
rational, the graph will consist of cycles. We will also use the directed version

−→
C a,

obtained by connecting x to x + a (mod 1) by a directed edge.
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The uniform measure μ on the edges of
−→
C a is trivially a circulation, both of its

marginals being the uniform measure λ on [0, 1). Every circulation α supported on
the edges is a constant multiple of this. Indeed, α1(A) = α(A×(A+a)) = α2(A+a) =
α1(A + a) for every Borel set A ⊆ [0, 1), which means that α1 is invariant under
translation by a. It is well-known that only scalar multiples of λ have this property.

We need two lemmas describing “duality” relations between potentials and cir-
culations.

Lemma 4.2. A signed measure α ∈ M(A2) is a circulation if and only if α(F ) = 0
for every potential F .

Proof. The “if” part follows by applying the condition to the potential 1A(x) −
1A(y):

α(A × J) − α(J × A) =
∫

J×J

(1A(x) − 1A(y)) dα(x, y) = 0.

To prove the converse, let α be a circulation, then for every potential F (x, y) =
f(x) − f(y), we have

α(F ) =
∫

J×J

f(x) − f(y) dα(x, y) =
∫

J

f(x) dα2(x) −
∫

J

f(y) dα1(y) = 0. ��

Lemma 4.3. Let L : M(A2) → R be a continuous linear functional. Then L vanishes
on the space C of circulations if and only if there is a continuous linear functional
K : M(A) → R such that L(μ) = K(μ1 − μ2) for all μ ∈ M(A2).

Proof. The kernel of the linear operator ϕ �→ ϕ1 − ϕ2 (ϕ ∈ M(A2)) is C. The range
of this operator is

Rng(T ) = {ν ∈ M(A) : ν(J) = 0}. (11)

Indeed, if ν = μ1 − μ2 ∈ Rng(T ), then ν(J) = μ(J × J) − μ(J × J) = 0. Conversely,
if ν(J) = 0, then for any probability measure γ on A,

T (γ × ν) = γ(J)ν − ν(J)γ = ν,

so ν is in the range of T . It is easy to check that ν(J) = 0 defines a closed subspace of
M(A). Hence Proposition 3.5 implies the necessity of the condition. The sufficiency
is straightforward, since μ1 − μ2 = 0 for every circulation μ. ��

Let L ∈ C⊥ and ψ ∈ M+(A2). Restricting L to measures μ � ψ, we get a more
explicit representation: there is a potential F such that

L(μ) = μ(F ) (μ � ψ). (12)
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Indeed, consider the continuous linear functional K constructed in Lemma 4.3, and
its representation K(ν) = ν(g) by a bounded measurable function g : J → R in
Proposition 3.6, valid for every ν � ψ1 + ψ2. Then for the potential F (x, y) =
g(x) − g(y) and every μ � ψ,

μ(F ) =
∫

J×J

g(x) − g(y) dμ(x, y) = μ1(g) − μ2(g) = K(μ1 − μ2) = L(μ).

4.2.2 Existence of circulations. Now we begin to carry out our program of ex-
tending basic flow-theoretic results in combinatorial optimization to measures. Our
first goal is to generalize the Hoffman Circulation Theorem and to characterize op-
timal circulations.

Given two measures ϕ and ψ on J × J , we can ask whether there exists a cir-
culation α such that ϕ ≤ α ≤ ψ. Clearly ϕ ≤ ψ is a necessary condition, but it is
not sufficient in general. The following theorem generalizes the Hoffman Circulation
Theorem.

Theorem 4.4. For two signed measures ϕ, ψ ∈ M(J ×J), there exists a circulation
α such that ϕ ≤ α ≤ ψ if and only if ϕ ≤ ψ and ϕ(X × Xc) ≤ ψ(Xc × X) for every
set X ∈ A.

Proof. The necessity of the condition is trivial: if the circulation α exists, then
ϕ(X × Xc) ≤ α(X × Xc) = α(Xc × X) ≤ ψ(Xc × X).

To prove sufficiency, consider the set X = {μ ∈ M(A2) : ϕ ≤ μ ≤ ψ}. We may
assume (by adding a sufficiently large circulation, say |ϕ| + |ϕ|∗) that 0 ≤ ϕ ≤ ψ.
We want to prove that C ∩ X �= ∅.

First, we prove the weaker fact that

dtv(C,X) = 0. (13)

Suppose that c = dtv(C,X) > 0. Let X′ = {μ ∈ M(A2) : dtv(μ,X) < c}, then X′ is a
convex open subset of M(A2). Since X′ ∩C = ∅, the Hahn–Banach Theorem implies
that there is a bounded linear functional L on M(A2) such that L(μ) = 0 for all
μ ∈ C, and L(μ) < 0 for all μ in the interior of X′, in particular for every μ ∈ X.

The first condition on L implies, by representation (12), that there is a potential
function F (x, y) = g(x)−g(y) (with a bounded and measurable function g : J → R)
such that L(μ) = μ(F ) for every μ ∈ M(A2) such that μ � ψ. Let |g| ≤ C.

Let S = {(x, y) : g(x) > g(y)} and At = {x ∈ J : g(x) ≥ t}. Clearly At×Ac
t ⊆ S

and Ac
t × At ⊆ Sc. We can write

g(x) =

C∫

−C

1At
(x) dt,
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then

L(μ) =

C∫

−C

∫

J×J

1At
(x) − 1At

(y) dμ(x, y) dt =

C∫

−C

μ(At × Ac
t) − μ(Ac

t × At) dt. (14)

Let us apply this formula with μ(X) = ϕ(X ∩ S) + ψ(X \ S). Then

L(μ) =

C∫

−C

μ(At × Ac
t) − μ(Ac

t × At) dt =

C∫

−C

ψ(At × Ac
t) − ϕ(Ac

t × At) dt ≥ 0

by hypothesis. On the other hand, we have ϕ ≤ μ ≤ ψ, so μ ∈ X, so L(μ) < 0. This
contradiction proves (13).

To conclude, we select circulations αn ∈ C and measures βn ∈ X such that
‖αn − βn‖ → 0 (n → ∞). By Lemma 3.1, there is a measure β ∈ X such that
βn(S) → β(S) (n → ∞) for all S ∈ A2 and an appropriate subsequence of the
indices n. Hence

|αn(S) − β(S)| ≤ |αn(S) − βn(S)| + |βn(S) − β(S)|
≤ ‖αn − βn‖ + |βn(S) − β(S)| → 0.

In particular, for every A ∈ A we have

0 = αn(A × Ac) − αn(Ac × A) → β(A × Ac) − β(Ac × A),

and so β is a circulation, and by a similar argument, β ∈ X. ��

Remark 4.5. As long as we restrict our attention to circulations α that are abso-
lutely continuous with respect to a given measure ψ ∈ M+(A2), we can define them
as functions, considering the Radon–Nikodym derivative f = dα/dψ. Then f is a
ψ-integrable function satisfying

∫

A×Ac

f dψ =
∫

Ac×A

f dψ

for all A ∈ A. The value f(x, y) can be interpreted as the flow value on the edge xy.
The marginals of α, meaning the flow in and out of a point, could also be defined
using a disintegration of ψ. However, this definition of circulation would depend on
the measure ψ, while our definition above does not depend on any such parameter.

