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We provide further evidence to the P = W conjecture 
of de Cataldo, Hausel and Migliorini, by checking it in 
the Painlevé cases. Namely, we compare the perverse Leray 
filtration induced by the Hitchin map on the cohomology 
spaces of the Dolbeault moduli space and the weight filtration 
on the cohomology spaces of the irregular character variety 
corresponding to each of the Painlevé I − V I systems. We 
find that the two filtrations agree. Along the way, we prove 
the Geometric P = W conjecture of Katzarkov, Noll, Pandit 
and Simpson in the Painlevé cases, and show that in these 
cases the Geometric P = W conjecture implies the P = W
conjecture.

© 2021 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and statement of main result

Throughout the paper we let X denote one of the symbols

I, II, III(D6), III(D7), III(D8), IV, Vdeg, V, V I
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so that the index PX refers to Painlevé X. In [32], irregular Betti moduli spaces 
(also called wild character varieties following [7]) MPX

B are defined and shown to be 
C-analytically isomorphic under the Riemann–Hilbert correspondence to irregular de 
Rham spaces MPX

dR . (At a higher level of generality, moduli spaces of untwisted irregu-
lar connections of arbitrary rank on a compact Riemann surface of arbitrary genus were 
constructed in [6] as algebraic symplectic manifolds, and the irregular Riemann–Hilbert 
correspondence for the moduli spaces was proven in [8], building on the categorical cor-
respondence of Malgrange [27, Chapitre 4].) It follows from [5, Theorem 1] that for every 
X in the so-called untwisted cases II, III(D6), IV, V, V I smooth complex analytic mod-
uli spaces MPX

Dol exist and are diffeomorphic under non-abelian Hodge theory to the 
corresponding MPX

dR . A combination of these results implies that in the untwisted cases 
MPX

B and MPX
Dol are diffeomorphic; such a diffeomorphism is expected to exist in the 

remaining (twisted) cases too. In [21], [22] we gave an explicit description of the spaces 
MPX

Dol and of their (irregular) Hitchin map in terms of elliptic pencils. In [32], an explicit 
description of the spaces MPX

B is provided as affine cubic surfaces.
Deligne [15] constructs a weight filtration W on the complex cohomology spaces of 

an affine algebraic variety. In particular, the cohomology spaces of MPX
B carry a mixed 

Hodge structure. On the other hand, the Hitchin map endows the complex cohomology 
spaces of MPX

Dol with a perverse Leray filtration P [4]. Following [17, page 2], we set

PHPX(q, t) =
∑
i,k

dimQ GrPi Hk(MPX
Dol ,Q)qitk,

WHPX(q, t) =
∑
i,k

dimC GrW2i Hk(MPX
B ,C)qitk.

Remarkably, in the rank 2 case without (regular or irregular) singularities equality be-
tween these two polynomials for Dolbeault and Betti spaces corresponding to each other 
under non-abelian Hodge theory and Riemann–Hilbert correspondence was proven in 
[13, Theorem 1.0.1], and conjectured to be the case in general (the P = W conjec-
ture).

The perverse filtration for some logarithmic Hitchin systems was studied by Z. Zhang 
[40], where he showed multiplicativity of the filtration with respect to wedge product on 
Hilbert schemes of smooth projective surfaces fibered over a curve, and thereby computed 
their perverse polynomials. More generally, W. Chuang, D. Diaconescu, R. Donagi and 
T. Pantev conjectured a formula for the perverse Hodge polynomial of moduli spaces 
of meromorphic Higgs bundles with one irregular singularity [12]. On the Betti side, 
T. Hausel, M. Mereb and M. Wong investigated the weight filtration on the cohomology 
of character varieties of punctured curves with one irregular singularity, and extended 
the P = W conjecture to this case [17, Problem 0.1.4]. The purpose of this paper is to 
give an affirmative answer to this conjecture in the Painlevé cases. Notice that not all 
the cases we study fall into the class studied in [17], because some of them admit two 
irregular singularities, some of which with twisted formal type.
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Theorem 1. For every X the perverse Leray and weight polynomials on the cohomology 
of the Dolbeault and Betti spaces mapped to each other by non-abelian Hodge theory and 
Riemann–Hilbert correspondence agree:

PHPX(q, t) = WHPX(q, t). (1)

Moreover, we will prove that the classes generating the exotic pieces of the P and W
filtrations match up under non-abelian Hodge theory. The idea of the proof is to pass 
through establishing a conjecture of C. Simpson [36, Conjecture 11.1] in this special case 
(cf. Theorem 2). Matching of the P and W filtrations on H2 amounts roughly speaking 
to the Poincaré dual of Theorem 2 in the boundary 3-manifold of a neighbourhood of 
infinity in the moduli space.

