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Abstract
Wegive an algorithm to compute the integer cohomology groups of any real partial flag
manifold, by computing the incidence coefficients of the Schubert cells. For even flag
manifolds we determine the integer cohomology groups, by proving that any torsion
class has order 2 (generalizing a result of Ehresmann). We conjecture that this holds
for any real flag manifold. We obtain results concerning which Schubert varieties
represent integer cohomology classes, their structure constants and how to express
them in terms of characteristic classes. For even flag manifolds and Grassmannians
we also describe Schubert calculus. The Schubert calculus can be used to obtain lower
bounds for certain real enumerative geometry problems (Schubert problems).

Mathematics Subject Classification 14M15 · 57T15 primary; 14P25 · 55N91 ·
57N80 · 57R95 secondary

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538
1.1 Additive structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538

1.1.1 Incidence coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538
1.1.2 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540

1.2 Structure constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540
1.3 Characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540
1.4 Summary of the results on H∗(FlRD;Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1541
1.5 Integer coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542

Communicated by Jean-Yves Welschinger.

This research was partially supported by the Hungarian National Research, Development and Innovation
Office, NKFIH K 119934.

B Ákos K. Matszangosz
matszangosz.akos@gmail.com

1 Alfréd Rényi Institute of Mathematics, Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-021-02237-z&domain=pdf
http://orcid.org/0000-0002-5249-9830


1538 Á. K. Matszangosz

1.6 Applications – real enumerative geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 1542
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542

2.1 Vassiliev complex - incidence coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 1543
2.2 Geometry of flag manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544

2.2.1 Schubert varieties, orbit structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544
2.2.2 Tangent bundle of FlD(RN ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545
2.2.3 Direct sum maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546

3 The Vassiliev complex of FlRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548
3.1 Coorientation of the strata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548
3.2 Richardson curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548
3.3 Incidence coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550
3.4 Splitting T X |R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
3.5 The case of Fl(R3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552
3.6 Decomposing TW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
3.7 Determining the cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557
3.8 Kocherlakota’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1558
3.9 Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559

3.9.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559
3.9.2 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1560

3.10 An example Fl(R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563
4 The ring structure of H∗(FlR2D;Q): Schubert calculus . . . . . . . . . . . . . . . . . . . . . . 1564
5 Real Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1567

5.1 Additive structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1567
5.2 Multiplicative structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1568

6 Integer coefficients and Steenrod squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570
6.1 Steenrod squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571
6.2 Integral cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1573
6.3 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1574

6.3.1 Bockstein cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1574
6.3.2 Stabilization of Schubert classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575
6.3.3 Bockstein cohomology of even flag manifolds . . . . . . . . . . . . . . . . . . . . . 1576

7 Enumerative applications: lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578
Appendix A. Topology: Cartan model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1582
Appendix B. Schubert cycles: the general case of partial flag manifolds . . . . . . . . . . . . . . . 1583

B. 1. The complete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584
B. 2. The odd case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585
B. 3. The other cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1586

1 Introduction

In this paper we study the integer and rational coefficient cohomology of real partial
flag manifolds.

1.1 Additive structure

1.1.1 Incidence coefficients

Complex flag manifolds have cell decompositions into even dimensional (complex)
cells which makes the computation of CW-cohomology easy: all boundary maps are
trivial. The generators of the cohomology groups can be represented by Schubert
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varietieswhosemultiplicative structure constants are given bySchubert calculuswhich
is a classical and well-developed theory [36].

Real flag manifolds also have a cell decomposition, however the boundary maps
are no longer trivial. The boundary maps have been first examined by Ehresmann
[16]: he computed them completely for the case of real Grassmannians Gr p(Rp+q) =
FlRp,q [16, p. 80], [13, p. 73], up to sign for flag manifolds of type FlRp,q,r [16, p.

85] and he determined the cycles in the case of FlR1,q,r [16, p. 87]. In the case of
Grassmannians, Pontryagin [44, Theorem 1] determined which Schubert varieties are
cycles with rational coefficients (with some restrictions), see also [23, III.3.2.2.B]
and [20]. Ehresmann also observed that the incidence coefficients are 0 or ±2. This
implies that the mod 2 cohomology groups of flag manifolds have an additive basis
given by the Schubert cycles. Their mod 2 multiplicative structure constants follow
from a theorem of Borel and Haefliger [7]: they agree with the structure constants of
the complex Schubert cycles mod 2.

More generally, R-spaces (the flag manifolds of real semisimple Lie groups) have
Bruhat cell decompositions [15]. If all multiplicities of the restricted roots are greater
than 1, then there are no cells of neighboring dimensions [15]. In this case, the boundary
relations of this cell decomposition are trivial, so additively the cohomology groups
are freely generated by the closures of the Bruhat cells. If the multiplicities are not
such, the boundary relations are no longer trivial, and to determine the cohomology
groups, one has to compute the homology of a chain complex. Kocherlakota [38]
computed the differentials in the Morse complex for general R-spaces up to sign. As
he remarks, the open cells determined by the Morse function coincide with the Bruhat
cells, so his computations determine the incidence coefficients which are 0 or ±2.

In order to compute the integer or rational coefficient cohomology groups, the signs
are also required. The latest development is the work of Rabelo and San Martin [46],
who complete Kocherlakota’s computation for R-spaces by determining the signs of
the incidence coefficients via a CW homology approach.

Our first aim is to compute the incidence coefficients of the Schubert cells in real
flag manifolds via a slightly different approach, namely by using the geometry of
the Schubert cells. We give an alternative proof of Kocherlakota’s theorem, then we
compute the signs (Theorems 3.10, 3.13, 3.16). These results can be summarized as
follows:

Theorem 3.10 The incidence coefficient of the Schubert cells �I and �J is given by

[�I ,�J ] =
{
0, NI (a, b) even

(−1)s(I ,J )2, NI (a, b) odd

where NI (a, b) and s(I , J ) are integers determined by the combinatorics of the
ordered set partitions I and J , see (2.1), (3.5) and Theorem 3.16.

We expect that themethod presented here also generalizes to R-spaces, however in this
paper we only consider the real partial flag manifolds FlRD. Our results are similar to
[46], although the results are not directly comparable. Using Theorems 3.10 and 3.16,
we computed several examples with SageMath’s homology package [52]. Based on
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these computations, we formulated a conjecture stating that all torsion in H∗(FlRD;Z)

has order exactly 2 (see also Theorem 6.1).

1.1.2 Cycles

Once the incidence coefficients are known, it is a nontrivial combinatorial problem
to determine what the integer or rational cohomology groups are, which Schubert
varieties are cycles and what the further generators are (i.e. which union of oriented
Schubert cells). This is currently unsolved for general real flag manifolds FlRD. The
second contribution of this paper is that we determine which Schubert varieties are
nonzero rational cycles in the case of even flag manifolds FlR2D, see Theorem 3.12. In
particular, we obtain the following result (for the notation, see (2.1) and Section 3.7).

Theorem 3.12 A basis of H∗(Fl2D(R2N );Q) is given by

H∗(Fl2D(R2N );Q) =
〈
[σDI ] : I ∈

(
N

D
)〉

.

We also recover the result of Pontryagin on Schubert cycles in Grassmannians [44,
Theorem 1], see Theorem 5.1. Using the incidence coefficients we also computed
some small examples of geometric cycles generating H∗(FlRD;Q) for general D, see
the tables of Appendix B. These tables illustrate the stark contrast of the general case
with the simple descriptions of Theorems 3.12 and 5.1.

1.2 Structure constants

Once the cycles have been determined, the next step is to determine the multiplicative
structure constants of the cycles. We will carry this out for FlR2D by showing that they
are circle spaces with rational coefficient cohomology [17,41], see Theorem 4.4, its
Corollaries 4.5, 4.6. Namely, in Corollary 4.5 we obtain the following result.

Theorem (Corollary 4.5) The structure constants of [σR

DI ] ∈ H∗(FlR2D;Q) agree with
the structure constants of [σC

I ] ∈ H∗(FlCD;Q):

[
σR

DI

]
·
[
σR

DJ

]
=

∑
K

cKI J

[
σR

DK

]
⇐⇒

[
σC

I

]
·
[
σC

J

]
=

∑
K

cKI J

[
σC

K

]
.

In the special case of Grassmannians, this follows from results of [23, III.3.2.3.E], and
[20], see also Propositions 5.2, 5.3. In the context of algebraic geometry, the Chow-
Witt rings of real Grassmannians have been recently considered in [57]; the similarity
of Propositions 5.2, 5.3 with [57, Theorem 1.2] suggests that Corollaries 4.5, 4.6 have
analogues for the Chow-Witt rings of even flag manifolds.

1.3 Characteristic classes

Returning to the complex case, another kind of description of the cohomology ring of
the complex flagmanifolds is given in terms of characteristic classes of their tautologi-
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cal bundles. Namely, H∗(FlD(CN );Z) is generated as an algebra by the Chern classes
ci (Dj ) of the tautological quotient bundles Dj = S j/S j−1. In modern language, this
can be formulated as surjectivity of the Kirwan map [35]. The relations are given by
the identity

∏m
j=1 c∗(Dj ) = 1, where c∗ is the total Chern class, see e.g. [8, Chapter

23]. In the case of the Grassmannians, the relationship between these two descriptions
is given by the Giambelli formula

[σλ] = det
(
cλi+ j−i (Q)

)
.

In the real case G = GL(N , R), and a parabolic subgroup P ≤ G, Pontryagin
classes do not always generate the cohomology ring H∗(G/P;Q); this is only the
case if G and P have the same rank, i.e. even real flag manifolds FlR2D. In other words,
the “rational real Kirwan map” is surjective iff rk P = rk G. In this case, we express
[σλ] in terms of Pontryagin classes, see Corollary 4.6.

Casian and Kodama [11] made a conjecture about the ring structure of H∗(FlRD;Q)

in the case of D = (k, n − k), i.e. Grassmannians H∗(Grk(Rn);Q), which has been
proved even equivariantly via different approaches, see [10,30,47,50]. Recently, He
[32] determined the cohomology ring H∗(FlRD;Q) for arbitrary D. We state He’s
theorem in the form convenient for us in Theorem A.3.

1.4 Summary of the results on H∗(FlRD; Q)

The new results of this paper partially answer the following questions. Given a real
partial flag manifold FlRD:

(Q1) Which Schubert varieties σI are cycles? (I ∈ (N
D
)
, see (2.1)) Which ones are

nonzero in H∗(FlRD;Q)? Which linear combinations of Schubert cells are the
remaining generators?

(Q2) What are the multiplicative structure constants of the cycles?
(Q3) What are the relations between Pontryagin classes of the tautological bundles?

What further additional generators ri are there and what are the relations?
(Q4) How to express one set of generators from the other? σI (pi , ri ) =? pi (σI ) =?,

ri (σI ) =?

Theorems 3.12, 5.1 andAppendixBare results of type (Q1). Theorem4.4,Corollary
4.5, and Propositions 5.2, 5.3 concern (Q2). He’s Theorem A.3 [32] answers (Q3) in
rational coefficient cohomology. Corollary 4.6 concerns (Q4).

Note, that (Q1), (Q3) and (Q4) imply (Q2) rationally, at least in theory; in practice
giving combinatorial rules to compute the structure constants is not immediate and
has been extensively studied in the complex case for different kind of cohomology
theories by Littlewood-Richardson rules, checkers, puzzles [25,37,53]. By Corollary
4.5, the same combinatorial descriptions can be applied in the even real case FlR2D.
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1.5 Integer coefficients

The final step is determining the integer coefficient cohomology. The formulas for the
incidence coefficients (Theorems 3.10, 3.16) can be used in a computational homology
program, to compute the cohomology groups and their generators. We calculated
several examples using SageMath’s homology package (all partial flag manifolds of
RN , N ≤ 7 and some up to R11, see Appendix B for some of the results). Based on
these computations, we make the following conjecture:

Conjecture Every torsion element in H∗(FlRD;Z) is of order exactly two.

If the conjecture is true, then the cohomology groups can be completely determined
(cf. Proposition 6.2). The conjecture is known in the following cases. For infinite
Grassmannians it is classical [6] that all torsion is of order 2. For finite Grassmannians,
this is a result of Ehresmann [16]. We prove the following result:

Theorem 6.1 Every torsion element in H∗(FlR2D;Z) is of order exactly two.

In particular, the integral classes of the Schubert cycles [Z ] are completely determined
by their rational and mod 2 reductions. The proof of this theorem involves computing
the Bockstein cohomology of X := FlR2D:

H∗
β (X) := (H∗(X;F2);Sq1),

(Sq1 ◦Sq1 = 0); H∗
β (X) is the first page of the Bockstein Spectral Sequence. In the

computations, we use that Sq1[σI ] equals the sum of those Schubert classes [σJ ]
which have nonzero incidence coefficient with [σI ] (Proposition 6.3) this extends
an observation of Lenart [40]. This concludes the determination of the cohomology
groups H∗(Fl2D;Z). We do not take on the task of determining the integer coefficient
ring structure.

1.6 Applications – real enumerative geometry

Using the Schubert cycle description of the rational cohomology ring structure, we
give an application to real enumerative geometry. Whereas in the complex case, the
answer to an enumerative geometry problem is a single number, in the real case,
the answer is a list of possible numbers, depending on the generic configuration. In
general, very little is known about the complete range of such numbers. In the case
of flag manifolds, the enumerative geometric problems are called Schubert problems
and in general, the range of possible solutions is unknown. However, the cohomology
ring calculation provides a lower bound. In many cases, the lower bound is 0, however
in some cases, there is a meaningful lower bound, see Proposition 7.1.

2 Preliminaries

In this section we recall the general definition of the Vassiliev complex and introduce
some notation for the geometry of real flag manifolds.
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2.1 Vassiliev complex - incidence coefficients

Throughout this section let (Xα)α∈A be a stratification of a smooth manifold X where
each stratum is contractible. Vassiliev [55], [2, Ch. 4.2] gave a method for computing
the cohomology of X and determiningwhen the closure of a stratum has a fundamental
cohomology class (or in another terminology is a ‘cycle’). Let Fi := X\Xi+1 be the
open codimension filtration of X , where Xi is the union of the i-codimensional strata.
The Vassiliev complex is the bottom row of the E1-page of the spectral sequence
associated to this filtration with connecting homomorphism

d : H p (
Fp, Fp\X p) → H p+1

(
Fp+1, Fp+1\X p+1

)
,

The cohomology of the Vassiliev complex computes H∗(X;Z), since the spectral
sequence of the filtration degenerates on the E2-page by the contractibility assumption
on the strata. Furthermore, since the strata are contractible, their normal bundles are
trivial; let us fix a coorientation on each stratum. The k-cochains in the Vassiliev
complex are the linear combinations of the k-codimensional strata Xα with their fixed
coorientation, and the differential d can be written as

dXα =
∑

codim Xβ=codim Xα+1

nαβXβ.