Similar remarks apply to notions like flows below, and will not be repeated.
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4.2.3 Optimal circulations If a feasible circulation exists, we may be interested
in finding a feasible circulation μ which minimizes a “cost”, or maximizes a “value”
μ(v), given by a bounded measurable function v on J × J . Equivalently, we want to
characterize when a value of 1 (say) can be achieved. This cannot be characterized in
terms of cut conditions any more, but an elegant necessary and sufficient condition
can still be formulated.

Theorem 4.6. Given a bounded measurable function v : J ×J → R+ and measures
ϕ, ψ ∈ M+(A2), ϕ ≤ ψ, there is a circulation α with ϕ ≤ α ≤ ψ and α(v) = c if
and only if the following three conditions are satisfied for every potential F :

ψ(|F + v|+) ≥ ϕ(|F + v|−) + c, (15)
ψ(|F − v|+) ≥ ϕ(|F − v|−) − c, (16)
ψ(|F |+) ≥ ϕ(|F |−). (17)

Condition (17) is equivalent to the condition given for the existence of a cir-
culation in Theorem 4.4, which is obtained when F (x, y) = 1X(x) − 1X(y). If
ϕ = 0, then only (15) is nontrivial. Applying the conditions with F = 0 we get
that ϕ(v) ≤ c ≤ ψ(v).

Proof. We may assume that c = 1. The necessity of the condition is trivial: if such
a circulation α exists, then

ψ(|F + v|+) − ϕ(|F + v|−) ≥ α(|F + v|+) − α(|F + v|−) = α(F + v) = α(v) = 1,

and similar calculation proves the other two conditions.
To prove the converse, we proceed along similar lines as in the proof of Theo-

rem 4.4. Consider the subspace C ⊆ M(A2) of circulations, the affine hyperplane
H = {α ∈ M(A2) : α(v) = 1} and the “box” X = {α ∈ M(A2) : ϕ ≤ α ≤ ψ}. We
want to prove that C ∩ H ∩ X �= ∅.

Clearly the sets C, H and X are nonempty. Fix an ε > 0, and replace them by
their ε-neighborhoods C′ = {μ ∈ M(A2) : dtv(μ,C) < ε} etc. We start with proving
the weaker statement that

C′ ∩ H′ ∩ X′ �= ∅. (18)

Suppose not. Then Lemma 3.4 implies that there are bounded linear functionals
L1, L2, L3 on M(A2), not all zero, and real numbers a1, a2, a3 such that L1+L2+L3 =
0, a1 + a2 + a3 = 0, and Li(μ) ≥ ai for all μ ∈ C′, H′ and X′, respectively, and
Li(μ) > ai for at least one i.

The functional L1 remains bounded from below for every circulation α ∈ C, and
since C is a linear subspace, this implies that

L1(α) = 0 (α ∈ C). (19)
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By a similar reasoning, L2 must be a constant b on the hyperplane H; we may scale
L1, L2 and L3 so that b ∈ {−1, 0, 1}. It is easy to see that this implies the more
general formula

L2(μ) = bμ(v) (μ ∈ M(A2)), (20)

Finally, we can express L3 as

L3(μ) = −L1(μ) − L2(μ) (μ ∈ M(A2)). (21)

Using the representation (12), we can write

L1(μ) = μ(F ) (0 ≤ μ ≤ ψ) (22)

with some potential F on J × J . Hence

L3(μ) = −μ(F ) − bμ(v) = −μ(F + bv) (0 ≤ μ ≤ ψ).

We also know that for any α ∈ C, ν ∈ H and μ ∈ X, we have

0 = a1 + a2 + a3 < L1(α) + L2(ν) + L3(μ) = 0 + b + L3(μ) = b − μ(F + bv),

and hence μ(F + bv) < b for all μ ∈ X.
The tightest choice for μ ∈ X is μ = ψU − ϕUc , where U = {(x, y) : F (x, y) +

bv(x, y) ≥ 0}. This gives that

ψ(|F + bv|+) − ϕ(|F + bv|−) = ψU (F + bv) − ϕUc(F + bv) = μ(F + bv) < b.

This contradicts one of the conditions in the theorem (depending on b). This proves
(18).

To prove the stronger statement that C ∩ H ∩ X �= ∅, (18) implies that there are
sequences of measures αn ∈ C, νn ∈ H and μn ∈ X such that dtv(μn, αn) → 0 and
dtv(μn, νn) → 0. Furthermore, since 0 ≤ μn ≤ ψ, Lemma 3.1 applies, and so there
is a measure μ ∈ X such that for an appropriate infinite subsequence of indices,
μn(U) → μ(U) for all U ∈ A2. This implies that αn(U) → μ(U) and νn(U) → μ(U)
for this subsequence.

Thus

μ(A × Ac) = lim
n→∞ αn(A × Ac) = lim

n→∞ αn(Ac × A) = μ(Ac × A)

for every A ∈ A, so μ ∈ C. Similarly, by Lemma 3.1 μ(v) = limn→∞ νn(v) = 1,
whence μ ∈ H. ��

A straightforward application of Theorem 4.6 allows us to answer a question
about the existence of Markov spaces, where an upper bound on the ergodic circu-
lation is prescribed.

Corollary 4.7. Given a measure ψ ∈ M+(A2), there exists an ergodic circulation
η such that η ≤ ψ if and only if every potential F : J × J → R satisfies

ψ(|1 + F |+) ≥ 1.
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4.2.4 Integrality. In the case when v ≡ 1 and ϕ ≡ 0, the condition in Corollary
4.7 implies that

ψ(A × Ac) − ψ(Ac × A) ≤ ψ(J × J) − 1 (A ∈ A).

One may wonder whether, at least in this special case, such a cut condition is
also sufficient in Corollary 4.7. This, however, fails even in the finite case: on the
directed path of length 2 where the edges have capacity 1, these cut conditions for
the existence of an ergodic circulation are satisfied, but the only feasible circulation
is the 0-circulation.

However, the following weaker requirement can be imposed on F :

Supplement 4.8. In Theorem 4.6, if the function v has only integral values, then
it suffices to require condition (15)–(17) for potentials F having integral values.

This property of F is clearly equivalent to saying that in the representation
F (x, y) = f(x) − f(y), the function f can be required to have integral values. For
finite graphs, this assertion follows easily from the fact that the matrix of flow
conditions is totally unimodular. In the infinite case, we have to use another proof.