Theorem 2. There exists a smooth compactification M̃PX
B of MPX

B by a simple normal 
crossing divisor D such that the body |NPX | of the nerve complex NPX of D is homotopy 
equivalent to S1. Moreover, for some sufficiently large compact set K ⊂ MPX

B , there 
exists a homotopy commutative square

MPX
Dol \K

h

ψ
MPX

B \K

φ

D× |NPX |.

Here, h denotes the Hitchin map, D× ⊂ Y is a neighbourhood of ∞ in the Hitchin base, 
and the top row is the diffeomorphism coming from non-abelian Hodge theory.

For details, see Section 5. This statement in higher generality was conjectured by 
L. Katzarkov, A. Noll, P. Pandit and C. Simpson [24, Conjecture 1.1]; in their general-
ization the homotopy type of the body of the nerve complex is conjectured to be that 
of a sphere and a similar homotopy commutativity relation is conjectured to hold. An 
analogous statement to the homotopy sphere assertion has been proven by A. Komyo [26]
for two 2-dimensional and a 4-dimensional logarithmic Dolbeault moduli spaces. In [36], 
C. Simpson proved the homotopy sphere assertion in the more general setup of character 
varieties with an arbitrary number of punctures on the projective line, and named the 
homotopy commutativity assertion the Geometric P = W conjecture [36, Conjecture 
11.1].

In Section 2 we give some background material necessary to understand our construc-
tions. In Section 3 we describe the perverse filtration on MPX

Dol . In Section 4 we determine 
the weight filtration on MPX

B and prove Theorem 1. In Section 5 we prove Theorem 2, 
and in Section 6 we prove equality of the P and W filtrations in the Painlevé VI case.
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2. Preparatory material

2.1. Meromorphic Higgs fields

Let D =
∑

mipi be an effective divisor on CP 1, where pi ∈ CP 1 and mi ∈ Z+ satisfy ∑
mi = 4. The moduli spaces MPX

Dol parameterize certain rank 2 meromorphic parabolic 
Higgs bundles over CP 1 with poles at such a divisor D. A rank 2 meromorphic Higgs 
bundle over CP 1 with poles at D is a couple (E , θ) where

• E is a rank 2 holomorphic vector bundle over CP 1,
• θ is a meromorphic O-linear morphism

θ : E → E ⊗KCP 1(D)

subject to certain conditions that we will spell out below. We will assume that the degree 
of E is odd. With respect to some holomorphic trivialization of E near pi, we may expand 
θ as a convergent Laurent series

∞∑
m=−mi

Am(z − pi)m

for some Am ∈ gl2(C). We define the residue of θ at pi as Respi
θ = A−1; the residue is 

well-defined up to adjoint action of Gl2(C). In case mi = 1 the point pi is said to be a 
logarithmic singular point of θ; if on the other hand mi > 1 we say that the singularity 
of the Higgs field is irregular, and we define its irregular part as

−2∑
m=−mi

Am(z − pi)m.

We will assume the following genericity condition for the irregular parts:

Condition 1. For all irregular singular points, the leading-order term A−mi
of the expan-

sion of θ at pi is a regular endomorphism.
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Table 1
Types of singularities of the Higgs field. In 
case several possibilities give rise to the same 
Painlevé equation, they are separated by a 
semi-colon.

X D =
∑

nipi

V I p1 + p2 + p3 + p4
V 2p1 + p2 + p3
III(D6) = Vdeg 2p1 + 2p2; 3

2p1 + p2 + p3
III(D7) 3

2p1 + 2p2
III(D8) 3

2p1 + 3
2p2

IV 3p1 + p2
II 4p1; 5

2p1 + p2
I 7

2p1

This condition is manifestly independent of the chosen trivialization. One further 
needs to distinguish between Higgs fields with twisted and untwisted irregular part. We 
say that θ has untwisted irregular singularity at pi if the leading-order term A−mi

of 
the expansion of θ is regular semi-simple, and twisted irregular singularity at pi if its 
leading-order term is (up to adding a multiple of the identity) a regular nilpotent. If θ
has an untwisted irregular singular point at pi, then we will continue to write ni = mi

for the coefficient of pi in the divisor D. If, on the other hand, θ has a twisted irregular 
singular point at pi, then we will denote its coefficient in D as ni = mi − 1

2 . To sum up, 
the notation ∑

nipi

encodes the order and twistedness of the poles pi of θ, and it varies in function of the 
Painlevé type according to Table 1. Let us emphasize again that in case the order of the 
pole of θ at pi is equal to 1, then in the form of D we do not distinguish between regular 
semi-simple residue orbits and ones with two equal eigenvalues. Under Condition 1 a 
quasi-parabolic structure is the datum of a 1-dimensional subspace �i ⊂ E|pi

in the 2-
dimensional fiber of E over pi for each i such that mi = 1. We impose the following 
compatibility condition on the above data:

Condition 2. The line �i is an eigenspace of Respi
θ.