We will also use the notation [Xα, Xβ ] instead of nαβ . In case one can find a
submanifold D of X intersecting all strata of Xα transversally, one can compute the
incidence coefficients nαβ geometrically as follows ( [2,55], see also [19]). If Xβ 	⊆ Xα

then nαβ = 0.
Let A := Xα be a k-codimensional and B := Xβ ⊆ Xα be a (k+1)-codimensional

stratum,with normal bundles να, νβ respectively (these are trivial by the contractibility
assumption). Let D := Dk+1 be a (k+1)-dimensional submanifold of X that intersects
all strata of A transversally and intersects B in a point b. Let L := D ∩ A which by
transversality is a disjoint union of connected curves Li , whose closure contains b.
For each Li , choose a splitting s of the quotient map q : T X |Li → να|Li , such that

T D|Li = T Li ⊕ να|Li ,

where να|Li ⊆ T X |Li via the splitting s. Then T Li is oriented by taking the orientation
pointing towards b and να is oriented by the coorientation of A, so they determine an
orientation of T D|Li (fix the convention of taking T Li first, then να|Li ). This extends
to an orientation O1 of T D at b. Since D is transversal to B, the orientation of νβ |b
determines an orientation O2 of T D|b. If the two orientations O1 and O2 agree for
Li , then set niαβ := +1, otherwise −1. Then nαβ = ∑

i n
i
αβ .

One can show that Xα is a cycle in the Vassiliev complex, iff Z = Xα has a
fundamental cohomology class: from now on we will simply say that Z is a cycle. We
will compute the Vassiliev complex of real partial flag manifolds for the stratification
by Schubert cells in Sect. 3.
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2.2 Geometry of flagmanifolds

This section is standard, see [9,25] for the complex case. We include it to fix some
notation andproperties thatwewill use in the computations of Sect. 3.We are interested
in the real case, so GL(N ) denotes GL(N , R) and B+ is the subgroup of real upper
triangular matrices.

2.2.1 Schubert varieties, orbit structure

Denote the standard basis in RN by e1, . . . , eN , their one-dimensional spans by εi =
〈ei 〉, and let E• be the standard flag, which consists of the subspaces E j = ⊕ j

i=1 εi .
The stabilizer of E• in G := GL(N ) is B+. Choose a parabolic subgroup, i.e. B+ ⊆
P ⊆ G. Similarly to the complex case,

P = GL(D), for some D = (d1, . . . , dm),
∑

di = N

which is the subgroup of block upper-triangular matrices with elements of GL(di ) on
the diagonal blocks and arbitrary entries above the blocks.

The corresponding homogeneous space X = G/P is the partial flag manifold
FlD(RN ). Using this notation, di denotes the difference in the dimensions of the flags.
Let their dimensions be S = (s1, . . . , sm), where s1 = d1, and si − si−1 = di for
i > 1.

The B+-orbits on X are calledBruhat cells�I (E•). Each of these contains a unique
coordinate flag E I• ∈ FlD(RN ) (2.2) by the Bruhat decomposition [9, Section 1.2] or
[15, Corollary 3.8] for the real case. These in turn are indexed by ordered set partitions
I ∈ OSP(D), where

OSP(D) :=
(
N

D
)
= SN/(Sd1 × . . . × Sdm ). (2.1)

By definition, an element of OSP(D) is a partition of the numbers [N ] := {1, . . . , N }
to m parts of sizes d1, . . . , dm . In particular, the j th part is a subset of [N ] of size
d j , that we will denote by I j ∈

(N
d j

)
. In general, we will denote the set of k-element

subsets of N by
(N
k

)
. Using this indexing, for I ∈ OSP(D), we denote by E I• the

coordinate flag (E I
1 ⊆ E I

2 ⊆ . . . ⊆ E I
m) whose r th term is

E I
r =

⊕
j≤r
l∈I j

εl . (2.2)

Notation. We will represent I ∈ OSP(D) by the minimal length element in SN in
the coset of I : list elements of I1 in increasing order, then elements of I2 in increasing
order etc. – the I j separated by brackets or commas. In particular, for complete flag
manifolds D = (1N ) this coincides with the one-line notation of OSP(D) = SN ,
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the same convention as [25], see also [26, p. 20]. It is sometimes convenient to write
I ∈ (N

D
)
as a function: I : [N ] → [m] satisfying |I−1( j)| = d j for all j .

Given a general complete flag A•, the Bruhat cells coincide with the following
Schubert cell description:

�I (A•) = {F• ∈ FlD(RN ) : dim Fi ∩ Ak = rI (i, k)}, (2.3)

where rI (i, k) = |{l ∈ I1 ∪ . . . ∪ Ii : l ≤ k}|. When we omit the flag from the
notation �I , that means that we take the standard flag E•. For the dimension of �I ,
I ∈ OSP(D), introduce 	(I ) to be the number of inversions (i.e. pairs of elements in
reverse order):

	(I ) := |{(a, b) : a > b, a ∈ Iα, b ∈ Iβ, α < β}|. (2.4)

Then dim�I = 	(I ) (see Proposition 2.3).
The closure of the orbit �I is called a Schubert variety and is denoted σI . If a

Schubert variety σI is a cycle (in the sense discussed in Sect. 2.1), we call it a Schubert
cycle and its class [σI ] a Schubert class. The orbit structure is described by the Bruhat
order (cf. [38, Theorem 2.3.2] for the real case):

σI =
⋃
J≤I

�J (2.5)

where J ≤ I iff (J1 ∪ . . . ∪ Ji )r tiv ≤ (I1 ∪ . . . ∪ Ii )r tiv for all i , where r tiv means
“reordered to increasing value" and the partial order (a1, . . . , a j ) ≤ (b1, . . . , b j ) is
the lexicographic one. This is also equivalent to rI (i, k) ≥ rJ (i, k) for all i, k.

2.2.2 Tangent bundle of FlD(RN)

We recall a well-known decomposition of the tangent bundle of X in terms of tauto-
logical bundles.

Let G := GL(N ) and P ⊆ G be a parabolic subgroup; P = GL(D). P has pro-
jections to subgroups pi : P → GL(si ) which are homomorphisms, whose defining
representations induce the tautological bundles. For example, the defining represen-
tation of GL(si ) on Rsi induces the i th tautological bundle over G/P:

Si ∼= GL(N ) ×P Rsi .

The quotient and difference bundles are defined by the following exact sequences
of bundles over X :

0 Si RN Qi 0

0 Si−1 Si Di 0 (2.6)
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with the convention S0 = 0. Notice that si = dim Si , di = dim Di , and let qi =
dim Qi . Recall the following general fact about the tangent bundle of homogeneous
spaces:

Proposition 2.1 [27, Lemma II.2.3.1. (p. 132)] Let X = G/H be a homogeneous
space and let g and h denote the Lie algebras of G and H respectively. Then the G-
equivariant vector bundle T X → X fits into the short exact sequence of G-equivariant
bundles

0 → G ×H h → G ×H g → G ×H (g/h) ∼= T X → 0

where H acts on g, h via the adjoint representation.

Corollary 2.2

T X ∼=
m−1⊕
i=1

Hom(Di , Qi ) ∼=
⊕

1≤i< j≤m
Hom(Di , Dj )

Proof Apply the Proposition to the homogeneous space FlD(RN ) = GL(N )/GL(D).
��

A choice of the basis ei ∈ RN induces splittings Qi → RN , Di → RN , which is
not essential, but facilitates computations, in particular it realizes T X as a subbundle
of End(RN ). To alleviate notation, from now on, we will use an abuse of notation and
write NI�I instead of NEI•�I , where E I• is the coordinate flag corresponding to the
ordered set partition I introduced in (2.2). Then the tangent and normal spaces of �I

can be identified as follows:

Proposition 2.3 The tangent and normal spaces of �I at E I• , I ∈ OSP(D) are given
by

TI�I =
⊕

(c,d)∈TI
εcd , NI�I =

⊕
(c,d)∈NI

εcd

where εcd = Hom(εc, εd) and

TI := {(c, d) ∈ [N ]2 : c > d, I (c) < I (d)}, NI := {(c, d) ∈ [N ]2 : c < d, I (c) < I (d)}.

In particular, the dimension of �I is given by |TI | = 	(I ).

Using the identification T X ⊆ End(RN ) as a subbundle and Corollary 2.2, the proof
consists of computing the stabilizer subgroups StabB+(E I• ), we omit the details.

2.2.3 Direct summaps

We are going to make use of the following natural maps between flag manifolds. Let
D1 = (d1i ) ∈ Nm,D2 = (d2i ) ∈ Nm be two ordered sets of natural numbers, where
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we allow zero and let D1 + D2 = (d1i + d2i ) be their element-wise sum. Let A1 be
a vector space of dimension

∑
d1i , and let A2 be a vector space of dimension

∑
d2i .

The direct sum of A1 and A2 induces the following direct sum map of flag manifolds:

FD1,D2 : FlD1(A1) × FlD2(A2) ↪→ FlD1+D2 (A1 ⊕ A2)

defined by

FD1,D2

(
F1• , F2•

)
κ
:= F1

κ ⊕ F2
κ .

A direct sum decomposition V = ⊕
i Ai induces a direct sum decomposition

End(V ) =
⊕
i, j

Hom(Ai , A j ),

in particular we obtain inclusions ι j : End(A j ) ↪→ End(V ).

Proposition 2.4 Let FlDi (Ai ), i = 1, 2 be two flag manifolds with Di ∈ Nm, and let
E2• ∈ FlD2(A2) be a fixed flag. Then

f : FlD1(A1) → FlD1+D2 (A1 ⊕ A2)

defined by f := FD1,D2(·, E2•) is an isomorphism onto its image, and

d f : T FlD1 → T FlD1+D2

coincides with ι1|T FlD1
, where T FlD1 ⊆ End(A1) and T FlD1+D2 ⊆ End(A1 ⊕ A2)

are subbundles using the identification determined by the bases (a1i ∈ A1), (a2i ∈ A2).

Proof (Sketch of proof) The direct summap is a GL(A1)×GL(A2) ⊆ GL(A1⊕ A2)-
equivariant embedding, which implies the first statement. Denote the tautological
difference bundles over FlDi (Ai ) by D j

i , i = 1, . . . ,m, j = 1, 2 and over

FlD1+D2(A1⊕ A2) denote them by Di , i = 1, . . . ,m. Using the splittings D j
i ↪→ A j

and Di ↪→ A1 ⊕ A2 for i = 1, . . . ,m, j = 1, 2:

Di |FlD1 × FlD2
= D1

i ⊕ D2
i .

The second part of the claim then follows fromcommutativity of the following diagram
of bundles over FlD1 :

⊕
i< j Hom(D1

i , D
1
j )

⊕
i< j Hom(D1

i ⊕ D2
i , D

1
j ⊕ D2

j )

End(
⊕m

i=1 D
1
i )

ι1 End(
⊕m

i=1 D
1
i ⊕ D2

i )

��
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3 The Vassiliev complex of FlRD

In this section we compute the Vassiliev complex of FlRD as described in Sect. 2.1,
whose cohomology computes H∗(FlRD;Z). The stratification is given by the Schubert
cells�I . Explicitly, we determine the incidence coefficients [�I ,�J ]. To compute the
coefficients [�I ,�J ], one has to coorient each �I , and compare these coorientations
by extending them to the adjacent orbits �J along transversal submanifolds D as
described in Sect. 2.1. The computations have many similarities to the one given by
Kocherlakota, but instead ofMorse theory we emphasize the geometry of the Schubert
cells. Let us give a brief outline of the proof.

In Sect. 3.1 we define the coorientation of the Schubert cells �I . In Sect. 3.2 we
define the transversal submanifolds D to be the opposite Bruhat cells. The intersection
of W := �I ∪ �J with D is a Richardson curve R ∼= RP1. In Sect. 3.3 we show
that [�I ,�J ] is 0 or ±2 depending on whether the restriction of the normal bundle
ν(W )|R is trivial or not. To determine triviality of ν(W )|R wedecompose it into a direct
sum of line bundles, which is obtained in Sects. 3.4–3.6. This yields a combinatorial
description of [�I ,�J ] in terms of the number of Möbius bundles over R. In Sect. 3.7
using this combinatorial description, we determine which Schubert varieties σI are
nonzero rational cycles in the even case FlR2D. In Sect. 3.8 we relate our computations
to the theorem of Kocherlakota. By considering local orientations of ν(W )|R , we
determine the sign of [�I ,�J ] in Sect. 3.9. To conclude the chapter we illustrate the
results on Fl(R4). We will use the notation of Sect. 2.2.

We remark that in the case of real (and complex) flag manifolds, each B+-orbit is
homeomorphic to an affine space, so the orbit stratification yields a cell decomposition.
Therefore computing the incidence coefficients agrees with the incidence coefficients
of theCWcomplex,which have been examinedbyEhresmann [16] forGrassmannians,
later by Kocherlakota for generalized real flag manifolds (R-spaces) using the Morse
complex [38] and most recently by Rabelo and San Martin [46] using CW homology
(for the general case of R-spaces).

3.1 Coorientation of the strata

We describe the Vassiliev complex of X = FlD(RN ), D = (d1, . . . , dm). First, we
coorient all cells by fixing a coorientation of �I at E I• (see Sect. 2.2 for the notation).
Using the decomposition of the tangent and normal spaces given in Proposition 2.3,
orient both the tangent and normal spaces by the lexicographic ordering of those
ekl = (ek �→ el) which appear in them. Since �I is contractible, the orientation of the
normal space NI�I at E I• determines a coorientation on the whole of �I . In fact, we
will not make use of the choice of orientations up until Sect. 3.9 when we determine
signs of the incidence coefficients.

3.2 Richardson curves

Our aim is to determine the incidence numbers [�I ,�J ], for 	(J ) = 	(I ) − 1 and
J ≤ I (recall the notations (2.4) and (2.5)). The Bruhat order implies that J is obtained
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from I by interchanging a ∈ Iα with some b ∈ Iβ , a > b, α < β (this follows e.g.
from [38, Theorem 2.3.2]). We call such I , J (and �I ,�J ) adjacent and fix this data
in the upcoming discussion.

According to the construction of the Vassiliev complex (Sect. 2.1), we will fix a
transversal submanifold to �J at E J• ; natural candidates are the dual Schubert cells,
i.e. the orbits of the opposite Borel subgroup B−. The B−-orbits B−E J• have the
following characterization:

B−E J• = �J D

(
E∨•

) = {
F• ∈ FlD(RN ) : dim Fi ∩ E∨

k = rJ D (i, k)
}

where J D = (J D
1 , J D

2 , . . . , J D
m ), J D

i := N + 1− Ji and E∨• is the standard dual flag,
whose i th subspace is

E∨
i = 〈eN , . . . , eN−i+1〉.

Since the flags E•, E∨• are transverse, all B−-orbits are transverse to �I , so
B−E J• is a transversal submanifold to �J at E J• . For general I , J , the intersections
σ J
I = σI (E•) ∩ σJ D (E∨• ) are called Richardson varieties. To determine the inci-

dence numbers [�I ,�J ], we will be interested in the Richardson curves σ J
I when

	(J ) = 	(I ) − 1 and J ≤ I . Intuitively, the Richardson curve is the curve between
the coordinate flags E I• and E J• obtained by continuously exchanging the coordinates
εa and εb in E I• .