Proof. Suppose that there is a potential F (x, y) = f(x) − f(y) violating (say) (15).
Let S = {(x, y) : F (x, y) + v(x, y) > 0}. Consider the modified potentials F̂ =
�f(y)� − �f(y)� and F̃ = 〈f(x)〉 − 〈f(y)〉, where 〈t〉 = t − �t� is the fractional part
of the real number t. We claim that

ψ(|F + v|+) − ϕ(|F + v|−) = ψ(|F̂ + v|+) − ϕ(|F̂ + v|−) + ψS(F̃ ) + ϕSc(F̃ ). (23)

Indeed, note that for (x, y) ∈ S we have F̂ (x, y) + v(x, y) ≥ 0, and for (x, y) /∈ S we
have F̂ (x, y) + v(x, y) ≤ 0. Hence

ψ(|F + v|+) = ψS(F + v) = ψS(F̂ + v) + ψS(F̃ ) = ψ(|F̂ + v|+) + ψS(F̃ ).

Similarly,

ϕ(|F + v|−) = ϕ(|F̂ + v|−) − ϕSc(F̃ ).

This proves (23).
Replacing f by f + a with any real constant a, the potential F and the set S do

not change, but the potentials F̂a(x, y) = �f(x) + a� − �f(y) + a� and F̃a(x, y) =
〈f(x) + a〉 − 〈f(y) + a〉 do depend on c. We have

ψ(|F + v|+) − ϕ(|F + v|−) = ψ(|F̂a + v|+) − ϕ(|F̂a + v|−) + ψS(F̃a) − ϕSc(F̃a).

Choosing a randomly and uniformly from [0, 1], the expectation of the last two terms
is 0, since E(〈f(x) + a〉) = 1/2 for any x, and so E(F̃a(x, y)) = 0 for all x and y.
Thus

ψ(|F + v|+) − ϕ(|F + v|−) = E
(
ψ(|F̂a + v|+) − ϕ(|F̂a + v|−)

)
.



L. LOVÁSZ GAFA

This implies that there is an a ∈ [0, 1] for which

ψ(|F + v|+) − ϕ(|F + v|−) ≥ ψ(|F̂a + v|+) − ϕ(|F̂a + v|−).

So replacing f by �f + a�, we get an integer valued potential that violates condition
(15) even more, which proves the Supplement. ��

We can give a more combinatorial reformulation of Corollary 4.7.

Corollary 4.9. Given a measure ψ ∈ M+(A2), there exists an ergodic circulation
η such that η ≤ ψ if and only if for every partition J = S1 ∪ · · · ∪ Sk into a finite
number of Borel sets

∑

1≤i≤j≤k

(j − i + 1)ψ(Sj × Si) ≥ 1.

The (insufficient) cut condition discussed above corresponds to the case when
k = 2.

Proof. Let F (x, y) = f(y) − f(x) be a bounded integral valued potential. We may
assume that f is integral valued and 1 ≤ f ≤ k for some integer k. Then the sets
Si = {x ∈ J : f(x) = i} (i = 1, . . . , k) form a partition of J . For x ∈ Si and y ∈ Sj ,
we have

|F (x, y) + 1|+ =

{
j − i + 1, if i ≤ j,

0, otherwise.

Thus the condition in Corollary 4.7 is equivalent to the condition in Corollary 4.9. ��

4.3 Flows. Let σ, τ ∈ M(A) be two measures with σ(J) = τ(J). We consider σ
the “supply” and τ , the “demand”. We call a measure ϕ ∈ M+(A2) a flow from σ to
τ , or briefly a σ-τ flow, if ϕ1 − ϕ2 = σ − τ . We may assume, if convenient, that the
supports of σ and τ are disjoint, since subtracting σ ∧ τ from both does not change
their difference. If this is the case, we call σ(J) = τ(J) the value of the flow.

Given two points s, t ∈ J , a measure ϕ on A2 such that ϕ1 − ϕ2 = a(δs − δt) will
be called an s-t flow of value a. So ϕ is a flow serving supply aδs and demand aδt.

Note that every measure ϕ ∈ M+(A2) is a flow from ϕ1 to ϕ2, and also a flow
from ϕ1 \ϕ2 to ϕ2 \ϕ1. But we are usually interested in starting with the supply and
the demand, and constructing appropriate flows. We may require ϕ to be acyclic,
since subtracting a circulation does not change ϕ1 − ϕ2.

As before, we may also be given a nonnegative measure ψ on A2 (the “edge
capacity”). We call a flow ϕ feasible, if ϕ ≤ ψ.
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4.3.1 Max-Flow-Min-Cut and Supply-Demand. These fundamental theorems fol-
low from the results on circulations by the same tricks as in the finite case.

Theorem 4.10 (Max-Flow-Min-Cut). Given a capacity measure ψ ∈ M+(A2) and
two points s, t ∈ J , there is a feasible s-t flow of value 1 if and only if ψ(A×Ac) ≥ 1
for every A ∈ A with s ∈ A and t /∈ A.

Proof. For every feasible flow φ ≤ ψ of value 1, the measure φ + δts is a circulation
such that δst ≤ φ + δst ≤ ψ + δst. Conversely, for every circulation α with δts ≤
α ≤ ψ + δst, the measure α − δts is a feasible s-t flow of value 1. The conditions in
Theorem 4.4 on the existence of such a circulation are trivial except for the second
condition when s ∈ A and t /∈ A, which gives the condition in the theorem. ��

The more general Supply-Demand Theorem can be stated as follows.

Theorem 4.11. Let ψ ∈ M+(A2), and let σ, τ ∈ M+(A) with σ(J) = τ(J). Then
there is a feasible σ-τ flow if and only if ψ(S × Sc) ≥ σ(S) − τ(S) for every S ∈ A.

Proof. We may assume that σ(J) = τ(J) = 1. Add two new points s and t to J ,
and extend A to a sigma-algebra A′ on J ′ = J ∪ {s, t} generated by A, {s} and {t}.
Define a new capacity measure ψ′ by

ψ′(X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ(X), if X ⊆ J × J,

σ(Y ), if X = {s} × Y with Y ⊆ J,

τ(Y ), if X = Y × {t} with Y ⊆ J,

0, if X ⊆ ({t} × J) ∪ (J × {s}) ∪ {st, ts},

and extend it to all Borel sets by additivity. For every feasible σ-τ flow φ on (J,A),
the measure φ+ψ′

{s}×J +ψ′
J×{t} is a feasible s-t flow of value 1. Conversely, for every

feasible s-t flow of value 1, its restriction to the original space (J,A) is a feasible
σ-τ flow. Applying the condition in the Max-Flow-Min-Cut Theorem completes the
proof. ��

The measure-theoretic Max-Flow-Min-Cut Theorem is closely related to a result
of Laczkovich [18], who works in the function setting. He also states an integrality
result, which is in a sense dual to our integrality result in Section 4.2.4.

A condition for the minimum cost of a feasible σ-τ flow of a given value can
be derived from Theorem 4.6 using the same kind of constructions as in the proof
above. This gives the following result.