Under the above conditions, in order to define the moduli spaces MPX
Dol we need to fix

• the divisor D =
∑

nipi where 2ni ∈ Z,
• for each i the irregular part of θ near pi and the adjoint orbit of Respi

θ,
• for all i such that mi = 1 the orbit of the reduction of Respi

θ to the Levi quotient 
of the parabolic subalgebra pi ⊂ gl2(C) defined by the line �i.

In concrete terms, the requirement on Levi quotient means that the eigenvalues of Respi
θ

are fixed, but their adjoint orbit in gl2(C) is not. The moduli spaces MPX
Dol parameterize 
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triples (E , θ, {�i}) where (E , θ) is a meromorphic Higgs bundle over CP 1 with polar 
divisor bounded from above by D, such that

• for all i satisfying mi > 1 the irregular part of θ with respect to some holomorphic 
trivialization of E near pi is fixed,

• for all i satisfying mi > 1 the adjoint orbit of Respi
θ is fixed,

• and for all i satisfying mi = 1 the line �i defines a compatible quasi-parabolic struc-
ture such that the adjoint orbit of the reduction of Respi

θ to the Levi quotient of pi
is fixed.

In order to get coarse moduli spaces corresponding to Artin stacks, one needs to restrict 
to objects satisfying a parabolic semi-stability condition. We assume that the parabolic 
weights are general, so that stability is equivalent to semi-stability. For further details, we 
refer to [21–23]. Let us call attention to the following difference between our assumptions 
in the present paper and those of [21–23], that will play a fundamental role in the analysis. 
Namely, in [21–23], we only considered singular Higgs fileds whose residues at logarithmic 
points were regular, i.e. had non-trivial nilpotent part in case of equal eigenvalues. As 
opposed to this, in case the residue Resp(θ) of the Higgs field at some logarithmic point 
p is assumed to have two equal eigenvalues, then in the present paper we consider the 
moduli space MPX

Dol of corresponding Higgs bundles completed with all Higgs bundles 
having the same eigenvalues of its residue but with trivial nilpotent part, equipped with 
a quasi-parabolic structure of full flag type at these points (the compatibility condition 
being vacuous). The reason we consider this completion of our previously studied spaces 
is that the Hitchin fibers of the non-completed moduli spaces may be non-compact, 
as endomorphisms with non-trivial nilpotent part may converge to ones with trivial 
nilpotent part.

Importantly for our purposes, we have:

Lemma 1. The completed moduli space MPX
Dol is a smooth complex manifold, and the 

irregular Hitchin map

h : MPX
Dol → Y = C (2)

is proper.

Proof. The proof of the first statement follows from [5, Theorem 5.4]. Indeed, let us 
consider an endomorphism

A ∈ gl(E|p)

of the fiber of a given rank 2 smooth vector bundle E at p. Let the decomposition of A
into semi-simple and nilpotent part be
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A = As + Anil

and assume that Anil �= 0 (so necessarily As is a multiple of identity). Finally, let

p ⊂ gl(E|p)

stand for the parabolic subalgebra containing Anil and

π : p → l

its Levi quotient. It follows from [5, Theorem 5.4] that the moduli space parameteriz-
ing irregular Higgs bundles (E , θ) endowed with a compatible parabolic structure, with 
fixed underlying smooth vector bundle E and such that π(Resp(θ)) = π(A) is a smooth 
complex manifold. Now, given that π(As) = π(A) we get that the completed Dolbeault 
moduli space is smooth.

Properness follows from [10,28] for the moduli space of Higgs bundles with some 
poles of total order n over any compact Riemann surface C, without any condition on 
the polar parts and residues at these points. In the case C = CP 1 and a divisor of 
total multiplicity 4, the base C8 of the Hitchin map for this system contains the image 
of those Higgs bundles having prescribed polar parts and residues as an affine open 
subspace A ∼= C. Namely, A is specified by the jet of the characteristic coefficients at 
the punctures of given order (see [21–23], or in greater generality [2, Theorems 5, 6]). 
The preimage h−1(a) of any a ∈ A is the set of all Higgs bundles having characteristic 
polynomial corresponding to a. By [22, Lemma 10.1], at any logarithmic singularity 
p the characteristic polynomial of the residue of the Higgs field is prescribed by a, 
but its adjoint orbit is not. Conversely, if a sequence of Higgs bundles (En, θn)n≥1 in 
h−1(a) converge to some Higgs bundle (E0, θ0) then the residue of θ0 at p has the same 
characteristic polynomial as the residues of θn at p. Replacing a finite number of points 
in the fiber by projective lines (corresponding to choices of a parabolic line � ⊂ E|p) does 
not modify properness. This implies properness for the completed moduli problem. �
Remark 1. If (E0, θ0) is an irregular parabolic Higgs bundle such that