More precisely, in terms of the direct sum maps of Proposition 2.4, the Richardson
curve σ J

I is the isomorphic image of f : P(A1) ↪→ FlD(RN ) for A1 := εa ⊕ εb,
A2 := A∨

1 = ⊕
i 	=a,b εi and E• := E I• ∩ E J• ,

f (·) = FD1,D2(·, E•), D2 = (d1, . . . , dα − 1, . . . , dβ − 1, . . . , dm),

for D = D1 + D2 and D1 = (1, 1) in positions α, β. Note that σ J
I is isomorphic to

RP1. The isomorphism f induces tautological bundles ρ → σ J
I on the Richardson

curves as follows. Let

f̃ = (id, f ) : A1 × P(A1) → A1 × FlD

be the trivial bundle map covering f and let τ → P(A1) denote the tautological
subbundle of A1. Then we can define a tautological bundle over σ J

I by

ρ := f̃ (τ ) (3.1)

which is a subbundle of the trivial bundle A1 ⊆ RN over σ J
I .

Note that the intersection �I ∩ B−E J• is the Richardson curve minus two points
σ J
I \{E I• , E J• }, i.e. RP1 minus two points. We remark that the connected components

of this intersection correspond to the pairs of flows in the terminology of Kocherlakota
[38].
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Fig. 1 An illustration of
Richardson curves

W

D

I

J

B−J

B−I

ΩI

ΩJ

3.3 Incidence coefficients

Let W := �I ∪�J and let D := B−E J• ∪ B−E I• which is a transversal submanifold
to �J at E J• . Note that W and D are smooth. Indeed, complex Schubert varieties
σC

I ⊆ FlCD are normal [9], so their singularities are of codimension at least 2 and are
unions of Schubert cells. Therefore �C

I union the adjacent complex Schubert cells is
smooth. This also implies that W and D are smooth in the real case: by Whitney’s
Lemma [58, Lemma 9] Reg(σR

I ) = Reg(σC

I )(R), i.e. the regular points of σR

I are the
real points of the regular points of σC

I . For an illustration of the notation, see Fig. 1.
The Richardson curve R := σ J

I is the transversal intersection of W and D (the
intersection of the two surfaces on Fig. 1). Let R+ ∪ R− = R\{I , J } denote the two
branches of the Richardson curve (the choice of the sign is arbitrary). Note that R±
are the curves denoted by Li in Sect. 2.1. To compute [�I ,�J ], we are going to use
smoothness of W and D.

Proposition 3.1 With the previous notations, the incidence coefficients are determined
up to sign by the triviality of the normal bundle ν(W ↪→ X)|R:

[�I ,�J ] =
{
0 if ν(W ↪→ X)|R is trivial

±2 if ν(W ↪→ X)|R is nontrivial

Triviality of ν(W ↪→ X)|R is determined by the first Stiefel-Whitney classw1(ν(W ↪→
X)|R).

Proof Since R is the transversal intersection of W and D, there is a short exact
sequence

0 T R T D|R ν(W )|R 0

where ν(W ) is the normal bundle of W in X . Take a splitting of this short exact
sequence:

T D|R = T R ⊕ NW .
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For the differentials of the Vassiliev complex, one has to compare the following two
orientations for each branch R±:

• T D|J oriented by the coorientation of �J

• NW |J oriented by extending the coorientation of �I |R± to J and T R oriented
towards J on both branches R±.

To compute [�I ,�J ] up to sign, it is enough to compare how the two coorienta-
tions �I |R± extend to NW |J . This amounts to deciding orientability of the bundle
NW ∼= ν(W )|R . If NW is orientable, then since its orientation on both branches agrees
with its orientation at I , the orientations of NW |R± extend to J identically. Since
the orientations of T R induced by the orientations of T R± differ at J , in this case
[�I ,�J ] = 0.

If NW is not orientable, then since the orientations of NW |R+ and NW |R− agree at

I , they are different at J . In this case [�I ,�J ] = ±2. Finally, vector bundles over S1

are classified by their first Stiefel-Whitney class w1. ��

In the upcoming Sects. 3.4–3.6 we determine triviality of ν(W )|R by giving linearly
independent line subbundles λcd ⊆ ν(W )|R spanning it (Theorem 3.5), and counting
the nontrivial ones (since R ∼= S1, each λcd is either a Möbius bundle or a trivial one).
Kocherlakota computes the incidence coefficients (up to sign) using a very similar
idea: he computes the relative orientations of pairs of flows from I to J , which are in
our terminology the branches of the Richardson curves.

Remark 3.2 As we have mentioned before, since Schubert varieties are normal, the
singularities have codimension at least 2 and the singular part is a union of Schubert

cells. Therefore �I union the adjacent cells is smooth. Let us denote this union by
◦
σI .

This gives a new stratification of σI , with no one-codimensional stratum, but now the

strata are no longer contractible. Now σI is a cycle if and only if
◦
σI is coorientable.

Indeed, by the previous Proposition, this is the information encoded in [�I ,�J ]:

the normal bundle of
◦
σI restricted to the Richardson curve σ J

I is orientable iff this

coefficient vanishes. Then
◦
σI is coorientable iff ν(

◦
σI ) restricted to the Richardson

curve σ J
I is orientable (trivial) for all adjacent J .

For general stratified submanifolds, the union with the one-codimensional strata is
not smooth, but when it is, this method is sufficient to decide cycleness. However to
compute the cohomology groups we need more, namely to determine the incidence
coefficients, which cannot be deduced only from orientability.

3.4 Splitting TX|R
To determine triviality of ν(W )|R , we split T X |R into line subbundles λcd ,
parametrized by TI � NI (for the notation TI , NI , see Proposition 2.3). We will show
that TW |R = ⊕

(c,d)∈TI λcd , so
⊕

(c,d)∈NI
λcd is isomorphic to ν(W )|R , see Theorem

3.5.
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In (3.3) wewill specify λcd → R as subbundles of T X |R ⊆ End(RN ). In particular
each λcd is of the form Hom(μ1, μ2):

μi ∈ {ρ, ρ∨, εk : k ∈ [N ]},

where ρ → R is the tautological bundle defined in (3.1), and ρ∨ denotes its orthogonal
complement.

Recall the quotient bundles introduced in (2.6). A choice of a basis ei ∈ εi induces
a scalar product on RN ; this realizes the quotient bundles Qi , Di as subbundles of
RN . This induces the following splittings over X = FlD(RN ):

RN = Si ⊕ Qi =
m⊕
j=1

Dj =
N⊕

k=1

εk, Si =
i⊕

j=1

Dj , Qi =
m⊕

j=i+1

Dj

for all i = 1, . . . ,m. By restricting to the Richardson curve R = σ J
I ,

Di |R =

⎧⎪⎨
⎪⎩

⊕
j∈Ii ε j , i 	= α, β,

ρ ⊕ ⊕
a 	= j∈Iα ε j , i = α

ρ∨ ⊕ ⊕
b 	= j∈Iβ ε j , i = β

(3.2)

where ρ → R is the tautological bundle defined previously in (3.1). Then via the
isomorphism

T X ∼=
⊕
i< j

Hom(Di , Dj ) ⊆ End(RN )

the decomposition (3.2) induces a splitting of T X |R into line bundles λcd → R
parametrized by (c, d) ∈ TI � NI , defined as follows

λcd :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Hom(ρ, ρ∨), if c = a, d = b

Hom(ρ, εd), if c = a, I (a) < I (d) ≤ I (b), d 	= b

Hom(εc, ρ
∨), if d = b, I (a) ≤ I (c) < I (b), c 	= a

εcd , else.

(3.3)

where in the else line we use that Hom(ρ ⊕ ρ∨, εk) = Hom(εa ⊕ εb, εk).

3.5 The case of Fl(R3)

Next, we will show that {λcd : (c, d) ∈ TI } span TW |R . We show this by reducing the
general case FlD to the flag manifolds FlD′(R3). In this section we treat this special
case: we compute the tangent bundles TW ′|R for all Schubert varieties in FlD′(R3).
Then the general case of FlD can be reduced to these results, by using direct summaps
f : FlD′(R3) ↪→ FlD. This will be used in Sect. 3.6, where we show λcd ⊆ TW ′|R
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Table 1 The bundle TσI |R/T R, for R = Rab = σ J
I

(a, b) (2,1) (3,1) (3,2)

σ321 ε32 ⊕ ε31 ε32 ⊕ ε21 ε31 ⊕ ε21

σ231 Hom(ε3, ρ
∨) ε21 –

σ312 – ε32 Hom(ρ, ε1)

by showing that λcd ⊆ d f (TW ′) for some smooth submanifold W ′ ⊆ FlD′(R3) with
f (W ′) ⊆ W .
Let D′ = (1, 1, 1), εi = 〈ei 〉 and E• be the standard flag, Ei = ⊕i

j=1ε j . Then

• σ321 = X
• σ231 = {F• : F1 ⊆ E2}
• σ312 = {F• : E1 ⊆ F2}
• σ213 = {F• : F2 = E2}
• σ132 = {F• : F1 = E1}
• σ123 = {F• : F1 = E1, F2 = E2}

where we use the one-line notation as discussed after (2.1). All of these Schubert
varieties are smooth. The tangent bundles of the ≥ 2-dimensional Schubert varieties
are therefore:

Tσ231 =Hom (S1, E2/S1) ⊕ Hom (D2, D3) ,

Tσ312 =Hom (S1, D2) ⊕ Hom (S2/E1, D3) ,

Tσ321 =T X .

(3.4)

Let I , J ∈ OSP(D), 	(J ) = 	(I )−1 and J be obtained by interchanging a ∈ Iα with
some b ∈ Iβ , a > b, α < β. If I is fixed, denote the Richardson curve σ J

I by Rab.
Then by restricting to the Richardson curves R = Rab, we obtain the expressions for
TσI |R/T R described in Table 1, where εi j = HomR(εi , ε j ) ⊆ T X |R and ρ → R is
the tautological bundle as described earlier.

Table 1 shows that {λcd : (c, d) ∈ TI } defined in (3.3) spans TW |R .
Similarly, for D′ = (1, 2), FlD′(R3) = P2, the only ≥ 2-dimensional orbit is

I = (3)(1, 2), J = (2)(1, 3) and

TσI |R/T R = Hom(ρ, ε1)

In case D′ = (2, 1), FlD′(R3) = Gr2(R3), the only ≥ 2-dimensional orbit is I =
(2, 3)(1), J = (1, 3)(2) and

TσI |R/T R = Hom
(
ε3, ρ

∨)
3.6 Decomposing TW

Let us return to the general case X = FlRD, and fix adjacent I , J , a ∈ Iα, b ∈ Iβ ,
R = σ J

I , W = �I ∪ �J as before.
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In this section we show that

TW |R =
⊕

(c,d)∈TI
λcd

for λcd defined in (3.3). We show this by embedding smooth submanifolds f : W ′ ↪→
W , such thatλcd ⊆ d f (TW ′)|R ⊆ TW |R for all (c, d) ∈ TI . TheW ′ are submanifolds
of smaller flag manifolds FlD1 which are embedded in FlD(RN ) via the direct sum
maps of Sect. 2.2.3.

For each (c, d) ∈ TI distinct from (a, b) we specify a direct sum map. Set ϑ :=
{a, b, c, d} which has 3 or 4 elements, and let

(D1)κ := |{k ∈ ϑ : I (k) = κ}|, κ = 1, . . . ,m

the number of distinct elements in ϑ which are in Iκ (this is either 0, 1 or 2). Let
D2 := D − D1 and � = 〈εk : k ∈ ϑ〉. The decomposition RN = � ⊕ �∨ induces
the direct sum map

F : FlD1(�) × FlD2(�
∨) → FlD(RN ).

Let E I J• := E I• ∩ E J• ∈ FlD2(�
∨). Define the embedding f : FlD1(�) ↪→

FlD(RN ) by F(·, E I J• ).

Proposition 3.3 Given adjacent I , J ∈ OSP(D), there exist (unique) I ′, J ′ ∈ (|ϑ |
D1

)
,

such that the following diagram commutes:

R′

∼=

W ′ FlD1(�)

f

R W FlD(RN )

where R′ = σ J ′
I ′ ⊆ FlD1(�), W ′ = �I ′ ∪�J ′ ⊆ FlD1(�) are smooth submanifolds.

Proof Since f is an embedding, E I• and E J• have at most one preimage each. There
are unique order preserving maps

n : {1, . . . , |ϑ |} → ϑ, p : {1, . . . , |I (ϑ)|} → I (ϑ).

Let the maps

I ′, J ′ : {1, . . . , |ϑ |} → {1, . . . , |I (ϑ)|}

be defined by I ′(i) := p−1(I (n(i))), J ′(i) := p−1(J (n(i))). Then f (E I ′• ) = E I• and
f (E J ′• ) = E J• . Since f is GL(�)-equivariant, f (R′) = R, and f (W ′) ⊆ W . ��
Corollary 3.4 d f (TW ′) ⊆ TW is a subbundle.
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We will use the following theorem to determine triviality of ν(W )|R .
Theorem 3.5 TW |R is an inner direct sum of the subbundles {λcd : (c, d) ∈ TI }where
λcd are defined in (3.3). ν(W )|R is isomorphic to

⊕
(c,d)∈NI

λcd .

We split the proof of Theorem 3.5 into several parts. First, we prove Proposition 3.6,
whose Corollaries 3.7, 3.8 are exactly the statement of Theorem 3.5.

Proposition 3.6 {λcd : (c, d) ∈ TI } are subbundles of TW |R, where λcd are defined
in (3.3).

Proof Let (c, d) ∈ TI and set ϑ = {a, b, c, d} as above, ϑ1 = {a, b} and ϑ2 = ϑ\ϑ1
(this has either 1 or 2 elements).

If |ϑ | = 4, then by Proposition 2.3 (c, d) ∈ TJ . In this case we can further decom-
pose D1 as

(D1i )κ = |{k ∈ ϑi : I (k) = κ}|, κ = 1, . . . ,m

D1 = D11 +D12 and � = �1 ⊕ �2 for �i = 〈εk : k ∈ ϑi 〉. Note that D1i = (1, 1),
(i = 1, 2) in the appropriate positions. This decomposition induces another direct sum
map

g : P�1 × P�2 → FlD1(�).

LetW ′′ := P�1×(P�2\Pεd) and R′′ := P�1×Pεc. As in the proof of Proposition
3.3, equivariance shows that W ′ := �I ′ ∪ �J ′ = g(W ′′) and R′ = g(R′′). Then
εcd ⊆ TW ′′|R′′ . Applying Proposition 2.4 for g and f ,

λcd = d( f ◦ g)εcd ⊆ TW |R .

If |ϑ | = 3, we are in the case of D1 = (1, 1, 1), D1 = (2, 1) or D1 = (1, 2).
Then Table 1 shows that the Proposition holds for I ′, J ′ ∈ ( 3

D1

)
and (c′, d ′) ∈ TI ′ . By

Proposition 2.4, λcd ⊆ TW |R . ��
Corollary 3.7 The subbundles {λcd : (c, d) ∈ TI } are linearly independent and there-
fore span TW |R.
Proof Set ϑ1 = {a, b} and �1 = εa ⊕ εb. It is enough to show that the bundles λcd
are linearly independent in each summand

End(RN ) = End
(
�∨

1

) ⊕ End(�1) ⊕
⊕
k 	=a,b

(Hom (�1, εk) ⊕ Hom (εk,�1))

Given c, d, set ϑ = {a, b, c, d}, ϑ2 = ϑ\ϑ1, and �2 = 〈εk : k ∈ ϑ2〉.
If |ϑ | = 4, then λcd = εcd which are linearly independent in End(�∨

1 ).
If |ϑ | = 3, then |ϑ2| = 1, denote its single element by k. Then

λcd ⊆ Hom (�1, εk) ⊕ Hom (εk,�1)
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For fixed k there are at most 2 such (c, d) pairs, since c > d for (c, d) ∈ TI . So it is
enough to check linear independence of such pairs.