Theorem 4.12. Given a bounded measurable “cost” function v : J × J → R+,
a “capacity” measure ψ ∈ M+(A2) and “supply-demand” measures σ, τ ∈ M+(A)
with σ(J) = τ(J), there is a feasible σ-τ flow ϕ with ϕ(v) = 1 if and only if

ψ(|f(y) − f(x) + bv(x, y)|+) ≥ τ(f) − σ(f) + b (24)

for every bounded measurable function f : J → R and b ∈ {−1, 0, 1}. ��



L. LOVÁSZ GAFA

4.3.2 Transshipment. An optimization problem closely related to flows is the
transshipment problem. In its simplest measure-theoretic version, we are given two
measures α, β ∈ M(A) with α(J) = β(J). An α-β transshipment is a measure
μ ∈ M+(A × A) coupling α and β; in other words, μ1 = α and μ2 = β. Note
the difference with the notion of an α-β flow: there only the difference μ1 − μ2

is prescribed. In transhipment problems, one can think of J × J as the edge set
of a (complete) bipartite graph whose color classes are the two copies of J . This
observation can be used to derive the following result from the Supply-Demand
Theorem 4.11:

Theorem 4.13. Let (J,A) be a standard Borel space, and α, β ∈ M+(A) with
α(J) = β(J). Let ψ ∈ M+(A × A). Then there exists an α-β transshipment μ
with μ ≤ ψ if and only if

ψ(S × T ) ≥ α(S) + β(T ) − α(J)

for every S, T ∈ A. ��

Suppose that every edge (x, y) ∈ J × J has a given cost c(x, y) ≥ 0. We want
to find a transshipment minimizing the cost μ(c). We note that the minimum is
attained by Lemma 3.2.

Theorem 4.14. Let (J,A) be a standard Borel space, and α, β ∈ M+(A) with
α(J) = β(J). Let c : J × J → R+ be a bounded measurable function. Then the
minimum cost of an α-β transshipment is supg,h α(g) + β(h), where g and h range
over all bounded measurable functions J → R satisfying g(x) + h(y) ≤ c(x, y) for all
x, y ∈ J .

The proof follows by an easy reduction to Theorem 4.12.
As a third variation on the Transshipment Problem, we ask for a transhipment

supported on a specified set E of pairs. The following result is a slight generalization
of a theorem of Strassen [26], and essentially equivalent to Proposition 3.8 of Kellerer
[16]. See also [9]. It is also a rather straightforward generalization of Theorem 2.5.2
in [22]. The result could also be considered as a limiting case of Theorem 4.14, using
the capacity “measure” with infinite values on E.

Proposition 4.15. Let (J,A) be a standard Borel space, and α, β ∈ M+(A) with
α(J) = β(J) = 1. Let E ∈ A × A be a Borel set such that J × J \ E is the union
of a countable number of product sets A × B (A, B ∈ A). Then there exists an α-β
transshipment μ concentrated on E if and only if α(S) + β(T ) ≤ 1 for any two sets
S, T ∈ A with S × T ∩ E = ∅.

Remark 4.16. In the finite case, the fundamental Birkhoff–von Neumann Theorem
describes the extreme points of the convex polytope formed by doubly stochastic
matrices: these are exactly the permutation matrices, or in the language of bipartite
graphs, perfect matchings. One generalization of this problem to the measurable case
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is to consider the set of coupling measures between two copies of a probability space
(J,A, π), forming a convex set in M+(A2). What are the extreme points (coupling
measures) of this convex set? Unfortunately, these extreme points seem to be too
complex for an explicit description. See [19] for several examples.

4.3.3 Path decomposition. In finite graph theory, it is often useful to decompose
an s-t flow into a convex combination of flows along single paths from s to t and
circulations along cycles. We will also need a generalization of this construction to
measurable spaces.

Let K = J ∪ J2 ∪ J3 ∪ . . . be the set of all finite nonempty sequences of points
of J ; we also call these walks. The set K is endowed with the sigma-algebra B =
A ⊕ A2 ⊕ . . . . Let K(s, t) be the subset of K consisting of walks starting at s and
ending at t (s, t ∈ J); such a walk is called an s-twalk.

Let τ ∈ M+(B). For Q = (u0, u1, . . . , um) ∈ K, let Q′ = (u0, . . . , um−1), V (Q) =
{u0, . . . , um}, E(Q) = {u0u1, u1u2, . . . , um−1um}, and Z(Q) = {u0, um}. Define

V (τ)(X) =
∫

K

|V (Q′) ∩ X| dτ(Q) (X ∈ A),

E(τ)(Y ) =
∫

K

|E(Q) ∩ Y | dτ(Q) (Y ∈ A2),

Z(τ)(Y ) =
∫

K

|Z(Q) ∩ Y | dτ(Q) (Y ∈ A2).

Then V (τ) is a measure on A, and E(τ) and Z(τ) are measures on A2. The measure
Z(τ) is finite, but V (τ) and E(τ) may have infinite values as for now. If τ is a
probability measure, then walking along a randomly chosen walk from distribution
τ , V (τ)(X) is the expected number of times we exit a point in X (so the starting
point counts, but the last point does not), and E(τ)(Y ) is the expected number of
times we traverse an edge in Y . Mapping each walk W ∈ K to its first point, and
pushing τ forward by this map, we get the measure Z(τ)1 ∈ M(A). The measure
Z(τ)2 is characterized analogously by mapping each walk to its last point. It is easy
to see that E(τ) is a flow from Z(τ)1 to Z(τ)2.

Theorem 4.17. For every acyclic measure ϕ ∈ M+(A2) there is a finite measure
τ ∈ M+(B) for which E(τ) = ϕ.

We need a simple (folklore) fact about Markov chains.

Lemma 4.18. Let G be an indecomposable Markov space, and let S ∈ A have π(S) >
0. Then for π-almost-all starting points x, a random walk started at x hits S almost
surely.

Proof. Let R be the set of starting points x ∈ J for which the random walk starting
at x avoids S with positive probability, and suppose that π(R) > 0. Since clearly
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R ∩ S = ∅, we also have π(R) < 1. Hence η(Rc × R) > 0 by indecomposability, and
so there must be a point x ∈ Rc with Px(R) > 0. But this means that starting at
x, the walk moves to R with positive probability, and then avoids S with positive
probability, so we would have x ∈ R, a contradiction. ��
Proof of Theorem 4.17. We start with the special case when ϕ is an s-t flow for
s, t ∈ J ; we may scale it to have value 1. Just as in the proof of Theorem 4.10,
we see that the measure α = ϕ + δts is a nonnegative circulation on A2. Let a =
α(J ×J) = ϕ(J ×J)+1, then η = α/a is the ergodic circulation of a Markov space.
The stationary distribution of this Markov space is π = α1/a = α2/a, and

ϕ1 = aπ − δt. (25)

It is easy to see that ϕ({(s, s)}) = 0, since ξ = ϕ({(s, s)})δ{(s,s)} is a nonnegative
circulation such that ξ ≤ ϕ, and since ϕ is acyclic, we must have ξ = 0.

Claim 1. The Markov space (A, η) is indecomposable.