Resp(θ0) = A ∈ gl(E|p)

with Anil �= 0 then by virtue of Condition 2 the compatible quasi-parabolic line � ⊂ E|p
is uniquely determined by the requirement Anil ∈ p. On the other hand, if (E1, θ1) is an 
irregular parabolic Higgs bundle such that

Resp(θ1) = As

then the compatible quasi-parabolic line � ⊂ E|p may be chosen arbitrarily. This fact 
plays a crucial role in the proof of Lemma 2.
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2.2. Stokes data

Non-abelian Hodge theory [5] associates a meromorphic connection (E, ∇) on a holo-
morphic vector bundle to a meromorphic Higgs bundle, so that the irregular part of ∇
is (up to a scalar factor of 2) the same as the one of the Higgs field. The eigenvalues of 
the residue and the parabolic weights transform according to Simpson’s table [35], while 
their nilpotent parts agree. These rules then completely determine the local singularity 
behaviour of (E, ∇) at the points pi. The irregular Riemann–Hilbert correspondence 
[27] associates the local system of solutions to the meromorphic connection (E, ∇). It 
can be conveniently encoded in terms of a representation of the fundamental group of 
the punctured Riemann surface, complemented with Stokes matrices satisfying certain 
conditions.

Let us now describe in detail the types of the Stokes local systems associated to the 
meromorphic connections (E, ∇) relevant in the Painlevé cases following [32]. To any log-
arithmic singular point pi one associates the local holonomy automorphism Ti ∈ Gl(2, C)
of (E, ∇) along a loop winding around pi once in positive direction. Assuming the dif-
ferent eigenvalues of Respi

(∇) do not differ by integers, this holonomy is determined up 
to conjugacy by the residue of ∇

Ti = Li exp(2π
√
−1 Respi

(∇))L−1
i (3)

for some Li ∈ Gl(2, C). To an untwisted irregular singular point pi with mi > 1 the 
meromorphic connection (E, ∇) determines Stokes matrices

S1
i , S

2
i , . . . , S

2mi−3
i , S2mi−2

i

such that S2j−1
i ∈ B+

i and S2j
i ∈ B−

i where B±
i is a pair of opposite Borels. In terms of 

the local system, the Stokes matrices arise as follows: on overlapping angular sectors U l
i

of opening 2π
2mi−2 + ε centered at pi the connection ∇ admits convergent fundamental 

systems having growth behaviour predicted by its irregular type; the Stokes matrix Sl
i

is then the change of trivializations from the fundamental system on U l
i to the one on 

U l+1
i (where l is understood modulo 2mi − 2). We define the formal monodromy γ of ∇

as

γ = exp(2π
√
−1diagRespi

(∇))

where diagRespi
(∇) stands for the diagonal part of Respi

(∇) with respect to a basis 
singled out by the Cartan B+

i ∩B−
i . The holonomy automorphism about the untwisted 

irregular singular point pi is then given by

Ti = LiγS
2mi−2
i S2mi−3

i · · ·S2
i S

1
i L

−1
i

for some link automorphism Li ∈ Gl(2, C).
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Fig. 1. Dual graphs of singular fibers of types (a) I∗
n−4, (b) E(1)

8 , (c) E(1)
7 , and (d) E(1)

6 . Integers next to 
vertices indicate the multiplicities of the corresponding components in the fiber. All vertices of the graphs 
correspond to rational curves with self-intersection −2, and edges correspond to transverse intersection of 
the corresponding components.

For a twisted irregular singular point pi with mi > 1, the formal monodromy is 
necessarily equal to

γ =
(

0 −1
1 0

)
,

and we again have Stokes matrices

S1
i , S

2
i , . . . , S

2ni−3
i , S2ni−2

i

which alternately belong to B±
i . The holonomy automorphism about the twisted irregular 

singular point pi is then equal to

Ti = LiγS
2ni−2
i S2ni−3

i · · ·S2
i S

1
i L

−1
i

for some link automorphism Li ∈ Gl(2, C).
The global condition on the above data is that the product of all holonomies

· · ·T2T1 = I (4)

is the identity. Moreover, there exists a natural Gk
m-action on the above data, where 

Gm = C× is the multiplicative group of C and k ≥ 0 is an integer. The wild character 
variety MPX

B is then by definition the GIT-quotient of the Gk
m-action on the set con-

taining all possible Stokes and monodromy data and link automorphisms satisfying (4).