If a > k > b, then λak ⊆ Hom(�1, εk), λkb ⊆ Hom(εk,�1), so they are indepen-
dent.

If a > b > k then in order for (a, k), (b, k) ∈ TI to hold, I (a) < I (b) < I (k)
must hold, then λak = εak, λbk = εbk are independent in Hom(�1, εk). The case
k > a > b is similar.

Finally, λab = Hom(ρ, ρ∨) ⊆ End(�1). ��
Corollary 3.8 ν(W )|R is isomorphic to

⊕
(c,d)∈NI

λcd .

This concludes the proof of Theorem 3.5. Let us introduce some notation.

Definition 3.9 Fix I ∈ OSP(D), D = (d1, . . . , dm), and fix a, b ∈ {1, . . . , N } such
that α = I (a), β = I (b), α < β. For c ∈ {1, . . . , N }, γ, δ ∈ {0, 1, . . . ,m}, set

GI (c, γ, δ) :=|{d > c : γ < I (d) ≤ δ}|,
L I (c, γ, δ) :=|{d < c : γ < I (d) ≤ δ}|

TI (a, b) :=L I (a, α, β) + GI (b, α − 1, β − 1),

NI (a, b) :=GI (a, α, β) + L I (b, α − 1, β − 1)

GI (a, δ) :=GI (a, δ,m), GI (a) := GI (a, α), (3.5)

abbreviating Greater, Less, Tangent, Normal.

We will be interested in these numbers for the fixed adjacent J ≤ I ∈ OSP(D),
where J is obtained by interchanging a ∈ Iα with some b ∈ Iβ , a > b, α < β. Note
that byDefinition (3.3) ofλcd , NI (a, b) is the number of nontrivialλcd for (c, d) ∈ NI .
Then by Proposition 3.1 and Theorem 3.5, we have:

Theorem 3.10 If I , J ∈ OSP(D), 	(J ) = 	(I ) − 1 and J is obtained from I by
interchanging a ∈ Iα with some b ∈ Iβ , a > b, α < β, then using the notations (3.5):

[�I ,�J ] =
{
0, if NI (a, b) is even

±2, if NI (a, b) is odd
(3.6)

Example 3.11 Let us compute the incidence coefficient [�I ,�J ] up to sign for

I = [3 6, 1 4, 2 5], J = [2 6, 1 4, 3 5]

in Fl2,2,2 (recall the notation introduced after (2.1)). In this case a = 3, α = 1,
b = 2, β = 3. There are two elements in I2 ∪ I3 (4 and 5) greater than a = 3,
so GI (a, α, β) = 2. There is one element in I1 ∪ I2 which is less than b = 2, so
L I (a, α, β) = 1, thus NI (a, b) = 3 and [�I ,�J ] = ±2.

To any cochain complex, one can define an incidence graph as was done in [12]: the
vertices of the graph are elements of

(N
D
)
and (I , J ) is an edge iff [�I ,�J ] 	= 0. See

Fig. 3 for the incidence graph of Fl(R4) at the end of this section (the colors correspond
to the signs).
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Fig. 2 The double of a Young
diagram

3.7 Determining the cycles

In the even case FlR2D, equation (3.6) is actually sufficient to determine the rational
coefficient cohomology H∗(FlR2D;Q) additively in terms of Schubert cycles, i.e. the
sign of ±2 can be ignored. For the Z-coefficient cohomology, the signs are required
as well, see Sect. 3.9.

If 2D = (2d1, 2d2, . . . , 2dr ) and I ∈ OSP(D), then the doubled ordered set
partition DI ∈ OSP(2D) is obtained by replacing each i ∈ I j by (2i − 1, 2i) ∈ DI j ;
each element k ∈ DI j has a unique pair k′ ∈ DI j . A double Schubert variety
σR

DI ⊆ FlR2D is a Schubert variety corresponding to DI ∈ OSP(2D).

In the case of Grassmannians D = (k, l), DI ∈ (2(k+l)
2k

)
we recover the dou-

ble Young diagrams of Pontryagin [44], see also [23, III.3.2.2.B] and [20, Theorem
3.3.1]. These Young diagrams are obtained by subdividing each square into 2 × 2
squares in the Young diagram corresponding to I ∈ (k+l

k

)
, see Fig. 2. In terms of

ordered set partitions, for D = (1, 1), the doubled ordered set partitions are [1 2, 3 4]
and [3 4, 1 2] ∈ OSP(2D), which are the doubles of [1, 2] and [2, 1] ∈ OSP(D)

respectively.

Theorem 3.12 InFl2D(RN ) the double Schubert varieties σDI are (integer) cycles and
their classes [σDI ] generate a free Z-submodule of H∗(FlR2D;Z). Rationally, [σDI ]
form a basis of H∗(FlR2D;Q).

Proof Let I = DI ′ ∈ OSP(2D) be a doubled ordered set partition. As above, if
�J ⊆ σI and 	(I )− 	(J ) = 1, then J is obtained by interchanging a ∈ Iα with some
b ∈ Iβ , α < β, a > b. Since I is doubled, both terms in the sum

NI (a, b) = GI (a, α, β) + L I (b, α − 1, β − 1) (3.7)

are even; e.g. if k > a and I (k) > α, then its pair k′ also satisfies k′ > a and
I (k′) = I (k) > α. So all coefficients [�I ,�J ] vanish and σI is a cycle.

Now assume that �I ⊆ σJ and 	(J ) − 	(I ) = 1, and I = DI ′ be obtained
by interchanging a ∈ Jα with some b ∈ Jβ , α < β, a > b. We again have to
determine the parity of (3.7), but now for NJ (a, b). Let a′ and b′ denote the pairs of
a and b respectively. Since I is a doubled ordered set partition, a′ ∈ Iβ and b′ ∈ Iα .
	(J )−	(I ) = 1 implies that a < a′ and b′ < b. As before, everything in J appears in
pairs, except a < a′ and b < b′ which shows thatGJ (a, α, β) and L J (a, α−1, β−1)
are both odd. So NJ (a, b) is even and �I appears in all incidence relations with zero
coefficient [�J ,�I ] = 0. Therefore [σI ] does not appear in any relation and the
double Schubert cycles {[σDJ ] : J ∈ OSP(D)} are linearly independent.

Finally, dimQ H∗(FlR2D;Q) = |OSP(D)|, which follows e.g. from Theorem A.3.
This agrees with the number of doubled ordered set partitions of 2D. ��
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3.8 Kocherlakota’s theorem

Theorem 3.10 gives an alternate proof of Kocherlakota’s theorem [38, Theorem A]
for the special case of the classical real flag manifolds FlRD. Before stating it we have
to introduce some further notation.

Let g be a real split semisimple Lie algebra. Let a be a maximal R-diagonalizable
subalgebra and let � ⊆ a∗ be the restricted root system. Since g is split, all root
multiplicities are one. Choose a regular element ξ ∈ a, which determines a positive
Weyl chamber C+ and � = �+ ∐

�−. The reflections rϕ in the root planes ker ϕ,
ϕ ∈ �+ generate the Weyl group W of the root system. The Weyl group acts freely
and transitively on the Weyl chambers, and the Weyl chambers Cw are labeled by
w ∈ W , C+ = C1 for 1 ∈ W . Given H ∈ C+, let � ⊆ �s be the set of simple roots
vanishing at H . Then the Weyl orbitW .H = W/WH parametrizes the Bruhat cells of
G/P� (cf. [15]). Now we state Kocherlakota’s theorem. Given x ∈ a, let

N (x) := {
ϕ ∈ �+ : ϕ(x) < 0

}
,

σ (x) :=
∑

ϕ∈N (x)

ϕ ∈ a∗,

and 	(x) := |N (x)| (we change the notation of Kocherlakota to N in order to dis-
tinguish from NI ). This is consistent with notation (2.4), as we will show below, and
in general it is the dimension of �x ⊆ G/P� for x ∈ W .H . We will give another
interpretation of N (x), see (3.8). Let us now recall the theorem of Kocherlakota.

Theorem 3.13 (Kocherlakota) Let x, y ∈ W .H = W/WH and 	(y) = 	(x) − 1. If
rϕ(x) = y for a reflection rϕ , ϕ ∈ �+, then σ(x)− σ(y) = mϕ for some m ∈ Z. The
incidence coefficients of the Bruhat cells �x ,�y are given by

[
�x ,�y

] =
{
0, m odd

±2, m even

Before giving the proof for g = sl(N , R), let us recall some specifics about the root
system of type AN−1. The roots in an appropriate basis are±ei j where ei j = ei − e j ,

i < j . The simple roots are δi = ei,i+1, and in terms of the simple roots ei j = ∑ j
k=i δi .

Its Weyl group is W ∼= SN and the reflections ri j through the hyperplane ker ei j
correspond to the transpositions (i j) ∈ SN .

The Weyl-orbit of a regular element H ∈ C+ can be parametrized by W ∼= SN . If
H ∈ C+ is not regular, list the simple roots δi not vanishing on H : δs1 , δs2 , . . . , δsr ,
such that s1 < s2 < . . . sr , and set sr+1 := N . Then theWeyl-orbitW .H = W/WH =
OSP(D), where D = (d1, . . . , dr ), for di = si+1 − si .

This implies that positive roots ei j ∈ �+ have the following property: given I ∈
W/WH , ei j (I ) < 0 iff (i, j) is an inversion of I ∈ W/WH . Thus N (I ) is the set of
inversions of I ∈ W/WH :

N (I ) = {ei j : (i, j) is an inversion of I } (3.8)
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In particular, for I ∈ OSP(D), |N (I )| = 	(I ) = dimR �I as we have stated above
(e.g. by Proposition 2.3).

Proof (Proof of Theorem 3.13 for g = sl(N , R)) Let I , J ∈ W/WH = OSP(D),
such that rab(I ) = J , and 	(J ) = 	(I ) − 1, a > b, a ∈ Iα, b ∈ Iβ . By (3.8), the set
theoretic difference ofN (J )\N (I ) consists of those ei j , for which i, j is an inversion
in J , but not in I .

Clearly all such i, j pairs must contain a or b. A simple verification shows that
there are three types of elements in N (I )\N (J ) (the other cases can be excluded
using 	(J ) = 	(I ) − 1):

• If ebj ∈ N (I )\N (J ) and a < j , then eaj ∈ N (J )\N (I ),
• if e ja ∈ N (I )\N (J ) and j < b, then e jb ∈ N (J )\N (I ), and
• eba ∈ N (I )\N (J ).

Since ebj − eaj = eba for b < a < j and e ja − e jb = eba for j < b < a

σ(I ) − σ(J ) =
∑

ei j∈N (I )\N (J )

ei j −
∑

ei j∈N (J )\N (I )

ei j

= (GI (a, α, β) + L I (b, α − 1, β − 1) + 1) eba = (NI (a, b) + 1) eba

using the definitions preceding Theorem 3.10. We can conclude by Theorem 3.10. ��

3.9 Signs

For cooriented �I and �J , determining the actual signs of [�I ,�J ] requires some
further work. We conclude this section by determining the signs. We obtain similar
results as [46] who deal with the general case of R-spaces. One can make several
choices of orientations - we coorient all �I lexicographically as described in Section
3.1 and compute the signs of [�I ,�J ] relative to these orientations.

3.9.1 Geometry

Before stating the following Proposition describing the signs, let us introduce some
notation. Let I , J ∈ OSP(D) be adjacent, obtained by swapping a ∈ Iα with some
b ∈ Iβ . We will denote by (ec �→ ed) ∈ Hom(εc, εd) the homomorphism mapping ec
to ed . Let R+ be a branch of the Richardson curve R and letU be a slight enlargement
of R+: a (contractible) connected open set U � R containing R+. Let r ∈ �(ρ|U )

and r∨ ∈ �(ρ∨|U ) be nowhere vanishing sections, such that r(I ) = −r∨(J ) = ea
and r∨(I ) = r(J ) = eb (this choice determines the branch R+). Define sections of
λcd |U , for (c, d) ∈ NI as follows:

scd :=

⎧⎪⎨
⎪⎩

(ec �→ ed) , if (c, d) ∈ NJ

(r �→ ed) , if c = a, I (a) < I (d) ≤ I (b)(
ec �→ r∨

)
, if d = b, I (a) ≤ I (c) < I (b)
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These are the only cases that appear in (3.3) for (c, d) ∈ NI , since (a, b) ∈ TI . We
will say that scd is trivial if scd = (ec �→ ed) and nontrivial otherwise. Notice that
scd is trivial iff (c, d) ∈ NI and (c, d) ∈ NJ .

Proposition 3.14 The sign of [�I ,�J ] is +1 iff the following two orientations agree,
-1 otherwise:

N 1
J := ((ec �→ ed) : (c, d) ∈ NJ ) , N 2

J := (− (eb �→ ea) , scd(J ) : (c, d) ∈ NI )

where in both N 1
J and N 2

J , the terms involving (c, d) are listed lexicographically.

Proof Recall that the incidence coefficient [�I ,�J ] in the Vassiliev complex can be
computed as a sum of ±1 contributions for each branch R± of the Richardson curve
(cf. Sect. 2.1). The contribution of one of the branches R+ can be computed as follows.
Take the splitting

T B− J |R+ = T R ⊕ νI |R+ , (3.9)

where νI is the sum of line bundles of Theorem 3.5. Then the contribution of R+ is
obtained by comparing the following two orientations of TJ B

−
J :

• the orientation induced by the coorientation of ν(�J )|J : this is the lexicographical
orientation N 1

J = (
(ec �→ ed) : (c, d) ∈ NJ

)
and

• the orientation O2 determined by the splitting (3.9): T R|R+ is oriented towards J ,
and νI |R+ is oriented by the coorientation of �I .

Note that the second orientation has to be extended to J . In order to extend the
orientation of T B− J |R+ to J , we will use the sections scd : if the orientation (scd(I ))
agrees with the coorientation �I , then the orientation (T R|U , scd(J )) determines the
orientation O2. On the branch R+, (r �→ r∨) points towards J , so O2 is exactly
N 2
J . ��

Therefore the combinatorial task is to determine the (relative) sign of two signed
permutations.