Indeed, suppose that there is a set A ∈ A with 0 < π(A) < 1 and η(A × Ac) =
η(Ac × A) = 0. Clearly s and t either both belong to A or both belong to Ac; we
may assume that s, t ∈ Ac. Then ϕA×A is a circulation, and ϕ = (ϕ−ϕA×A)+ϕA×A

is a decomposition showing that ϕ is not acyclic, contrary to the hypothesis.
To specify a probability distribution on s-t walks, we describe how to generate a

random s-t walk: Start a random walk at s, and follow it until you hit t or return to s,
whichever comes first. This happens almost surely by Lemma 4.18: the distribution
δs is absolutely continuous with respect to π, and π(t) > 0. This gives a probability
distribution τ on the set K(s, {s, t}) of walks from s to {s, t}.

Let us stop the walk after k steps, or when it hits t, or when it returns to s,
whichever comes first. This gives us a distribution τk over walks starting at s of
length at most k. We claim that this distribution satisfies the following identity for
every X ⊆ J \ {s, t}:

V (τn)(X) =
∫

J\{s,t}
Pu(X) dV (τn−1)(u). (26)

Indeed, let σk(X) (X ∈ A) be the probability that starting at s, we walk k steps
without hitting t or returning to s, and after k steps we are in X. It is clear that
σ0 = δs. It is also easy to see that for n ≥ 1, we have V (τn) = σ0 + σ1 + · · · + σn−1,
and for X ⊆ J \ {s, t},

σn(X) =
∫

J\{t}
Pu(X) dσn−1(u). (27)

Thus

V (τn)(X) =
n−1∑

k=1

σk(X) =
n−1∑

k=1

∫

J\{t}
Pu(X) dσk−1(u) =

∫

J\{t}
Pu(X) dV (τn−1)(u).
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This proves (26).
Next we show that

V (τn) ≤ ϕ1 (n ≥ 1). (28)

We prove the inequality by induction on n. For n = 1 it is obvious. Let n ≥ 2. If
s, t /∈ X, then σ0(X) = 0, and so using (26) and (25),

V (τn)(X) =
∫

J\{t}
Pu(X) dV (τn−1)(u)

≤
∫

J\{t}
Pu(X) dϕ1(u) ≤ a

∫

J\{t}
Pu(X) dπ(u)

≤ a

∫

J

Pu(X) dπ(u) = aπ(X) = ϕ1(X).

If t ∈ X but s /∈ X, then

V (τn)(X) = V (τn)(X \ {t}) ≤ ϕ1(X \ {t}) ≤ ϕ1(X).

If s ∈ X, then (using that every random walk we constructed exits s only once)

V (τn)(X) = 1 + V (τn)(X \ {s}) ≤ 1 + ϕ1(X \ {s}) ≤ ϕ1(X).

Next, we consider E(τ), which is an s-t flow by the discussion before the theorem.
It follows easily that

E(τn) ≤ ϕ (n ≥ 1). (29)

Indeed, for A, B ∈ A,

E(τn)(A × B) =
∫

A

Pu(B) dV (τn)(u) ≤
∫

A

Pu(B) dϕ2(u) = ϕ(A × B).

This implies that E(τn)(X) ≤ ϕ(X) for every X ∈ A2, proving (29).

Claim 2. V (τn) → V (τ) in total variation distance.

Since clearly V (τn) ≤ V (τ), we have dtv(V (τn), V (τ)) = V (τ)(J) − V (τn)(J).
Let pn be the probability that a random walk started at s first hits {s, t} in exactly
n steps. Then

V (τ)(J) =
∞∑

k=1

pk k, and V (τn)(J) =
n∑

k=1

pk k.

By (28), V (τn)(J) ≤ ϕ1(J) < ∞, and hence the series representing τ is convergent.
This proves the claim.
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Claim 3. The probability that a random walk started at s returns to s before hitting
t is zero. So τ can be considered as a probability distribution on walks from s to t.

Indeed, we can split K(s, {s, t}) = K(s, s) ∪ K(s, t). Define ρ = τK(s,s). Then
E(ρ) ≤ E(τ) ≤ ϕ and it is easy to see that E(ρ) is a circulation. Since ϕ is acyclic,
we must have ρ = 0, and so τ(K(s, s)) = 0.

Inequalities (28), (29) and Claim 2 imply that V (τ) ≤ ϕ1 and E(τ) ≤ ϕ. To
complete the proof, consider the measure ϕ−E(τ). This is a nonnegative circulation,
and since ϕ is acyclic, it follows that ϕ − E(τ) = 0. This proves the theorem for s-t
flows.

The general case can be reduced to the special case of an s-t flow by the following
construction, similar to that used in the proof of Theorem 4.11. Let ϕ ∈ M+(A2) be
an acyclic measure, let σ = ϕ1 \ϕ2 and τ = ϕ2 \ϕ1, so that ϕ is an acyclic σ-τ flow.
Create two now points s and t, extend A to a sigma-algebra A′ on J ′ = J ∪ {s, t}
generated by A, {s} and {t}, and extend the measure ϕ to ϕ′ ∈ M(A′ × A′) by

ϕ′(X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ(X), if X ⊆ J × J,

σ(Y ), if X = {s} × Y with Y ⊆ J,

τ(Y ), if X = Y × {t} with Y ⊆ J,

0, if X ⊆ ({t} × J) ∪ (J × {s}) ∪ {st, ts}.

It is easy to check that ϕ′ is an acyclic s-t flow. Using the theorem for the special
case of this s-t flow, we get a measure τ on s-t paths, in which the trivial path (s, t)
has zero measure. So τ defines a measure on nontrivial s-t paths, and since there is
a natural bijection with paths in K, we get a measure on (K, B). It is easy to check
that this measure has the desired properties. ��

Remark 4.19. Theorem 4.17 raises the question whether circulations have analo-
gous decompositions. In finite graph theory, a circulation can be decomposed into
a nonnegative linear combination of directed cycles. In the infinite case, we have to
consider, in addition, directed paths infinite in both directions (see Example 4.1);
but even so, the decomposition is not well understood.

Suppose that we have a nonnegative circulation η �= 0 on A. We may assume (by
scaling) that it is a probability measure, so it is the ergodic circulation of a Markov
space. From every point u ∈ J , we can start an infinite random walk (v0 = u, v1, . . . ),
and also an infinite random walk (v0 = u, v−1, . . . ) of the reverse chain. Choosing u
from π, this gives us a probability distribution β on rooted two-way infinite (possibly
periodic) sequences, i.e., on JZ. However, it seems to be difficult to reconstruct the
circulation α from β.

5 Multicommodity measures

5.1 Metrical linear functionals. A bounded linear functional D on M(A2)
will be called metrical, if it satisfies the following conditions:
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(a) D(μ) = 0 for every measure μ ∈ M(A2) concentrated on the diagonal Δ =
{(x, x) : x ∈ J};

(b) D(μ) = D(μ∗) for every measure μ ∈ M(A2);
(c) D(κ12) + D(κ23) ≥ D(κ13) for every measure κ ∈ M+(A3).
These conditions imply that D is nonnegative on nonnegative measures. Indeed,

for a measure μ ∈ M+(A2) and an arbitrary probability distribution γ on A, define
κ = (μ + μ∗) × γ. Then κ12 = μ + μ∗ and κ13 = κ23 = (μ1 + μ2) × γ. Applying (c),
we get that D(μ) + D(μ∗) + D((μ1 + μ2) × κ) ≥ D((μ1 + μ2) × κ), and (b) implies
that D(μ) ≥ 0.