2.3. Singular fibers of elliptic surfaces

In this subsection we will recall the classification result of singular fibers of elliptic 
surfaces due to Kodaira [25]. Let C be a smooth algebraic curve over C, X be a smooth 
algebraic surface over C and
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f : X → C

a proper algebraic morphism whose generic fibers are smooth elliptic curves and whose 
fibers contain no rational curves of self-intersection −1. Let c0 ∈ C be arbitrary. Then, 
the fiber Xc0 = f−1(c0) is bianalytically isomorphic to a curve from the following list:

• In+1 = A
(1)
n , consisting of a cycle of n + 1 rational curves of self-intersection −2

transversely intersecting each other for some n ∈ N;
• I∗n−4 = D

(1)
n , consisting of n + 1 rational curves of self-intersection −2 transversely 

intersecting each other according to the graph in Fig. 1 (a) for some n ≥ 4;
• E

(1)
6 , E(1)

7 , E(1)
8 , consisting of 7, 8 respectively 9 rational curves of self-intersection 

−2 transversely intersecting each other according to the graphs in Fig. 1 (d), (c) and 
(b);

• II, a curve of geometric genus 0 and self-intersection 0 with a single cuspidal singular 
point (locally modelled by y2 = x3);

• III, the union of two smooth rational curves of self-intersection −2 tangent to each 
other to order exactly 2 at a point;

• IV , the union of three smooth rational curves of self-intersection −2 transversely 
intersecting each other at a single point.

The curve I0 is by definition a smooth elliptic curve with some complex structure, and 
I∗0 = D

(1)
4 has a vertex of valency 4, therefore the corresponding curves admit a 1-

dimensional modulus each (for I∗0 , the modulus is determined by the cross-ratio of the 
points of the central component where the four leaves intersect it). The curve I1 has a 
single component of self-intersection 0 with an ordinary double point.

3. Perverse Leray filtration

We first deal with the left-hand side of (1). The irregular Hitchin map (2) endows

H∗(MPX
Dol ,Q)

with a finite increasing perverse filtration P • through the perverse Leray spectral se-
quence. As usual, we set

GrPk = P k/P k−1.

Proposition 1. We have

dimQ GrP0 H0(MPX
Dol ,Q) = 1

dimQ GrP1 H2(MPX
Dol ,Q) = dPX

dimQ GrP2 H2(MPX
Dol ,Q) = 1
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Table 2
Fiber at infinity and perverse Hodge 
polynomial of MPX

Dol .

X FPX
∞ PHPX(q, t)

V I D
(1)
4 1 + 4qt2 + q2t2

V D
(1)
5 1 + 3qt2 + q2t2

Vdeg D
(1)
6 1 + 2qt2 + q2t2

III(D6) D
(1)
6 1 + 2qt2 + q2t2

III(D7) D
(1)
7 1 + qt2 + q2t2

III(D8) D
(1)
8 1 + q2t2

IV E
(1)
6 1 + 2qt2 + q2t2

II E
(1)
7 1 + qt2 + q2t2

I E
(1)
8 1 + q2t2

for some dPX ∈ N, and all the other graded pieces of H∗ for P vanish. In particular, 
we have

b2(MPX
Dol ) = 1 + dPX

and

PHPX(q, t) = 1 + dPXqt2 + q2t2.

Furthermore, we have

dPX = 10 − χ(FPX
∞ ),

where FPX
∞ is the fiber at infinity of MPX

Dol listed in Table 2.

The specific forms of PHPX(q, t) can then easily be determined using Proposition 1
and the fibers FPX

∞ , and for convenience they are included in Table 2.

Proof. As MPX
Dol is a non-compact oriented 4-manifold, by Poincaré duality we have

b4(MPX
Dol ) = 0.

Let H denote hypercohomology of a complex of sheaves and H stand for cohomology 
of a single sheaf. Here and throughout this section, for ease of notation we drop the 
subscript Dol and the superscript PX of MPX

Dol whenever this latter is in subscript. It is 
known that there exists a spectral sequence pLE

k,l
r called perverse Leray spectral sequence

degenerating at the second page

p

LE
k,l
2 = pHk(Y, pRlh∗QM) ⇒ Hk+l(MPX

Dol ,Q).

The perverse filtration on H•(MPX
Dol , Q) is defined as the filtration
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P pH•(Y,Rh∗QM) = ⊕l≤p
p

LE
k,l
2 (5)

induced by h (2) on the terms of pLE2.
In order to be able to compute the graded pieces of (5), we first need a digression 

on the structure of the Dolbeault spaces. Namely, we know from [21, Theorems 1.1, 1.2, 
Proposition 4.2], [22, Theorems 2.1, 2.2, 2.3] that for each

X ∈ {I, III(D6), III(D7), III(D8)}

there exists an embedding

MPX
Dol ↪→ E(1)

of MPX
Dol into the rational elliptic surface

E(1) = CP 2#9CP
2 (6)

so that

E(1) \MPX
Dol = FPX

∞

for some non-reduced curve FPX
∞ , moreover there exists an elliptic fibration

h̃ : E(1) → CP 1

so that the following diagram commutes

MPX
Dol

h

E(1)

h̃

C CP 1.