3.9.2 Combinatorics

Before giving a notation heavy answer, let us illustrate on a simple example the com-
putation of the signs:

Example 3.15 LetD = (16), I = (4, 5, 6, 1, 2, 3) and J = (4, 2, 6, 1, 5, 3), so a = 5,
b = 2, α = 2, β = 5. The normal spaces in lexicographical ordering are spanned by

NI = (12)(13)(23)(45)(46)(56), NJ = (13)(15)(23)(25)(26)(45)(46)

where (i j) denotes ±(ei �→ e j ) (recall the description of the normal spaces in
Proposition 2.3). One has to compare two orientations of NJ�J , the first orienta-
tion being the lexicographical orientation N 1

J . The second orientation is given by
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N 2
J = (

(ba), NI (a ↔ b)
)
, where a ↔ b is the operation of exchanging a and b in

(cd) ({c, d}∩ {a, b} 	= ∅) if scd is a nontrivial section (i.e. if (cd) appears only in NI ).
These orientations here are (notice that (2, 3) appears in both NI and NJ , so s23 is
trivial and there is no substitution 2 ↔ 5 for (23)):

N 1
J = (13)(15)(23)(25)(26)(45)(46), N 2

J = (25)(15)(13)(23)(45)(46)(26).

The first difference c1 comes from listing (ab) = (25) first in N 2
J , this contributes

c1 = 3 transpositions: it precedes (13)(15)(23). The second difference c2 comes from
exchanging (a, d) with (b, d) if (a, d) /∈ NJ ; this contributes c2 = 2 as (26) succeeds
(45)(46). The third difference c3 comes from exchanging all (c, b) with (c, a) if
(c, b) /∈ NJ ; this contributes c3 = 1 transpositions; (15) precedes (13). Finally, the
nontrivial sections involving r∨(J ) = −e5 obtain a sign: this contributes c4 = 2
sign changes, −(e1 �→ e5) ∈ Hom(e1, ρ∨)|J and −(e2 �→ e5). So the incidence
coefficient is [I , J ] = (−1)82 = +2, where c1 + c2 + c3 + c4 = 8.

The following Theorem formalizes this computation:

Theorem 3.16 If [�I ,�J ] 	= 0, then its sign is given by [�I ,�J ] = (−1)s(I ,J ) · 2,
where

s(I , J ) = c1 + c2 + c3 + c4

and using the notations of Definition 3.9, the ci are defined as follows:

c1 = GI (b, α) − GI (a) +
∑
c<b

GI (c)

c2 = (GI (a) − GI (a, β))

( ∑
b<c<a

GI (c) + GI (a, β)

)

c3 =
∑
c<b

α≤I (c)<β

GI (b, I (c)) − GI (a, I (c))

c4 = L I (b, α − 1, β − 1) + 1

Proof The first permutation is the elements of N 1
J listed lexicographically:

. . . ,
(
b − 1, db−1

nb−1

)
,
(
b, db1

)
, . . . , (b, a), . . . ,

(
b, dbnb

)
, , . . . ,

(
c, dc1

)
, . . . ,

(
c, dcnc

)
, . . . ,

(
a, da1

)
, . . . ,

(
a, dana

)
, . . .

The second permutation is obtained by listing (b, a) and then the elements of NI

lexicographically

(b, a), . . . ,
(
b − 1, f b−1

mb−1

)
,
(
b, f b1

)
, . . . ,

(
b, f bmb

)
,

, . . . ,
(
c, f c1

)
, . . . ,

(
c, f cmc

)
, . . . ,

(
a, f a1

)
, . . . ,

(
a, f ama

)
, . . .
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and making the following substitutions, which compared to N 1
J contribute a certain

number of transpositions that we will determine below:

• listing (b, a) first: this contributes c1 many transpositions,
• replacing (a, d) with (b, d) for all nontrivial sections sad : c2 many transpositions,
• replacing (c, b) with (c, a) for all nontrivial sections scd : c3 many transpositions.

One must also count the sign differences coming from the values of scd(J ) =
±(ec �→ ed). These sign differences are represented by the term c4. Nowwe determine
c1, c2, c3, c4.

The first difference is that (eb �→ ea) is the first element in N 2
J . This contributes

c1 = |{b < c < a : J (b) < J (c)}| +
∑
c<b

GI (c) = GI (b, α) − GI (a) +
∑
c<b

GI (c)

many transpositions.
Given a nontrivial section sad , (a, d) ∈ NI : sad(J ) = ±(eb �→ ed), it has the

following distance from its final position at (b, d) in N 1
J : (a > b)

|{a < c < d : I (b) < I (c)}| + |{d < c : I (b) < I (c)}| +
∑

b<c<a

GI (c) =

= GI (a, β) − GI (d, β) + GI (d, β) +
∑

b<c<a

GI (c)

as (ea �→ ed) swaps place with every (e f �→ eg) pair whose position doesn’t change
and precedes it. The sum of these for nontrivial sad pairs is the term c2.

Similarly, for a nontrivial section scb, (c, b) ∈ NI , scb(J ) = ±(ec �→ ea) has the
following distance from its final position:

|{b < d < a : I (c) < I (d)}| = GI (b, I (c)) − GI (a, I (c))

the sum of which for nontrivial scb pairs is c3.
Finally, the sections scd induce L I (b, α−1, β−1)+1many sign changes: the trivial

bundles have trivial sections, the nontrivial sections scd involving only r introduce no
sign change, whereas each bundle involving r∨(J ) = −ea contributes a sign change,
the number of which is c4 = L I (b, α − 1, β − 1) + 1. ��
Remark 3.17 The sign of [�I ,�J ] determines a coloring of the incidence graph (see
Fig. 3). Taking the opposite orientation of a vertex I , changes the color of all edges
incident to I , however since in the end such a graph computes the cohomology of FlD,
the cohomology of the chain complex is the same.

For another choice of orientations, see [46]. There a reduced decomposition
w = r1 · . . . · rd is fixed for each w ∈ SN , and such a reduced decomposition deter-
mines an ordering of the inversions of w, i.e. an orientation of TI . Such an ordering
is convenient, since for adjacent w′ < w = r1 · . . . · rd , w′ has a reduced decompo-
sition obtained by omitting some uniquely defined ri - then the relative orientation
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Fig. 3 The signed incidence graph of Fl4: blue (dashed) edges signify +2, red (solid) edges −2

of ri , r1, . . . , r̂i , . . . , rd and r1, . . . , rd is simply (−1)i . However, the initially fixed
reduced decomposition of w′ might differ from r1 · . . . · r̂i · . . . · rd , so one also has a
term comparing these two orientations.

The signs obtained in Theorem 3.16 can be implemented in a computer program,
and can be used to compute the cohomology groups of real flag manifolds with integer
coefficients. We were mainly interested in the Schubert cycle generators of rational
coefficient cohomology. We used SageMath’s homology package [52]. See Appendix
B for results in some cases not covered by Theorem 3.12.

3.10 An example Fl(R4)

Figure 3 contains the incidence graph of Fl(R4) defined as follows. The vertices of
the graph are the Schubert cells Xα , α ∈ S4 and two vertices Xα, Xβ are connected
by an edge if [Xα, Xβ ] = ±2. This diagram can also be found in [12, p. 529]. The
extra information is the coloring of the graph representing the signs: a blue (dashed)
edge represents [�I ,�J ] = +2 a red (solid) edge corresponds to −2. In this case, in
order to compute the cohomology, the signs are actually not needed, as can be seen
from the form of the graph; one can read off the cohomology groups of Fl(R4):

H0 = Z, H1 = 0, H2 = Z⊕3
2 , H3 = Z⊕2 ⊕ Z⊕2

2 , H4 = Z⊕2
2 ,

H5 = Z⊕3
2 , H6 = Z

The generators of the cohomology groups are not necessarily unique: x = 1432
and y = 3214 generate a submodule isomorphic to Z ⊕ Z2 – their sum is a 2-torsion
element, whereas either of them generates a free Z-submodule. The smallest instance
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where we encountered a possible dependence on the choice of the signs is Fl(R6):
by changing the signs so that the incidence graph still defines a chain complex, the
cohomology groups can be different. Therefore the signs are indeed required in certain
cases.

4 The ring structure of H∗(FlR2D; Q): Schubert calculus

The double Schubert varieties σR

DI are cycles and their classes form a basis of
H∗(FlR2D;Q) by Theorem 3.12. By showing that FlR2D are circle spaces [17,41] we can
deduce their structure constants by relating them to the structure constants of Schu-
bert cycles in complex flag manifolds. Our main tool is Theorem 4.2, the generalized
Borel-Haefliger theorem, [17]. Applying this theorem, we obtain that any formula
involving Schubert cycles [σC

I ] in a complex partial flag manifold FlCD, holds for the
doubled real Schubert cycles [σR

DI ] in the double real partial flag manifold FlR2D.
Circle spaces are analogues of conjugation spaces introduced by Hausmann, Holm

and Puppe [29]. TheZ2-actions are replaced byU(1)-actions, andF2-coefficient coho-
mology is replaced by Q-coefficient cohomology. In the following set � := U(1).
Given a�-space X , denote by X� the set of�-fixed points and denote the�-equivariant
cohomology of X by

H∗
�(X) = H∗ (B�X;Q) , and H∗

� = H∗ (
CP∞;Q

) = Q[u],

where u is the Euler class of the dual tautological bundle over CP∞. We briefly recall
the definition and main properties of circle spaces, and for further details we refer to
[17] and [41].

Definition 4.1 A �-space X is a circle space, if

• X has nonzero cohomology in degrees 4i ,
• there exists a degree-halving additive isomorphism κ : H2∗(X) → H∗(X�),
• there exists a Leray-Hirsch section (also known as cohomology extension of the
fiber) σ : H∗(X) → H∗

�(X) which is multiplicative, and satisfies the restriction
equation: for any x ∈ H4d(X):

r(σ (x)) = κ(x)ud + η

where r : H∗
�(X) → H∗

�(X�) ∼= H∗(X�)[u], and η is a u-polynomial of degree
less than d.

Given a circle space X , it satisfies the following properties:

• κ and σ are multiplicative,
• a pair (κ, σ ) satisfying the restriction equation is unique, and they satisfy a natu-
rality property with respect to equivariant maps between circle spaces.

Before stating the generalized Borel-Haefliger theorem we have to introduce a
technical definition. By a good �-invariant cycle Z ⊆ X we mean that
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• Z is a �-invariant stratified submanifold which is a cycle,
• its top stratum Zk is �-invariant,
• the fixed point set Z� has a stratification with unique, connected top stratum Z�

k
of some codimension 2l.

These technical conditions ensure that Z� is also a cycle, and that

[Z ⊆ X ]�|X� = w · [Z� ⊆ X�
] + η

in H∗
�(X�) ∼= H∗(X�)[u], wherew = w0 ·ul ,w0 ∈ Z is theweight of a representation

and η is a sum of u-monomials of degree less than l. This can be shown via the
Excess Intersection Formula [45]. If Z ⊆ X is a good �-invariant cycle satisfying
codim Z ⊆ X = 2 codim Z� ⊆ X� , then we say in short that Z is a halving cycle. To
show that a space is a circle space, we can apply the following theorem [17, Theorem
4.1]:

Theorem 4.2 (Generalized Borel-Haefliger theorem) Let � = U(1) and let X be
a compact oriented manifold with a smooth �-action, whose rational cohomology
groups have a basis of halving cycles [Zi ] ∈ H4ki (X). Assume that the �-equivariant
normal bundle ν(X� ↪→ X) has only one weight λ ∈ Z. Then X is a circle space with
κ[Zi ] = λki [Z�

i ] and σ [Zi ] = [Zi ]� .
In particular, the assignment sending [Zi ] to [Z�

i ] determines a degree-halving
multiplicative isomorphism between H2∗(X;Q) and H∗(X�;Q).

Remark 4.3 More generally, one can drop the assumption on orientability [17, Remark
3.24] and only assume that X and X� satisfy Q-Poincaré duality [1, Definition 5.1.1]
and that their formal dimensions satisfy fd(X) = 2 fd(X�). (X is aQ-Poincaré duality
space if H top(X;Q) ∼= Q and the pairing Hk(X)⊗H top−k(X) → H top(X) is perfect;
fd(X) := top degree.)

Our main examples of circle spaces are the real even flagmanifolds FlR2D. Introduce
a �-action on real flag manifolds in R2n as follows: The identification of R2n ↔ Cn

as real �-representations induces an action on FlE (R2n), E = (e1, . . . , er ).

Theorem 4.4 Let � := U(1). With the �-action introduced above, Fl2D(R2n) is a
circle space, with �-fixed point set FlD(Cn). Furthermore

κ
[
σR

DI

]
= 2|I |

[
σC

I

]
,

where [σC

I ] ∈ H2|I |(FlD(CN )).

Proof Arepresentation theoretic computation involving the tangent bundles shows that
the normal weights are all 2. By Theorem 4.2, it is enough to show that a) the Schubert
cycles [σDI ] form a basis of rational cohomology, b) for an appropriate complete
real flag F•, Z = σR

DI (F•) are good U(1)-invariant cycles satisfying codim Z =
2 codim Z� , and c) have U(1)-fixed point set Z� = σC

I (FC• ). The [σR

DI ] form a basis
by Theorem 3.12, so a) holds. It remains to choose a flag F• satisfying b) and c).
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b) Let F• be a complete flag in R2n , such that F2i are �-invariant, and let FC•
denote the corresponding complex flag (F0, F2, . . . , F2n) in Cn by the identification
R2n ↔ Cn . Then, σR

DI (F•) are halving cycles. Indeed, by the rank conditions (2.3),
the complex points of σR

DI (F•) are the points of σC

I (FC• ) since

dimR(W ∩W ′) = 2k ⇐⇒ dimC(W ∩W ′) = k

for any �-invariant subspaces W ,W ′ ⊆ R2n . Therefore for this choice of F•, the
σR

DI (F•) are �-invariant and (σR

DI (F•))� = σC

I (FC• ), so c) holds. A dimension count
shows

codimR σR

DI (F•) = 2 codimR σC

I

(
FC•

)

and since �C

I is the unique top stratum of σC

I , the σR

DI are good U(1)-invariant cycles.
��

We obtain the following Corollary:

Corollary 4.5 (Littlewood-Richardson coefficients) In H∗(Fl2D;Q) the structure con-
stants are given by

[
σR

DI

]
·
[
σR

DJ

]
=

∑
K

cKI J

[
σR

DK

]

where cKI J are the Littlewood-Richardson coefficients of the complex Schubert vari-
eties: [

σC

I

]
·
[
σC

J

]
=

∑
K

cKI J

[
σC

K

]
.

Proof By the Theorem and multiplicativity of κ ,

κ
([

σR

DI

]
·
[
σR

DJ

])
= κ

([
σR

DI

])
· κ

([
σR

DJ

])
= 2|I |+|J | [σC

I

]
·
[
σC

J

]
= 2|I |+|J | ∑

K

cKI J

[
σC

K

]
.

Since κ[σR

DK ] = 2|K |[σC

K ] and |K | = |I | + |J |, the Corollary follows. ��
The following corollaries follow analogously, using also the relation κ p j (SRi ) =

2 j c j (SCi ), where p j , c j denote Pontryagin and Chern classes respectively. For further
details we refer to [41].

Corollary 4.6 (Giambelli formula type description) In H∗(Fl2D;Q) the Schubert
cycles can be expressed in terms of characteristic classes as follows:

[
σR

DI

]
= q

(
p∗

(
SRi

))
⇐⇒

[
σC

I

]
= q

(
c∗

(
SCi

))
,
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that is the same polynomial q ∈ Q[x j
i ], i = 1, . . . ,m, j = 1, . . . , di describes the

double real Schubert classes and complex Schubert classes in terms of Pontryagin
classes p j (SRi ) and Chern classes c j (SCi ).