The name “metrical” refers to the fact that if D is defined by a bounded mea-
surable pseudometric r on J as D(μ) = μ(r), then conditions (a)-(c) are satisfied.
Conditions (a) and (b) are trivial, and condition (c) also follows easily:

D(κ12)+D(κ23)−D(κ13)=κ12(r)+κ23(r)−κ13(r)=κ(r(y, z)+r(y, z)−r(x, z))≥0.

Can every metrical linear functional D be represented as D(ϕ) = ϕ(g) with some
pseudometric g : J2 → R+? I expect that the answer is negative, but perhaps the
following is true:

Conjecture 1. For every metrical linear functional D on M(A2) and every ψ ∈
M+(A2) there is a pseudometric g : J2 → R+ such that D(ϕ) = ϕ(g) for all
measures ϕ � ψ.

The conjecture can be proved in several special cases, in particular, for measures
ψ defined by graphons and graphings (details will be published elsewhere).

We need a lemma relating metrical functionals and flows. Informally, the lemma
expresses that in a flow, every particle must travel at least as much as the distance
between its starting and ending points.

Lemma 5.1. Let D be a metrical linear functional on M(A2), and let τ ∈ M+(B).
Then D(E(τ)) ≥ D(Z(τ)).

Proof. Let τk denote the measure τ restricted to sequences in B of length k (k ≥ 1).
For 0 ≤ i1 < i2 < · · · < im < k, the measure τ i1...im

k is the marginal of τk on
{i1, . . . , im} ⊆ {1, . . . , k}. For i ≤ j, let [i, j] = {i, i + 1, . . . , j}. Then Z(τ) =∑

k≥0 τ0,k−1
k .

We claim that

D(E(τ [i,j]
k )) ≥ D(E(τ ij

k )) (0 ≤ i < j < k). (30)

We use induction on j − i. For j − i = 1 the assertion is trivial. Let j − i > 1,
and choose r with i < r < j. Then

E(τ irj
k )23 = E(τ rj

k ), E(τ ij
k )13 = E(τ ij

k ), E(τ irj
k )12 = E(τ ir

k ).

Using that D is metrical, this implies that

D(E(τ ir
k )) + D(E(τ rj

k )) ≥ D(E(τ ij
k )).
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By induction, we know that D(E(τ [i,r]
k )) ≥ D(E(τ ir

k )) and D(E(τ [r,j]
k )) ≥ D(E(τ rj

k )).
Using that E(τ [i,r]

k ) + E(τ [r,j]
k ) = E(τ [i,j]

k ), we get

D(E(τ [i,j]
k )) = D((τ [i,r]

k )) + D(E(τ [r,j]
k )) ≥ D(E(τ ir

k )) + D(E(τ rj
k )) ≥ D(E(τ ij

k )).

This proves the Claim. In particular, we have

D(E(τk)) = D(E(τ [0,k−1]
k )) ≥ D(E(τ0,k−1

k )) = D(Z(τk)). (31)

Thus

D(τ) =
∞∑

k=1

D(E(τk)) ≥
∞∑

k=0

D(Z(τk)) = D(Z(τ)). ��

5.2 Multicommodity flows. A multicommodity flow on a Borel space A con-
sists of a symmetric measure σ ∈ M+(A2), and of a family of s-t flows ϕst of value 1,
one for each pair (s, t) ∈ J × J . We require that ϕst(U) is measurable as a function
of (s, t) ∈ J × J for every U ∈ A2.

Since we are going to put only symmetric upper bounds (capacity constraints)
on the sum of these flows, we may also require that each ϕst is acyclic. A further
requirement we can impose is that ϕts = ϕ∗

st (replacing each ϕst by (ϕst + ϕ∗
ts)/2).

Such a multicommodity flow F = (σ; fst : st ∈ W ) defines symmetric measure
(the total load) by

ϕF (S) =
∫

J×J

ϕxy(S) dσ(x, y) (S ∈ A2).

A trivial multicommodity flow is defined by fst = δst for any σ. The total load of
this trivial multicommodity flow is σ.

If we are also given a symmetric “capacity” measure ψ ∈ M+(A2), then we say
that the multicommodity flow F = (σ; ϕst) is feasible, if ϕF ≤ ψ. Our question
is: Given ψ and σ, does there exist a feasible multicommodity flow? Our goal is to
generalize the Multicommodity Flow Theorem.

To state our main result in this section, we need to relax the capacity constraint
ϕF ≤ ψ, and define the overload over ψ as ‖ϕF \ ψ‖. In other words, this overload
is less than ε if there is a measure ψ′ ∈ M+(A2) such that ‖ψ − ψ′‖ < ε and F is
feasible with respect to ψ′.

Theorem 5.2 (Multicommodity Flow Theorem for Measures). Let σ and ψ be sym-
metric measures on A2. There is a feasible multicommodity flow for demands σ with
arbitrarily small overload over ψ if and only if D(σ) ≤ D(ψ) for every metrical linear
functional D on M+(A2).
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I don’t know whether allowing an arbitrarily small overload is needed (proba-
bly so). If Conjecture 1 above is true, then the condition D(σ) ≤ D(ψ) could be
replaced by the more explicit condition that σ(d) ≤ ψ(d) for every bounded Borel
pseudometric d on J .

A cut-metric is perhaps the simplest nontrivial pseudometric, defined as d(x, y) =
1A×Ac + 1Ac×A. For cut-metrics, the condition D(σ) ≤ D(ψ) in the theorem gives
that σ(A × Ac) ≤ ψ(A × Ac). If the demand measure σ is concentrated on a single
pair {s, t} of nodes (more exactly, on the two orderings of an unordered pair), then
we obtain Theorem 5.2 (at least in the case of symmetric capacities). But in general,
it does not suffice to apply the condition to cut-metrics only, even in the finite case.

5.2.1 Formulation as a single measure. We want to formulate the multicommod-
ity flow problem in terms of a single measure; unfortunately, we have to go up to
A4. If Φ ∈ M(A4), then we use the notation

Φ∗(T × U) = Φ(T ∗ × U), Φ∗∗(T × U) = Φ(T ∗ × U∗), Φ◦∗(T × U) = Φ(T × U∗).

Every multicommodity flow (σ; ϕst : s, t ∈ J) defines a load measure Φ on
A4 = A2 × A2 by

Φ(T × U) =
∫

U

ϕst(T ) dσ(s, t).

This number expresses how much load the subset of demands U puts on the edges
in T . For the trivial solution ϕst = δst (sending the stuff directly from s to t) we get

∫

U

δxy(T ) dσ(x, y) = σ(T ∩ U).