(7)

In particular, we have

h̃−1(∞) = FPX
∞ .

The type of the curves FPX
∞ is determined by X and is listed in Table 2. In addition, 

there is a map

p : E(1) → CP 1 (8)

which is the 8-point blow-up of the ruling of the Hirzebruch surface of degree 2. In 
this picture, the central component of FPX

∞ is the fiber at infinity of p and its other 
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components arise from the proper transform of the blown-up fibers and possibly some 
exceptional divisors.

If the residues of the Higgs field at the simple poles are assumed to have distinct 
eigenvalues then exactly the same results hold in the cases II, IV, Vdeg, V, V I too. For 
X = II, IV this follows from [22, Theorems 2.4, 2.6], for X = Vdeg, V, V I see [23, 
Sections 1.3, 1.4]. On the other hand, in all cases II, IV, Vdeg, V, V I where one of the 
poles is simple and the residue has equal eigenvalues, the same statement holds for the 
completed Dolbeault moduli spaces. In case X = V I this is precisely [23, Proposition 2.9].

Lemma 2. In cases X = II, IV, Vdeg, V , assume that there is a simple pole of the Higgs 
field such that the residue has equal eigenvalues. Then, there exists an embedding

MPX
Dol ↪→ E(1)

of the completed Dolbeault moduli spaces so that

E(1) \MPX
Dol = FPX

∞

for the non-reduced curve FPX
∞ listed in Table 2, and the diagram (7) commutes.

Proof. The proof is similar to the PV I case. We consider the pencil of spectral curves 
associated to Higgs bundles with poles of the given local forms. According to [38, Theo-
rem 1.1], the moduli space arises as a certain relative compactified Picard-scheme of this 
pencil. In order to determine the relative compactified Picard-scheme, one first needs to 
blow up the base locus of the pencil of spectral curves; in general this process involves 
blowing up infinitesimally close points. The common phenomenon in the cases when the 
residue of the Higgs field at a simple pole p1 has equal eigenvalues is that one exceptional 
divisor E of the blow-up process (with self-intersection number equal to (−2)) maps to 
p1 under the ruling and becomes a component of one of the fibers Xt in the fibration. In 
the cases X = II, IV this is precisely proven in [22, Lemma 4.5]. The same proof goes 
along for the other types too, because both the assumptions and the assertion is local 
at the fiber of the ruling over p1. Let us denote by Zt the singular curve in the pencil of 
spectral curves whose proper transform contains E, so that Xt is the proper transform 
of Zt. It follows from [37, Section 6] that Xt is one of the Kodaira types

I2, I3, I4, III, IV.

The corresponding spectral curves Zt are listed before [22, Lemma 10.1], except in case Xt

is of type I4. The case I4 may only occur in cases X = Vdeg, V, V I, under the assumption 
that there exists two simple poles p1, p2 of the Higgs field such that for i ∈ {1, 2}
Respi

(θ) has two equal eigenvalues. In this case two non-neighbouring components of Xt

get mapped to p1, p2 respectively under the ruling and Zt consists of two rational curves 
(sections of the Hirzebruch surface of degree 2) intersecting each other transversely in 
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two points, one on the fiber over p1 and another one on the fiber over p2. Indeed, Zt may 
have at most two components because it is a 2 : 1 ramified covering of the base curve 
CP 1, so two components of Xt must be exceptional divisors of the blow-up process; 
one of these two components must come from blow-ups at p1 and the other one from 
blow-ups at p2, for otherwise the dual graph could not be a cycle. By [22, Lemma 10.1], 
Higgs bundles whose residue at p1 (and p2 in case IV ) has non-trivial nilpotent part 
correspond to locally free spectral sheaves over Zt at p1 (respectively, p2). For such curves 
Zt, [22, Lemma 10.2] determines the families of locally free spectral sheaves giving rise 
to parabolically stable Higgs bundles. On the other hand, any torsion-free sheaf on Zt is 
the direct image of a locally free sheaf on a partial normalization. Let us separate cases 
according to the type of Xt.

(1) If Xt is of type I2 then Zt is a nodal rational curve with a single node on the fiber 
over p1; there exists a family parameterized by C× of locally free sheaves and a 
unique torsion-free but not locally free sheaf of given degree on Zt. This latter non-
locally free torsion free sheaf gives rise to a unique Higgs bundle whose residue has 
the required eigenvalue of multiplicity 2 and trivial nilpotent part. This object is 
irreducible hence stable. On the other hand, the choice of quasi-parabolic structure 
at p1 compatible with this unique Higgs bundle is an arbitrary element of CP 1. This 
gives us that the Grothendieck class of the Hitchin fiber of the completed moduli 
space over the point t is

[C×] + [CP 1].