Corollary 4.7

H∗ (
FlR2D

)
= Q

[
p∗

(
SRi

)]
/R

(
p∗

(
SRi

))
⇐⇒ H∗ (

FlCD
)

= Q

[
c∗

(
SCi

)]
/R

(
c∗

(
SCi

))
,

whereR(xi∗) denotes an ideal in the variables xij , that is the same polynomial relations
hold in the two cohomology rings in terms of Pontryagin and Chern classes of the
respective tautological bundles.

5 Real Grassmannians

The Casian-Kodama conjecture [11] concerned the cohomology ring structure of real
Grassmannians and was stated as follows. For (K , N ) = (2k, 2n), (2k + 1, 2n + 1)
or (2k, 2n + 1):

H∗ (
GrK

(
RN

)
;Q

) ∼= Q
[
p1, . . . , pk, p

′
1, . . . , p

′
n−k

]
/
(
p∗ · p′∗ − 1

)
(5.1)

where pi = pi (S1), p′i = pi (Q1), p∗ = ∑k
i=0 pi , p

′∗ =
∑n−k

i=0 p′i and

H∗ (
Gr2k+1

(
R2n

)
;Q

) ∼= Q
[
p1, . . . , pk, p

′
1, . . . , p

′
n−k, r

]
/
(
p∗ · p′∗ − 1, r2

)
(5.2)

where r is the Schubert class corresponding to the L-shape Young diagram: (n −
k, 1k−1). The conjecture of Casian and Kodama (5.1) and (5.2) on the cohomology
ring was completely settled even equivariantly using different methods by Takeuchi,
He, Sadykov and Carlson [10,30,47,50], see Q3) in Sect. 1.4.

Another kind of description of the ring structure is obtained by giving an additive
basis in Schubert cycles and by determining their structure constants. These results
are due to Pontryagin, Fuchs, Finashin and Kharlamov [23,44] and [20]. We briefly
summarize how to obtain these results from the previous computations.

5.1 Additive structure

A convenient way to parametrize the Schubert varieties in Grassmannians is by Young
diagrams λ ⊆ K × (N − K ). One has the following conversion formulas between
λ ⊆ K × (N − K ) and I ∈ (N

K

)
:

λ j = N − K + j − I j , I j = N − K + j − λ j . (5.3)
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Fig. 4 The L-operation on
λ = (3, 1, 0) ⊆ 3× 4

for j = 1, . . . , K . Before stating theSchubert cycle descriptionof H∗(GrK (RN );Q) it
is convenient to introduce the L-operationonYoungdiagrams: givenλ ⊆ K×(N−K ),
let Lλ ⊆ (K + 1) × (N − K + 1) be the partition

Lλ := (N − K + 1, λ1 + 1, λ2 + 1, . . . , λK + 1) .

In terms of Young diagrams, the diagram contains the first row and column, and the
complement of this L-shape is the Young diagram λ, see Fig. 4 (the added L-shape
is marked with bullet points). We call the corresponding Schubert varieties σLλ L-
Schubert varieties. Recall that Dλ ⊆ 2k × 2(n − k) denotes the double of a Young
diagram λ ⊆ k × (n − k) defined earlier (Fig. 2).
Theorem 5.1

H∗ (
GrK

(
RN

)
;Q

)
=

⎧⎨
⎩

Q

〈
[σDλ] , [σL(Dλ)] : λ ⊆ k × (n − k)

〉
if N is even and K is odd

Q

〈
[σDλ] : λ ⊆ k × (n − k)

〉
else.

where k = �K/2�, n = �N/2�.
Proof In terms of Young diagrams, the incidence coefficients (3.6) are the following
(see also [11]). If μ is a partition obtained from λ by increasing λ j by 1, then

[
σλ, σμ

] =
{
0 λ j − j odd

±2 λ j − j even
(5.4)

Then σλ is a cycle if and only if for all partitions μ obtained by increasing λ j by
1, λ j − j is odd. This implies that double Schubert varieties σDλ and double L-
Schubert varieties σL(Dλ) are cycles – possibly torsion. However, [σDλ, σμ] = 0 for
all dim σμ = dim σDλ + 1, so the [σDλ] do not appear in any relations and therefore
are linearly independent. A similar computation shows that if K odd and N even,
[σL(Dλ)] appear with zero coefficient in every incidence relation, so these classes are
linearly independent. By counting ranks, (5.1) and (5.2) imply that

dimQ H∗(GrK (RN );Q) =
{
2
(n
k

)
N even K odd(n

k

)
else.

which implies that these Schubert classes form a basis. ��

5.2 Multiplicative structure

The GrK (RN ) are circle spaces unless K is odd and N is even. If K and N is even,
this is a special case of Theorem 4.4. In particular, the Giambelli and Pieri formulas
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hold by replacing all [σC

λ ] with [σR

Dλ] in the formulas. The remaining cases: K odd
N even and K even N odd are both nonorientable. We now proceed to show that they
are also circle spaces.

Proposition 5.2 The natural inclusions induce isomorphisms of cohomology with
rational coefficients

H∗ (
Gr2k

(
R2n

)) ∼= H∗ (
Gr2k

(
R2n+1

)) ∼= H∗ (
Gr2k+1

(
R2n+1

))

and the descriptions given in Corollaries 4.5, 4.6, 4.7 hold for Gr2k(R2n+1) and
Gr2k+1(R

2n+1) as well.

Proof Let FR• ∈ Fl(R2n+1) be the standard complete flag. Identify R2n+1 = R ⊕ Cn

as � = U(1)-representations; let the trivial representation be the first coordinate
R = 〈e1〉. This induces actions on Gr2k+1(R

2n+1) and Gr2k(R2n+1), whose fixed
point set can be identified with Grk(Cn). By the definition of the U(1)-action,
FC• = (〈e2, e3〉, 〈e2, e3, e4, e5〉, . . . , 〈e2, . . . , e2n+1〉) is a complete complex flag
FC• ∈ Fl(Cn). The rank description (2.3) implies that double Schubert varieties
σDλ(FR• ) are halving cycles, with fixed point set σC

λ (FC• ).
We will apply Theorem 4.2, but since GrK (R2n+1) are not orientable, we have to

verify the conditions described inRemark 4.3.ByHe’sTheoremA.3, anyflagmanifold
is a Poincaré duality space, and fd(X) = 4k(n − k) and fd(X�) = 2k(n − k). So the
conditions of Remark 4.3 are satisfied and one can apply Theorem 4.2 to conclude.

Finally, the natural inclusions induce the isomorphisms. Indeed, the characteristic
classes are mapped into each other via the natural inclusions, so there is a system of
generators mapped into a system of generators with the same relations. For example,

i : Gr2k(R2n) ↪→ Gr2k(R
2n+1)

pulls back i∗ p j (S2n+1) = p j (S2n) and i∗ p j (Q2n+1) = p j (Q2n) (even though the
pullback i∗Q2n+1 = Q2n ⊕ ε.) ��
Proposition 5.3 The structure constants of [σDλ] and [σL(Dλ)] in H∗(Gr2k+1(R

2n))

are completely determined by the Littlewood-Richardson structure constants of [σDλ]
(Corollary 4.5) and

[σDλ] · [σL0] =
[
σL(Dλ)

]
, [σL0]

2 = 0.

Proof Since [σL0] ∈ H2n−1 lives in odd degree, and multiplication is graded commu-
tative, [σL0]2 is 2-torsion, therefore zero rationally.

To show [σDλ] · [σL0] = [σL(Dλ)], we use the following lemma. ��
Lemma 5.4 In Grk(Rn), there exist transverse flags E•, F• and a flag G•, such that

σL0 (E•) ∩ σλ (F•) = σLλ (G•) (5.5)
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Proof Let E• be the standard flag, F• the opposite flag

F• = 〈en〉 ⊆ 〈en, en−1〉 ⊆ . . . ⊆ 〈en, en−1, . . . e2〉 ⊆ 〈en, en−1, . . . , e1〉

and G• be obtained from F• by exchanging e1 and en :

G• = 〈e1〉 ⊆ 〈e1, en−1〉 ⊆ . . . ⊆ 〈e1, en−1, . . . e2〉 ⊆ 〈e1, en−1, . . . , e3, e2, en〉.

E• and F• are transverse flags, which imply that the Schubert varieties σL0(E•) ∩
σλ(F•) intersect transversely. The rank conditions defining σL0(E•) translate to

U ∈ σL0 ⇐⇒ E1 ⊆ U ⊆ En−1

in particular, σL0(E•) is a subGrassmannian Grk(Rn−2). The following observation
allows us to conclude: if E1 ⊆ U ⊆ En−1, then

dim
(
U ∩ Fj

) = k ⇐⇒ dim
(
U ∩ G j

) = k + 1

By comparing the rank conditions defining σλ and σLλ the two sides of (5.5) are equal.
��

Remark 5.5 (i) The previous lemma was stated for arbitrary k and n; a simple verifi-
cation shows that the subGrassmannian σL0 is always coorientable and therefore
a cycle. However, the computation which shows that it appears in every incidence
relation with zero coefficient only holds if k is odd and n is even, otherwise [σL0]
is a 2-torsion element.

(ii) If one defines the usual U(1)-action on R2n by identifying it with Cn , the induced
action onGr2k+1(R

2n) has no fixed points; indeed,Cn has no real odd dimensional
invariant subspaces. Gr2k+1(R

2n) has zero Euler characteristic so it cannot be a
circle space.

6 Integer coefficients and Steenrod squares

It is a classical result that all torsion in H∗(Grk(R∞);Z) is of order 2, see e.g. [6,
Theorem 24.7]. By a theorem of Ehresmann [16, p. 81], this also holds in the case
of finite Grassmannians. Therefore the rational and mod 2 reductions of an integer
cohomology class completely determine its value. In particular, one can express the
integer classes of Schubert cycles in terms of Pontryagin classes and Bockstein’s of
Stiefel-Whitney classes, see Theorem 6.7 below. In this chapter, we extend Ehres-
mann’s theorem to the case of even real flag manifolds Fl2D, and conjecture that it
holds in general:

Theorem 6.1 For even real flag manifolds 2 Tor(H∗(Fl2D;Z)) = 0, i.e. every tor-
sion element of H∗(Fl2D;Z) is of order 2. In particular, if β denotes the Bockstein
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homomorphism and H∗
free denotes the free part:

H∗ (Fl2D;Z) = H∗
free (Fl2D;Z)

⊕
Im β

After some preparation in Sect. 6.3, we prove this Theorem in Sect. 6.3.3 using Propo-
sition 6.9 of Borel andHirzerbruchwhich requires computing the Poincaré polynomial
of Bockstein cohomology Pβ .

For a general space X , one way to compute H∗(X;Z) is by computing the
mod p Bockstein spectral sequences. Degeneration of the mod 2 Bockstein spec-
tral sequence on the E2-page is equivalent to saying that the 2-primary part of
H∗(X;Z) consists entirely of elements of order 2. The differential d1 on the first
page E p,q

1 = H p+q(X;F2) of the mod 2 Bockstein spectral sequence is the first
Steenrod square Sq1. In order to compute the E2-page, we will give a combinato-
rial description of the Sq1-action on the additive basis of Schubert cycles, which is
strongly related to the incidence coefficients computed earlier, see Proposition 6.3.
We will then use this description to compute the E2-page of the Bockstein spectral
sequence.

The cohomology groups H∗(Fl2D;Z) then can be completely determined by using
this theorem, theCartan description of SectionA and the universal coefficient theorem.
This is a combinatorial computation which can be carried out similarly as was done
in [31] for the case of Grassmannians. It relies on the following observation: if all
torsion in H∗(X;Z) is of order two, then PTor = t

t+1 (P2 − P0), where PTor denotes
the Poincaré polynomial of the ranks of Z2’s in H∗(X;Z), P2 and P0 denote the mod
2 and rational coefficient Poincaré polynomials of X .

Proposition 6.2 Let D = (d1, . . . , dr ), N = ∑
di . The Poincaré polynomial of the

ranks of Z2’s in H∗(FlR2D;Z) is given by

PTor (Fl2D) = t

t + 1

( ∏2N
j=1

(
1− t j

)
∏r

i=1
∏2di

j=1

(
1− t j

) −
∏N

j=1

(
1− t4 j

)
∏r

i=1
∏di

j=1

(
1− t4 j

)
)

.

Proof The Poincaré polynomial P2 of mod 2 cohomology is a classical result of Borel
[5] and rational coefficient Poincaré polynomial P0 follows from the He’s Theorem
A.3, [32]. ��

6.1 Steenrod squares

Lenart [40] computed the Steenrod coefficients ckλμ ∈ F2 in complex Grassmannians:

Sqk[σλ] =
∑
μ

ckλμ[σμ]

As he remarks, the Steenrod coefficients are obstructions for the triviality of the attach-
ing maps: if ckλμ is nonzero, then the corresponding attaching map is nontrivial. He
also gives an example [40, Section 6], where the converse does not hold. The more
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general case of Steenrod coefficients ckI J for arbitrary flag manifolds of simply con-
nected, semisimple Lie groups (and arbitrary p) was determined by Duan and Zhao
[14]. Notice that the distinction of real and complex is irrelevant; by results of [22]
and [54]:

Sq2k
[
σC

I

]
=

∑
J

ckI J

[
σC

J

]
⇐⇒ Sqk

[
σR

I

]
=

∑
J

ckI J

[
σR

J

]
.

On the other hand, for k = 1, the Steenrod coefficients c1I J for real flag manifolds
vanish if and only if the incidence coefficients [�I ,�J ] vanish:
Proposition 6.3 For all I , J ∈ OSP(D), set cI J := |[�I ,�J ]/2| ∈ F2 where
[�I ,�J ] are the incidence coefficients, described in (3.6). Then

Sq1 [σI ] =
∑

cI J [σJ ] .

For a related statement for the case of Grassmannians in the algebraic geometric
context (Chow-Witt ring) see [57, Theorem 1.1]. The Proposition follows from the
following classical viewpoint on Bockstein homomorphisms (see e.g. [42]):

Lemma 6.4 If (C, d) is a cochain complex, then the Bockstein homomorphism of
(C, 2d)

β : H∗ (C ⊗ F2, 2d ⊗ F2 = 0) → H∗+1(C, 2d)

satisfies

β[ρz] = [dz] ∈ H∗+1(C, 2d),

for all z ∈ C, where ρ : C → C ⊗ F2 is the mod 2 reduction.

The proof is an unraveling of the definition of the Bockstein homomorphism.

Proof (Proof of Proposition) Apply the Lemma to the Vassiliev complex (all coeffi-
cients are ±2) and use the classical fact that the mod 2 reduction of the Bockstein
homomorphism is Sq1. ��

Thus the knowledge of the incidence coefficients (3.6) yields a combinatorial for-
mula for the Steenrod coefficients of Sq1 in an arbitrary partial flag manifold in terms
of Schubert cycles.

Remark 6.5 There is a geometric proof of Proposition 6.3. This involves the Thom-Wu
theorem which states that if i : Z ↪→ X is a smooth submanifold, then Sqk[Z ] =
i!wk(νi ). Together with the description of [�I ,�J ] in Proposition 3.1, this proves
Proposition 6.3.