Sometimes it will be convenient to consider the right hand side as a measure σΔ(T ×
U) = σ(T ∩U) defined on A4. Of course, this trivial solution is not feasible in general.

We can express the multicommodity flow problem in terms of this single measure
Φ. The condition that ϕ∗

st = ϕts can be expressed as Φ(T × U) = Φ(T ∗ × U∗), or
more compactly,

Φ∗∗ = Φ. (32)

The fact that ϕst − δst is a circulation implies that

ϕ1
st(A) − ϕ2

st(A) = δ1
st(A) − δ2

st(A) = δs(A) − δt(A) (A ∈ A).

Integrating over U ∈ A2 with respect to σ, we get that

Φ134 − Φ234 = σ, (33)

where σ(A × U) = σ((A × J) ∩ U) − σ((J × A) ∩ U).
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Finally, the feasibility conditions mean that Φ ≥ 0 and Φ(A × J × J) ≤ ψ(A),
which, using our notation, can be expressed as

Φ ≥ 0, Φ12 ≤ ψ. (34)

Our next observation is that we can forget about condition (32). Indeed, suppose
that Φ ∈ A4 satisfies (33) and (34). Then the measure Φ∗∗ also satisfies these
conditions, and the symmetrized measure 1

2(Φ + Φ∗∗) satisfies these equations and,
in addition, (32) as well.

Conversely, we show that every measure Φ satisfying (33) and (34) yields a fea-
sible multicommodity flow.

We may assume that Φ34 � σ. Suppose this does not hold, then let S ∈ A2

be a set with σ(S) = 0 and Φ34(S) maximum (such a set clearly exists). Define
Φ1 = ΦJ2×(J2\S) and Φ2 = ΦJ2×S , then Φ = Φ1+Φ2. We claim that Φ1 � σ. Indeed,
for X ⊆ J2 with σ(X) = 0 we have σ(X ∪ S) = 0, hence Φ34(X ∪ S) ≤ Φ34(S),
which implies that Φ34

1 (X) = Φ34(X \ S) = Φ34(X \ S) = 0.
Furthermore, Φ1 satisfies (33) and (34). The second of these is trivial. For the

first,

Φ134
1 (A × U) − Φ234

1 (A × U) = Φ1(A × J × U) − Φ1(J × A × U)
= Φ(A × J × (U \ S)) − Φ(J × A × (U \ S))
= σ(A × (U \ S)) = σ((A × J) ∩ (U \ S)) − σ((J × A) ∩ (U \ S))
= σ((A × J) ∩ U) − σ((J × A) ∩ U) = σ(A × U)

(we have used that σ(S) = 0). Replacing Φ by Φ1 we get a solution of (33) and (34)
such that Φ34 � σ. Thus the Radon–Nikodym derivative f = dΦ34/dσ exists.

The Disintegration Theorem 3.3 implies that there is a family (θst : s, t ∈ J) of
measures on A2 such that θst(U) is a measurable function of (s, t) for every U ∈ A2,
and

Φ(T × U) =
∫

U

θst(T ) dΦ34(s, t). (35)

for T, U ∈ A2. Defining ϕst = f(s, t) · θst, Equation (35) can be written as

Φ(T × U) =
∫

U

ϕst(T ) dσ(s, t). (36)

Let A ∈ A and U ∈ A2, then
∫

U

(ϕ1
st(A) − ϕ2

st(A)) dσ(s, t) = Φ134(A × U) − Φ234(A × U)

= σ(A × U) = σ((A × J) ∩ U) − σ((J × A) ∩ U) =
∫

U
1A×J − 1J×A dσ.
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This holds for every U ∈ A, so it follows that for all A ∈ A,

ϕ1
st(A) − ϕ2

st(A) = 1J×A(s, t) − 1A×J(s, t) = δs(A) − δt(A), (37)

holds for σ-almost all (s, t). We need to argue that for σ-almost all (s, t), Equation
(37) holds for all A.

Let RA denote the set of pairs (s, t) for which (37) does not hold. Let {A1, A2, . . . }
be a countable set algebra generating A. Then R = ∪iRAi

has σ(R) = 0 and if
(s, t) /∈ R, then

ϕ1
st(Ai) + δt(Ai) = ϕ2

st(Ai) + δs(Ai).

By the uniqueness of measure extension, this equality holds if we replace Ai by
any A ∈ A. This shows that ϕst is an s-t flow of value 1. Replacing ϕst by δst for
(s, t) ∈ R, we may assume that ϕst is an s-t flow of value 1 for every s and t.

Equation (36) implies that
∫

J
ϕst(T ) dσ(s, t) = Φ(T × J) ≤ ψ(T ),

so this multicommodity flow is feasible. If Φ violates the second inequality in (34)
slightly, meaning that ‖Φ12 \ ψ‖ = ε > 0, then by a similar computation the multi-
commodity flow we constructed has an overload of ε.

To sum up, it suffices to find a measure Φ ∈ M+(A4) such that Φ134 − Φ234 = σ
and ‖Φ12 \ ψ‖ ≤ ε.

5.2.2 Proof of the Multicommodity Flow Theorem. I. The “only if” direction.
Consider a multicommodity flow F = (ϕuv : uv ∈ S), serving demand σ and
with overload over ψ less than ε (ε > 0). We may assume that σ is a probability
distribution. By Theorem 4.17, there is a probability distribution κuv on u-v paths
for every uv ∈ S such that E(κuv) = ϕuv. Let τ be the mixture of the κuv by σ; in
other words, we generate a random path from τ by selecting a random pair uv from
σ, and then select a random path from κuv. Then E(τ) = ϕF and Z(τ) = σ. By the
definition of overload, we have ϕF ≤ ψ + β, where ‖β‖ ≤ ε. By Lemma 5.1,

D(σ) = D(Z(τ)) ≤ D(E(τ)) = D(ϕF ) ≤ D(ψ) + D(β) ≤ D(ψ) + ‖D‖ε.

Since ε can be arbitrarily small, this proves that D(σ) ≤ D(ψ).
II. The “if” direction. Consider the convex sets of measures

H1 = {Φ ∈ M(A4) : Φ134 − Φ234 = σ},

H2 = M+(A4),

H3 = {Φ ∈ M(A4) : Φ12 ≤ ψ}.

To make these sets open, let δ > 0, and consider the δ-neighborhoods Hδ
i = {μ ∈

M+(A) : dtv(μ,Hi) < δ}. Note that all these sets are convex and invariant under
the map Φ �→ Φ∗∗.
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The main step in the proof is proving that

Hδ
1 ∩ Hδ

2 ∩ Hδ
3 �= ∅. (38)

Suppose that this intersection is empty. The intersection of any two of these sets
is nonempty, so by Lemma 3.4 there are bounded linear functionals L1, L2, L3 on
M(A4) and real numbers a1, a2, a3 such that L1 + L2 + L3 = 0, a1 + a2 + a3 = 0,
and Li > ai on Hδ

i . Note that 0 ∈ H2 and 0 ∈ H3, which implies that a2, a3 < 0, and
hence a1 > 0. Since the sets are invariant under the map Φ �→ Φ∗∗, we may assume
that the linear functionals L1, L2, L3 are invariant under this map as well.