As the unique Kodaira fiber in this class is I2, we deduce from Lemma 1 that the 
Hitchin fiber of the completed moduli space over the point t is of this type, i.e. the 
same type as Xt.

(2) If Xt is of type I3 then Zt is composed of two sections of the ruling intersecting each 
other transversely in two distinct points, one of them lying on the fiber over p1. As 
shown in [22, Lemma 10.2.(2)], Higgs bundles with spectral curve Zt and residue 
having non-trivial nilpotent part form a family parameterized by a variety in the 
class

2[C×] + [pt].

As in the previous point, there exists a single torsion-free but not locally free sheaf 
giving rise to a Higgs bundle with spectral curve Zt such that Resp1(θ) has triv-
ial nilpotent part. Again, the quasi-parabolic structure at p1 compatible with this 
unique Higgs bundle is parameterized by CP 1, so the class of the Hitchin fiber of 
the completed moduli space over the corresponding point t is

2[C×] + [pt] + [CP 1].
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The only Kodaira fiber in this class is I3, hence the Hitchin fiber of the completed 
moduli space over t is I3.

(3) For Xt is of type I4, as we already mentioned, Zt is a union of two sections of the 
ruling that intersect each other transversely in two points: one on the fiber over each 
of p1, p2. Therefore, the analysis is quite similar to the case of I3 treated above: 
Higgs bundles with spectral curve Zt such that both Resp1(θ), Resp2(θ) have non-
trivial nilpotent part are parameterized by a variety in class

2[C×].

(The class of the point [pt] that appears in the case I3 is missing here because it 
corresponds to a torsion-free but non-locally free sheaf at p2 which would give rise 
to a Higgs bundle with trivial nilpotent part at p2.) Now, there exists a single sheaf 
of given degree that is locally free at p1 and torsion-free but non-locally free at p2. 
For the Higgs bundle obtained as the direct image of this sheaf, compatible quasi-
parabolic structures at p1 are parameterized by CP 1. The same observations clearly 
apply with p1, p2 interchanged too. Finally, notice that stability excludes that the 
spectral sheaf be torsion-free but non-locally free at both p1, p2: this would mean 
that the spectral sheaf comes from the normalization of Zt, so the corresponding 
Higgs bundle would be decomposable. In sum, the class of the Hitchin fiber of the 
completed moduli space over t is

2[C×] + 2[CP 1].

As the only Kodaira fiber in this class is I4, we infer that the Hitchin fiber of the 
completed moduli space over t is of type I4.

(4) If Xt is of type III then Zt is a cuspidal rational curve with a single cusp on the 
fiber over p1. Stability of any Higgs bundle with spectral sheaf supported on Zt

again follows from irreducibility. By virtue of [22, Lemma 7.2], locally free sheaves of 
given degree on Zt are parameterized by C× and there exists a single non-locally free 
torsion free sheaf of given degree on Zt. This latter gives rise to a unique Higgs bun-
dle in the extended moduli space with residue having trivial nilpotent part. Again, 
compatible quasi-parabolic structures at p1 provide a further CP 1 of parameters, so 
that the class of the Hitchin fiber of the completed moduli space over t is

[C] + [CP 1].

As the unique Kodaira fiber in this class is III, we see that the Hitchin fiber of the 
completed moduli space over t is of type III.

(5) If Xt is of type IV then Zt consists of two sections of the Hirzebruch surface, simply 
tangent to each other on the fiber over p1. [22, Lemma 10.2.(4)] implies that stable 
Higgs bundles with spectral curve Zt and Resp1(θ) having non-trivial nilpotent part 
are parameterized by a variety in class
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2[C],

while there exists a unique equivalence class of stable Higgs bundles with spectral 
curve Zt and Resp1(θ) having trivial nilpotent part. For this latter, we again have 
to add the parameter space CP 1 of compatible quasi-parabolic structures at p1 to 
the above family, leading to the class

2[C] + [CP 1].

As the only Kodaira fiber in this class is IV , the corresponding Hitchin fiber is of 
type IV too. �

Remark 2. In the Lemma we found that the completed Hitchin system has the same 
type of singular fibers as the associated fibration of spectral curves. A similar statement 
is shown in [1, Corollary 6.7], based on the analysis [19] of Fourier–Mukai transform 
for sheaves on various singular elliptic curves. Our result is more general than the one 
of [1] in that it also treats the ramified Dolbeault moduli spaces and consequently more 
types of singular fibers enter into the picture, and we also consider the dependence of our 
result on parabolic weights. As Gl(2, C) is Langlands-selfdual, the above relative self-
duality result can be considered as an irregular version of Mirror Symmetry of Hitchin 
systems [18].