123



On the cohomology rings of real flag manifolds: Schubert cycles 1573

6.2 Integral cycles

Before provingTheorem6.1,wededuce someeasy consequences about integral cycles.

Proposition 6.6 Let X be a manifold satisfying 2 Tor(H∗(X;Z)) = 0. Then every
integral cycle [Z ] ∈ H∗(X;Z) is one of the two following types

• [Z ] ∈ Im β, in which case 2[Z ] = 0 or
• [Z mod 2] 	= 0 ∈ ker Sq1 / Im Sq1, in which case [Z ] 	= 0 rationally.

In particular, by Lemma 6.4, the 2-torsion part of H∗(Fl2D;Z) is generated by cycles
of the form [d�I /2].

We relate Schubert cycles to integral characteristic classes. Denote a Stiefel-
Whitney monomial in H∗(FlD(RN );F2) by

wM =
∏
i, j

wi (Dj )
mi j ,

where M = (mi j ) ∈ NN denotes a multiindex (N = ∑r
i=1 di ). Then every element of

H∗(FlD(RN );F2) can be written as a sum of wM ’s (not necessarily uniquely!), write∑
wM for a generic element. Then

∑
wM is the mod 2 reduction of a 2-torsion class

in H∗(FlD;Z) iff
∑

wM ∈ Im Sq1. For such elements, denote by
∑

vM the unique
second order element in Im β ⊆ H∗(Fl2D;Z) whose mod 2 reduction equals

∑
wM .

A consequence of Theorem 6.1 is that from the mod 2 and rational descriptions of
double Schubert classes [σDI ], one can express the integer classes [σDI ] in terms of
characteristic classes. Using the previous notations, we can give a formula:

Theorem 6.7 The integral classes [σDI ] ∈ H∗(Fl2D(RN );Z) equal

[σDI ] = sI
(
pi

(
Dj

)) + {
sDI

(
vi, j

) − sI
(
v2i,2 j

)}
,

j = 1, . . . , r and i = 1, . . . , d j where sI (xi, j ) denotes the Schubert polynomial in
the variables xi, j (in terms of elementary symmetric polynomials [3, Sect. 5]).

Here sDI (wi (Dj )) − sI (w2i (Dj )
2) ∈ H∗(Fl2D;F2) is in Im Sq1, and therefore

lifts to a unique second order element denoted {sDI (vi, j )−sI (v2i,2 j )} ∈ H∗(Fl2D;Z).

Proof The rational class is [σDI ] = sI (pi, j ) by the generalized Borel-Haefliger
theorem (Corollary 4.6) and the mod 2 class is sDI (wi, j ) by the classical mod 2 Borel-
Haefliger theorem. The theorem then follows from the fact that the mod 2 reduction
of the j th integral Pontryagin class p j is w2

2 j . ��

Remark 6.8 Contrary to what the notation might suggest, {sDI (vi, j )−sI (v2i,2 j )} is not
a polynomial in some classes vi, j ; it is an element, whose mod 2 reduction is the poly-
nomial sDI (wi, j )− sI (w2

i,2 j ). Determining the class [σDI ] in terms of multiplicative
generators of H∗(Fl2D;Z) is a challenge we will not consider.
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6.3 Proof of Theorem 6.1

In the rest of this section we prove Theorem 6.1, but first we recall some generalities
about the Bockstein spectral sequence and the Bockstein cohomology of a space.

6.3.1 Bockstein cohomology

The Bockstein cohomology of a topological space X can be defined as follows: since
Sq1 : H∗(X;F2) → H∗+1(X;F2) satisfies Sq1 ◦Sq1 = 0, one can regard H∗(X;F2)

as a chain complex and compute its cohomology

H∗
β (X) := H∗ (

H∗ (X;F2) ;Sq1
)

.

Since Sq1 is the differential d1 on the page E p,q
1 = H p+q(X;F2) of the mod 2

Bockstein spectral sequence, so H∗
β (X) is just the E2-page of the Bockstein spectral

sequence. Denote by Pβ(X) the Poincaré polynomial of H∗
β (X) and by P0(X) the

Poincaré polynomial of H∗(X;Q). We will use the following Proposition of Borel-
Hirzebruch, [4] Lemma 30.4 and 30.5 (1), cf. also [6]:

Proposition 6.9 If H∗(X;Z) is finitely generated, then the 2-primary component of
H∗(X;Z) consists of elements of order 2 (i.e. the Bockstein spectral sequence degen-
erates) if and only if

Pβ(X) = P0(X).

Borel and Hirzebruch show in [4, 30.5] that in the case of infinite Grassmannians
GN = GrN (R∞)

P0(GN ) = Pβ(GN ) =
� N
2 �∏

i=1

1

1− t4i
. (6.1)

In order to compute Pβ , F2[w1, . . . , wN ] is decomposed into the tensor product of
subalgebras Ai each invariant under Sq1. The Poincaré polynomial Pβ is then the
product of the Poincaré polynomials of Ai : Pβ = ∏

i PAi . The generators of H
∗
β are

also identified to be [w2
2i ].

Wewill reduce the finite case to the infinite case, so let us discuss the infinite version
of flag manifolds. Given D = (d1, . . . , dr ), let

Dm = (d1, . . . , dr−1, dr + m) , (6.2)

m possibly infinite. Note that FlD∞ is the classifying space of the parabolic subgroup
P = GL(d1, . . . , dr−1) (using the notation of Sect. 2.2).
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Proposition 6.10

Pβ (Fl2D∞) =
r−1∏
i=1

di∏
j=1

1

1− t4 j
= P0 (Fl2D∞)

and H∗
β (Fl2D∞) is generated by [w2

2 j (Di )]. In particular, all torsion of H∗(Fl2D∞;Z)

is of order 2.

Proof Using that

H∗ (Fl2D∞) = F2
[
w j (Di ) : i = 1, . . . , r − 1, j = 1, . . . , di

]
,

this follows from (6.1), similarly to Borel’s computations [6, pp. 85–86]. ��

In the finite case, matters are complicated by the relations, since such a decompo-
sition into subalgebras does not exist. This is why we will use the additive (Schubert
basis) description of the cohomology groups, together with the combinatorial descrip-
tion of Sq1 (Proposition 6.3).

6.3.2 Stabilization of Schubert classes

Next we discuss stabilization of Schubert classes. With the notationDm introduced in
(6.2), we have direct sum maps (see Sect. 2.2.3):

Km : FlD
(
RN

)
↪→ FlDm

(
RN+m

)
.

The current indexing of the Schubert cycles does not satisfy nice stability properties,
so from now on we will change the convention of indexing the Schubert varieties σI ,
I ∈ OSP(D). Let ∨ : OSP(D) → OSP(D) be the involution defined as follows: for
I ∈ OSP(D), replace each element k ∈ I j by N + 1− k:

I∨j := {N + 1− k : k ∈ I j }

for all j , where |D| = N . Let σ I := σI∨ and �I := �I∨ for all I ∈ OSP(D). For
complete flag manifolds D = (1N ), this indexing convention agrees with [24], see
also [26, p. 20]. With the new conventions 	(I ) = codim σ I (for the notation 	(I ) see
(2.4)) and �I and �J are adjacent if J is obtained from I by exchanging a ∈ Iα with
some b ∈ Iβ , a < b, α < β. The incidence relations are (for the notation TI (a, b) see
(3.5)):

[�I ,�J ] =
{
0, TI (a, b) even

±2, TI (a, b) odd
(6.3)
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With this indexing convention, Schubert classes mod 2 satisfy the following stabiliza-
tion property (this can be shown by a transversality argument):

K∗
m [σ J ] =

{
[σ I ] if J = Im

0 else,
(6.4)

where for I ∈ OSP(D), define

Im := (I1, I2, . . . , Ir−1, Ir ∪ {N + 1, . . . , N + m}) .

In particular,

kerK∗
m = 〈[σ I ] : ∃k > N : k /∈ Ir 〉. (6.5)

Remark 6.11 For I ∈ OSP(D), stabilization implies that there exists sI ∈
H∗(FlD∞;F2), such that K ∗∞sI = [σ I ] and factors through [σ Im ] for all m. Since
FlD∞ is the classifying space of GL(d1, . . . , dr−1), sI ∈ H∗(FlD∞) is a polynomial
q(w

j
i ) in the universal Stiefel-Whitney classes w

j
i , and since K∗∞w

j
i = wi (Dj ), sta-

bilization provides universal formulas [σ Im ] = q(wi (Dj )) in terms of characteristic
classes (the minimal Schubert polynomials, see [3, Sect. 5]).

Stabilization also implies that there exists a universal formula for Steenrod squares in
terms of Schubert cycles: there exist ckI J ∈ F2, such that

Sqk sI =
∑

ckI J sJ , Sqk [σ Im ] =
∑

ckI J [σ Jm ]

holds for all m. Indeed, there are only finitely many sI in H∗(FlD∞;F2) of fixed
codimension, and Steenrod operations are natural.

6.3.3 Bockstein cohomology of even flagmanifolds

Now we start computing Bockstein cohomology using Proposition 6.3. Let

Zm := ker
(
Sq1 : H∗ (FlDm ) → H∗+1

)
, Bm := Im

(
Sq1 : H∗−1 (FlDm ) → H∗) ,

both graded F2-vector spaces, let Hm := Zm/Bm , qm : Zm → Hm and denote
Z := Z0 and B := B0, H := H0, q := q0. In the following we compare Zm with Z
and Bm with B using the description (6.5). Naturality of Sq1 implies that

(i) B = K∗
mBm ,

(ii) Z ⊇ K∗
m Zm .
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These imply that q ◦K∗
m : Zm → Z → H induces a map K̂∗

m : Hm → H satisfying

ker K̂∗
m = qm

(
kerK∗

m

)
. (6.6)

Lemma 6.12 LetD = (2d1, . . . , 2dr ). For even flag manifolds FlD: If [σ I ] ∈ Z, then
[σ I ] ∈ K∗

1Z1.

Proof Assume [σ I ] ∈ Z for some I ∈ OSP(D). Write

Sq1[σ I 1 ] =
∑
J∈T

[σ J ] ∈ H∗(FlD1),

where by assumption [σ J ] ∈ kerK∗
1 for all J ∈ T ⊆ OSP(D1). If [σ J ] ∈ kerK∗

1,
then by (6.5) J is obtained from I 1 by exchanging N + 1 ∈ I 1r with some a ∈ I 1α
which satisfies

a = max I 1α > max I 1α+1 > . . . > max I 1r−1, (6.7)

otherwise the number of inversions changes by at least 2. To determine [�I ,�J ], we
use (6.3), recall the notations of (3.5). Clearly, GI 1(N + 1, α − 1, r − 1) = 0. By
(6.7),

L I 1(a, α, r) =
r−1∑

i=α+1

2di

so by (6.3), [�I ,�J ] = 0. Hence the Steenrod coefficients also vanish by Proposition
6.3, therefore T is empty, proving the lemma. ��
Corollary 6.13 For even flag manifolds Fl2D:

Z = K∗∞Z∞, H = K̂∗∞H∞,

Proof Let I ∈ OSP(D) and J ∈ OSP(Dm). A simple computation involving the
number of inversions shows that Im and J are adjacent in FlDm iff J = Km−1 for
some K ∈ OSP(D1) and I 1 and K are adjacent in FlD1 . Therefore [σ I 1 ] ∈ Z1 iff
[σ Im ] ∈ Zm , so Z = K∗

1Z1 = K∗
m Zm for all m. This also implies surjectivity of

K̂∗∞. ��
Now we can finally prove Theorem 6.1:

Proof of Theorem 6.1 It follows from results of Borel’s thesis that Tor(H∗(FlD;Z))

is 2-primary (see [5, Propositions 29.1, 30.1]), so we can concentrate on p = 2. By
Corollary 6.13:

Pβ (Fl2D) = Pβ (Fl2D∞) − P
(
ker K̂∗

m

)
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Let Q ⊆ Zm be a subspace such that q : Q ∼=−→ Hm . Then the Poincaré polynomials
satisfy

P
(
ker K̂∗

m

)
= P

(
Q ∩ kerK∗

m

)
.

By Proposition 6.10, such a subspace is given by Q = F2[w2 j (Di )
2], so by (6.4)

Q ∩ kerK∗∞ = 〈sJ (w2
2 j ) : J 	= I∞, I ∈ OSP(2D)〉. (6.8)

Denote the rational coefficient pullback induced by K∞ by

K∗
0 : H∗ (Fl2D∞;Q) → H∗ (Fl2D;Q)

Since K∗
0 is also surjective,

P0 (Fl2D) = P0 (Fl2D∞) − P
(
kerK∗

0

)
and

kerK∗
0 = 〈sJ

(
p j

) : J 	= I∞, I ∈ OSP(2D)〉. (6.9)

Comparing (6.8) and (6.9), P(kerK∗
0) = P(ker K̂∗

m), and since P0(Fl2D∞) =
Pβ(Fl2D∞) by Proposition 6.10, P0(Fl2D) = Pβ(Fl2D) and we can conclude by
Proposition 6.9. ��
Remark 6.14 In the case of Grassmannians GrK (RN ), the previous proof can also be
adapted, and one can show that Pβ = P0. Lemma 6.12 also holds, except when K
is odd and N even, when Z\Z1 also contains the L-Schubert classes. In the case of
arbitrary flag manifolds FlD these computations appear to be more complicated; it is
no longer true that the Bockstein cohomology generators are Schubert varieties [σ I ],
but sums of them, see Appendix B.

Conjecture 6.15 For any real flag manifold (more generally any R-space) all torsion
of H∗(FlD;Z) is of order 2.

Remark 6.16 If this conjecture holds, then the cohomology groups H∗(FlRD;Z) can be
determined from the Universal Coefficient Theorem as in [31], see also Proposition
6.2.

7 Enumerative applications: lower bounds

The cohomology ring structure in terms of Schubert classes gives information about
enumerative geometric Schubert problems:
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Given generic complete flags F1• , . . . , Fr• in RN , what is the cardinality of

∣∣∣∣∣∣
r⋂
j=1

σλ j (F
j• )

∣∣∣∣∣∣ =?

for σ j := σλ j of total dimension Gr2k(R2n)?
The word generic is a subtle point here: we will say that the flags are generic, if

the corresponding Schubert varieties are transversal. This is an open condition in the
configuration space by the Kleiman-Bertini theorem. The main property of generic
configurations G relevant to us is that the number of solutions is locally constant on
G.

In the complex case F = C, a Schubert problem can be solved by multiplying
Schubert cycles: since everything is complex, at a smooth transversal intersection
all tangent spaces have canonical orientations, therefore all intersections come with
the same sign. Therefore the cohomology product of [σ j ] is an element n[∗] of
Htop(Grk(Cn)) ∼= Z〈[∗]〉, and this number n is the answer to the Schubert problem.