These conditions have the following implications for the functionals Li:
(a) The affine subspace H1 is not empty, since the trivial multicommodity flow

satisfies it. The condition that L1(Φ) > a1 for Φ ∈ Hδ
1 implies that L1 is constant

on H1. Since a1 > 0, this constant is positive, and we may assume (by scaling the
Li and the ai) that it is 1. Then a1 < 1. It follows that L1(Φ) = 0 if Φ134 = Φ234.

We can apply Proposition 3.5 to the linear operator T : Φ �→ Φ134 − Φ234

similarly as in the proof of Lemma 4.3. We get a linear functional Z on M(A3) such
that

L1(Φ) = Z(Φ134 − Φ234) (Φ ∈ M(A4)). (39)

Substituting the trivial multicommodity flow in (39), we get that Z(σ) = 1. It also
follows that

L1(Φ∗) = Z((Φ∗)134 − (Φ∗)234) = Z(Φ234 − Φ134) = −L1(Φ), (40)

and
L1(Φ◦∗) = L1((Φ∗∗)∗) = −L1(Φ∗∗) = −L1(Φ). (41)

(b) The condition that L2(Φ) > a2 for Φ ∈ Hδ
2 implies that L2(μ) ≥ 0 for μ ≥ 0,

so L2 is a nonnegative functional.
(c) The condition that L3(Φ) > a3 for Φ ∈ Hδ

3 implies that L3(μ) ≥ 0 whenever
μ ∈ M(A4) and μ12 ≤ 0. This implies that L3(μ) = 0 whenever μ12 = 0. We can
apply the Proposition 3.5 to the operator S : ϕ �→ ϕ12 similarly as in (a); it is
easy to see that the range of S is the whole space M(A2), so it is closed. We get a
bounded linear functional R on M(A2) such that L3(μ) = R(μ12). It also follows
that −R is a nonnegative functional.

From L1 + L2 + L3 = 0 we get that

R(Φ12) = −L3(Φ) = L1(Φ) + L2(Φ) ≥ L1(Φ) = Z(Φ134 − Φ234). (42)

for every Φ ∈ M+(A4). From the fact that ψ × γ ∈ H3 for any probability measure
γ ∈ M(A2), it follows that R(ψ) < −a3 = a1 + a2 < 1.

By Lemma 3.7, there is a bounded linear functional Q on M(A2) such that

Q(μ) = sup{L1(Φ) : Φ12 = μ, Φ ≥ 0} = sup{Z(Φ134 − Φ234) : Φ12 = μ, Φ ≥ 0}
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for all μ ≥ 0. Note that Q(μ) ≤ R(μ) and

Q(Φ12) ≥ Z(Φ134 − Φ234) (43)

for every Φ ≥ 0. Also note that in the definition, the measure Φ◦∗ also competes for
the supremum, and since L1(Φ◦∗) = −L1(Φ), we can also write

Q(μ) = sup{|L1(Φ)| : Φ12 = μ, Φ ≥ 0} ≥ 0. (44)

We also have σΔ ≥ 0 and (σΔ)12 = σ, and so

Q(σ) ≥ L1(σΔ) = 1. (45)

Claim 4. The functional Q is metrical.

First, suppose that μ is concentrated on the diagonal of A2. Then every measure
Φ ∈ M(A4) with Φ12 = μ is concentrated on the set {(x, x, u, v) : x, u, v ∈ J}, and
hence Φ134 = Φ234, so Q(μ) = 0.

Second, for every μ ≥ 0 we have

Q(μ∗) = sup{L1(Φ) : Φ12 = μ∗, Φ ≥ 0} = sup{L1(Φ) : (Φ∗∗)12 = μ, Φ ≥ 0}
= sup{L1(Φ∗∗) : Φ12 = μ, Φ ≥ 0} = Q(μ).

Third, let κ ∈ M+(A3) and δ > 0. By the definition of Q, there is a measure
Φ ∈ M+(A4) such that

Q(κ12) ≤ L1(Φ) + δ, and Φ12 = κ12.

Consider the space M(A{12345}), where the space of κ is identified with M(A{125})
(the space of Φ remains M(A{1234}). The equation Φ12 = κ12 implies that there is a
measure Γ ∈ M+(A{12345}) such that Γ1234 = Φ and Γ125 = κ. Using (39), we get

Q(κ12) = Q(Φ12) ≤ L1(Φ) + δ = Z(Φ134 − Φ234) + δ = Z(Γ134 − Γ234) + δ

= Z(Γ134 − Γ345) + Z(Γ345 − Γ234) + δ.

Applying (43) with Γ1345 in place of Φ and index 5 in place of 2, we get that
Z(Γ134 − Γ345) ≤ Q(Γ15) = Q(κ15). Similarly, Z(Γ345 − Γ234) ≤ Q(κ25), and so

Q(κ12) ≤ Q(κ15) + Q(κ25) + δ.

Since this holds for every δ > 0, we get that Q(κ12) ≤ Q(κ15) + Q(κ25), proving
that Q is metrical.

Now Q(ψ) ≤ R(ψ) < 1 but Q(σ) ≥ 1, so the hypothesis of the theorem is
violated. This proves (38).

This implies the (seemingly) stronger statement that

H1 ∩ Hδ
2 ∩ Hδ

3 �= ∅ (46)
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for all δ > 0. Indeed, if Φ ∈ H
δ/2
1 ∩H

δ/2
2 ∩H

δ/2
3 , then there is a measure Φ′ ∈ H1 such

that dtv(Φ, Φ′) < δ/2, and then Φ′ ∈ H1 ∩ Hδ
2 ∩ Hδ

3.
Our next step is to prove that for every δ > 0,

H1 ∩ H2 ∩ Hδ
3 �= ∅. (47)

Indeed, let Φ ∈ H1 ∩ H
δ/3
2 ∩ H

δ/3
3 . By dtv(Φ,H2) < δ/3 it follows that ‖Φ−‖ < δ/3.

Consider the measure Ψ = Φ+ + Φ∗− ∈ M+(A4), then

Ψ134 − Ψ234 = (Φ+)134 + (Φ∗
−)134 − (Φ+)234 − (Φ∗

−)234

= (Φ+)134 + (Φ−)234 − (Φ+)234 − (Φ−)134 = Φ134 − Φ234 = σ.

Thus Ψ ∈ H1 ∩ H2. Furthermore,

dtv(Ψ,H3) ≤ dtv(Φ,H3) + ‖Φ − Ψ‖ <
1
3
δ + 2‖Φ−‖ < δ, (48)

so Ψ ∈ Hδ
3. The multicommodity flow Ψ satisfies (33) and (34), and it is easy to

check that it violates capacity ψ by at most ‖Ψ12 \ ψ‖ ≤ dtv(Ψ,H3) < δ.
This completes the proof of Theorem 5.2.
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