In the real case F = R, there are no canonical orientations, therefore each transver-
sal intersection p comes with a sign, depending on whether the orientation of the
tangent spaces Tpσ j agrees with the orientation of the tangent space Tp Grk(Rn).
Therefore the cohomological calculation only gives a signed sum of the points, hence
a lower bound to the Schubert problem. The actual number of solutions depends on
the configuration (the choice of the flags Fi•), and there is a range of numbers that
might appear as the number of solutions. This range is not known in general, and it
has been subject to extensive examination, see [34,48,49]. An infinite series of exam-
ples has been computed via elementary methods in the case of Grassmannians in
[18]. For example, in Gr8(R16) the number of solutions to the Schubert problem σ 4

λ

for λ = (4, 4, 4, 4) can be {6, 14, 30, 70}, see [18]. Recently, similar problems were
considered for Grassmannians using Chow-Witt rings [57].

The dependence of the number of solutions on the given configuration has the
following explanation. In the complex case, the singular configurations form an at
least one complex codimensional subvariety of the configuration space, so the space
of nonsingular configurations is connected. In the real case, the singular configurations
can be one real codimensional, in which case the configuration space falls apart into
connected components (chambers).

An upper bound for the range is given by the number of solutions for the corre-
sponding generic complex Schubert problem. Here some caution is required when
discussing genericity: one has to show that there exist real generic flags which are
complex generic when regarded as complex flags. Indeed, this is the case: the subset
of complex nongeneric configurations can be defined by real equations, so there exist
real flags F j• which are complex generic. For such flags, all intersections of σC

j (F j• )

are transverse, therefore so are those of σR

j (F j• ), so such configurations are also real
generic.

It is a natural question, whether a real enumerative problem is maximal/fully real
[49], i.e. whether there exists a configuration for which the number of solutions agrees
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with the number of solutions for the same complex problem. This is true for real
Schubert problems in Grassmannians as shown in [53].

Another natural question in real enumerative geometry, is to find a lower bound for
the range of solutions [33,56]. For example, by a Theorem of Segre, there are at least 3
lines on a cubic surface [43], more generally there are at least (2n−1)!! real lines on a
degree 2n−1hypersurface inRPn+1 [21]. For a lower boundon the number of 3-planes
on an appropriate degree hypersurface see [20, Theorem 4.1.3]. See [39] for examples
of enumerative problems with a strict lower bound of zero, i.e. no real solutions. As
we have already mentioned, for Schubert calculus the cohomology calculation also
gives a lower bound. By the description of the real Littlewood-Richardson coefficients
(Corollary 4.5) we have:

Proposition 7.1 The number of solutions of a double real Schubert problem (Dλ j ) is
bounded below by the number of solutions to the half sized complex one (λ j ).

This means that any complex Schubert problem can be “doubled”. We illustrate
this via three examples.

Example 7.2 How many real 6-planes in R12 intersect 9 given 6-planes in at least 2
dimensions?

This problem can be written as 9 in Gr6(R12). By the previous Proposition, a
lower bound is given by the half-sized complex problem, namely 9 in Gr3(C6). This
in turn is equal to the degree of Gr3(C6) via the Plücker embedding, which is 42; this
is known in general, see e.g. [28, p. 247]. So the answer is 42: there are at least 42
such real 6-planes.

Example 7.3 How many real 8-planes in R14 intersect 6 given 8-planes in at least 4
dimensions?

This problem is

6

inGr8(R14). Again, a lower bound is given by the half-sized complex problem, namely
6 in Gr4(C7). A computation using the Pieri rule and duality shows that the answer

to the complex problem is 6 = 16. So the real problem has at least 16 solutions.

Example 7.4 We also give an example which uses the product structure on flag mani-
folds. Given the following ten generic subspaces in C5

Ei
1, E

i
3, i = 1, 2, and E j

2 , E
j
4 , j = 1, 2, 3,

of dimension dim(E j
i ) = i , how many complete flags F• in C5 satisfy the following

conditions:

• Ei
1 ⊆ F4 and dim F2 ∩ Ei

3 = 1 for i = 1, 2,

• F1 ⊆ E j
4 and dim F3 ∩ E j

2 = 1 for j = 1, 2, 3.

This corresponds to the product of special Schubert classes in H∗(Fl(C5))

[σ(4)]2[σ(2)]2[σ(1)]3[σ(3)]3 = 7
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where we denote by σ(i) the one codimensional Schubert variety corresponding to
the transposition (i, i + 1). This problem then can be doubled: Given the following
generic subspaces in R10

Ei
1, E

i
3, i = 1, 2, and E j

2 , E
j
4 , j = 1, 2, 3,

of dimension dim(E j
i ) = 2i , how many flags F• in FlD(R10), D = (2, 2, 2, 2, 2)

satisfy the following conditions:

• Ei
1 ⊆ F4 and dim F2 ∩ Ei

3 = 2 for i = 1, 2,

• F1 ⊆ E j
4 and dim F3 ∩ E j

2 = 2 for j = 1, 2, 3.

Using Proposition 7.1, the complex answer implies that this problem has at least 7
solutions. Fl(C5)was the smallest flag variety that we foundwith a nontrivial Schubert
problem that cannot be reduced to the case of Grassmannians.

As we have seen, the cohomology of real Grassmannians (and even flag manifolds)
with integer coefficients contains only 2-torsion. If in a Schubert problem all Schubert
varieties are cycles, but one of them is Z2-torsion, then the corresponding cycles
multiply to zero in cohomology (at least if the flag manifold is orientable), which is
a trivial lower bound. Note however that the corresponding Schubert problem can be,
and usually is nontrivial. There exist enumerative problems, which do not have any
cohomological interpretation: the corresponding Schubert varieties are not cycles. For
example, dual transversal Schubert varieties always intersect in one point, and not all
Schubert varieties are cycles. Summarizing: for the purpose of obtaining enumerative
lower bounds,wedon’t lose anythingbyworkingwith rational coefficient cohomology.

Alternatively, considering F2-coefficient cohomology, one can apply the original
Borel-Haefliger theorem [7] to Grassmannians to obtain mod 2 information about a
Schubert problem:

Proposition 7.5 The number of solutions of a real Schubert problem has the same
parity as the number of solutions of the corresponding complex Schubert problem.

For certain Schubert problems, one can say more than mod 2 congruence of the solu-
tions, see e.g. [18, Theorem 5.7] and [34]. We conclude with a conjecture:

Conjecture 7.6 The lower bound of Proposition 7.1 is sharp.

We make some remarks on this conjecture. Take real complete flags F j• ∈ Fl(Rn),
such that F j

2i are U(1)-invariant. Then the set of solutions

S :=
⋂
j

σR

DI j

(
F j•

)

is a U(1)-invariant subset. If S is finite, then each point W ∈ S is a U(1)-fixed point,
i.e. complex. Therefore, each W ∈ S is a solution to the corresponding half sized
complex Schubert problem

W ∈ SC =
⋂
j

σC

I j

(
F j
•,C

)
,
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1582 Á. K. Matszangosz

so this problem has exactly as many solutions as the half sized complex Schubert
problem. However, it is not clear to us whether such a problem is real generic, which
is required in order to show that this is a sharp lower bound. This reduces the conjecture
to one about genericity: Does there exist a complex generic configuration of flags F j

•,C,
which as real flags F j

•,R are real generic (for the double sized real problem)?
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Appendix A. Topology: Cartanmodel

A pair (G, K ) of compact connected Lie groups is a Cartan pair, if K ⊆ G is a
subgroup and H∗

G is a polynomial ring in rk G many generators, rk G− rk K many of
which restrict to zero via ρ∗ : H∗

G → H∗
K .

For Cartan pairs, there is a simple description of H∗(G/K ;Q), due to Cartan and
Borel [5], see also [51] for a summary.

Theorem A.1 (Borel, Cartan) For a Cartan pair (G, K )

H∗(G/K ;Q) ∼= H∗
K /

(
Im ρ∗)

+
⊗∧[

xri−1
]n
i=p+1

where ri are the degrees of the polynomial generators restricting to zero via ρ∗ :
H∗
G → H∗

K , n = rk G, p = rk K, deg x j = j and (W )+ denotes the ideal generated
by elements of positive degree of the subspace W.

123

http://creativecommons.org/licenses/by/4.0/


On the cohomology rings of real flag manifolds: Schubert cycles 1583

Let SO(D) := ∏m
i=1 SO(di ), O(D) := ∏m

i=1 O(di ) N := ∑
di .

Proposition A.2 (G, K0) = (SO(N ),SO(D)) is a Cartan pair for all D.

Proof One has

ρ∗ (p∗(S)) =
m∏
i=1

p∗ (Si ) ,

where S → BSO(N ) and Si → BSO(di ) denote the tautological bundles and p∗
denotes the total Pontryagin class. Let n = � N

2 � be the rank of SO(N ) and q =∑m
i=1� di2 � be the rank of SO(D). Since ptop(Si ) = p� di2 �

(Si ), by examining degrees,

one sees that ρ∗(p j (S)) = 0 for j > q. ��
The real flag manifold is a homogeneous space FlRD = G/K , where G = SO(N ) and
K = S(O(D)). Since K is not connected, the Borel-Cartan model cannot be directly
applied. H∗(G/K ;Q) was recently determined by He in [32], we state the theorem,
also to be found in [41].

LetD0 = (�d1/2�, �d2/2�, . . . , �dm/2�). Since there is a covering � → G/K0 →
G/K for � = Zm−1

2 , H∗(G/K ) = (H∗(G/K0))
� . The �-action acts by multiplying

the Euler classes in H∗
K by -1 and trivially on the Pontryagin classes and on the exterior

algebra, for further details see [32] or [41].

Theorem A.3 Let n = � N
2 � be the rank of SO(N ) and q = ∑m

i=1� di2 � be the rank of
SO(D), then

H∗ (
FlRD;Q

) ∼= H2∗ (
FlCD0

;Q

)
⊗

∧
[yi ]

n
i=q+1

where yi = x4i−1 except if N even, yn = xN−1. H2∗ means that the degrees are
doubled and deg x j = j . The first term H2∗ is generated as an algebra by pi (Dj )

with the relations given by the identity
∏m

j=1 p∗(Dj ) = 1.

Appendix B. Schubert cycles: the general case of partial flagmanifolds

Using the coefficients of the Vassiliev complex described in Section 3, we computed
some of the generators of H∗(FlRD;Q) in terms of Schubert cells using SageMath’s
homology package [52]. We include below some cases which are not covered by
Theorems 3.12 and 5.1, in particular, complete, odd and other examples. As previously
mentioned, for general FlD it is no longer true that rational cohomology classes can
be represented by Schubert varieties, but a signed sum of Schubert cells. The choice
of the generators are not unique, as we already saw on the example of Fl(R4), Section
3.10. In all the examples we have computed, the coefficients of these Schubert cells
are ±1. In the tables, we use the following conventions.

Notation. The Schubert cells �I ⊆ FlD are parametrized by ordered set partitions
I ∈ OSP(D). These are denoted by the one-line notation of their minimal represen-
tatives: elements of I j are listed in increasing order, I j and I j+1 is separated by a
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comma. The + sign separates the Schubert cells whose sums are generators. We do
not keep track of the sign of the cells, as this can vary according to convention (even
though relative to each other, the signs do make sense). In the last table, the ordered
set partitions are elements of 1, 2, . . . , 11; for typographical reasons 10 and 11 are
preceded by a space.

B. 1. The complete case

The two extreme cases of real flag manifolds are Grassmannians and complete flag
manifolds. We understand the Schubert calculus of Grassmannians by Propositions
5.2 and 5.3. For the case of complete flag manifolds, the answer appears to be less
simple, as we illustrate in Tables 2 and 3. For the case of Fl(R3) see also [38, p. 5]
and for Fl(R4), see also [12, p. 529].

Table 2 Sums of Schubert cells generating H∗(Fl(Rn);Q), labeled by permutations Sn

deg Fl(R3) Fl(R4) Fl(R5) Fl(R6)

�[x3] �[x3, y3] �[x3, x7] �[x3, x7, y5]
0 321 4321 54321 654321

3 123 2341+4123 34521+52341+54123 456321+634521+652341+654123

3 3214

5 365214

6 1234

7 14325 432561+632145

8 345216+523416+541236

10 1234 234561+236145+412563+612345

12 125436

15 123456

Table 3 Sums of Schubert cells
generating H∗(Fl(R7);Q),
labeled by permutations S7

deg Fl(R7)

�[x3, x7, x11]
0 7654321

3 5674321+7456321+7634521+7652341+7654123

7 5436721+7432561+7632145

10 3456721+3472561+3672145+5236741+5416723+5436127+

+5632147+7234561+7236145+7412563+7612345

11 1476325

14 1456327+3416527+5216347+5412367

18 1236547

21 1234567
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Table 4 Sums of Schubert cells
generating H∗(Fl333;Q),
labeled by OSP(3, 3, 3)

deg Fl333
H∗(Fl222;Q) ⊗ �[x15]

0 789,456,123

4 789,236,145

4 569,478,123

8 349,678,125+369,458,127+389,256,147+589,234,167

8 569,238,147+589,234,167

12 349,258,167

15 167,258,349

19 167,234,589

19 145,278,369+147,256,389

23 123,478,569

23 145,236,789

27 123,456,789

B. 2. The odd case

There are two cases when flag manifolds FlRD are orientable; all di are even or all odd.
If all di are even, we understand the generators of rational cohomology by Theorem
3.12. If all di are odd, the answer again appears to be less simple, see Tables 4 and 6
(and also the complete cases).

B. 3. The other cases

See Table 5 for a nonorientable case.

Table 5 Sums of Schubert cells
generating H∗(Fl234;Q),
labeled by OSP(2, 3, 4)

deg Fl234
H∗(Fl224;Q)

0 89,567,1234

4 89,347,1256

4 67,589,1234

8 89,127,3456

8 45,789,1236

8 47,569,1238+67,349,1258

12 45,369,1278

12 23,789,1456

12 27,369,1458+67,129,3458

16 23,569,1478

16 25,349,1678+45,129,3678

20 23,149,5678
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Table 6 Sums of Schubert cells
generating H∗(Fl335;Q),
labeled by OSP(3, 3, 5)

deg Fl335
H∗(Fl224;Q) ⊗ �[x19]

0 9 10 11,678,12345

4 9 10 11,458,12367

4 78 11, 69 10,12345

8 9 10 11, 238, 14567

8 56 11,89 10,12347

8 58 11,67 10,12349+78 11,45 10,12369

12 56 11,47 10,12389

12 34 11,89 10,12567

12 38 11,47 10,12569+78 11,23 10,14569

16 34 11,67 10,12589

16 36 11,45 10,12789+56 11,23 10,14789

19 189,27 10,3456 11

20 34 11,25 10,16789

23 127,89 10,3456 11+167,29 10,3458 11

23 169,25 10,3478 11+189,256,347 10 11

27 167,258,349 10 11

27 125,69 10,3478 11+145,29 10,3678 11

27 149,23 10,5678 11+189,234,567 10 11

31 125,678,349 10 11+145,278,369 10 11

31 123,49 10,5678 11

31 147,238,569 10 11+167,234,589 10 11

35 145,236,789 10 11

35 123,478,569 10 11

39 123,456,789 10 11

These examples hopefully illustrate that although there is a simple description
of the cohomology of real flag manifolds in terms of topology (cf. Cartan model,
Appendix A), in general there is some nontrivial combinatorics involved in translating
that description to the Schubert calculus setting.
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