We are now ready to return to the study of the perverse filtration (5). Our computation 
closely follows [20, Proposition 4.11]. We first observe that since the fibers of h are 
connected, pR0h∗CM = CY [−1], the trivial local system of rank 1 over Y placed in 
degree 1. By the relative hard Lefschetz theorem, the same then holds for pR2h∗CM
too. We get that pLE

k,l
2 is of the form

k = 2 0 Cb3(M) 0

k = 1 0 pH1(Y, pR1h∗CM) 0

k = 0 C Cb1(M) C

l = 0 l = 1 l = 2

The perverse Leray spectral sequence degenerates at this term. In particular, the di-
mension b1(M) of pLE

0,1
2 is equal to the first Betti number b1(MPX

Dol ) and the dimension 
b3(M) of pLE

2,1
2 is equal to the third Betti number b3(MPX

Dol ).
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Lemma 3. We have b1(MPX
Dol ) = 0 and b3(MPX

Dol ) = 0.

Proof. Let N denote a tubular neighbourhood of FPX
∞ in E(1) and consider the covering

E(1) = MPX
Dol ∪N.

Part of the associated Mayer–Vietoris cohomology long exact sequence reads as

→ H1(E(1),Q) → H1(MPX
Dol ,Q) ⊕H1(N,Q) → H1(MPX

Dol ∩N,Q) δ−→ (9)

→ H2(E(1),Q) → · · ·

We know that H1(E(1), Q) vanishes because it has the structure of a CW-complex only 
admitting even-dimensional cells. On the other hand, MPX

Dol ∩N is homotopy equivalent 
to a plumbed 3-manifold Y PX

Dol over FPX
∞ :

MPX
Dol ∩N ∼= Y PX

Dol . (10)

To prove the assertion it is clearly sufficient to show that the connecting morphism δ
between cohomology groups is a monomorphism, or dually, that the connecting morphism

∂ : H2(E(1),Q) → H1(MPX
Dol ∩N,Q)

on singular homology is an epimorphism. According to Table 2, for each X the Dynkin 
diagram of FPX

∞ is simply connected. As Y PX
Dol is a Seifert fibered 3-manifold, by [31] it 

is known that H1(MPX
Dol ∩N, Q) is generated by classes [γi] of normal loops around the 

irreducible components Di of FPX
∞ corresponding to the central node and the leaves of 

the plumbing tree. Let us now recall the definition of ∂. Assume given a singular 2-cycle 
C in E(1), that decomposes as

C = A + B (11)

where A and B are singular 2-chains in MPX
Dol and N respectively. (Such a decomposition 

always exists using barycentric decomposition.) We then let

∂([C]) = [∂(A)] = −[∂(B)].

Let now [γi] be a loop around any component Di of FPX
∞ ; it is sufficient to show that 

there exists a 2-cycle Ci such that

∂([Ci]) = [γi].

There are two cases to consider. First, Di may be the component corresponding to 
central node of FPX

∞ ; in this case, the cycle Ci may be chosen as the general fiber of the 
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ruling (8). Second, Di may be the proper transform of a fiber of (8) or an exceptional 
divisor corresponding to a leaf of FPX

∞ : in this case, Ci may be chosen as the exceptional 
divisor of the blow-up of one of the points of Di. This finishes the proof of vanishing of 
b1.

The assertion for b3 again follows from the corresponding segment of Mayer–Vietoris 
sequence

→ H3(E(1),Q) → H3(MPX
Dol ,Q) ⊕H3(N,Q) → H3(MPX

Dol ∩N,Q) δ−→

→ H4(E(1),Q) → 0.

Indeed, here H3(E(1), Q) = 0 because E(1) is the body of a CW-complex with only even-
dimensional cells and H4(E(1), Q) ∼= Q because E(1) is a smooth oriented connected 
compact 4-manifold. Moreover, H3(MPX

Dol∩N, Q) ∼= Q because MPX
Dol∩N has the smooth 

oriented compact connected 3-manifold Y PX
Dol as deformation retract. These isomorphisms 

then show that

H3(MPX
Dol ,Q) ⊕H3(N,Q) ∼= 0. �

In case the fibers of h are not all integral, the usual Leray spectral sequence may have 
terms supported in dimension 0. However, these extra terms occur in degrees (2, 1) and 
(0, 2) and get annihilated by the differential d2. Hence, for the purpose of our study we 
may assume that the eigenvalues of θ are taken sufficiently generic, so that all singular 
fibers of h are integral. In this case, the usual Leray spectral sequence degenerates at 
LE2 too. Since both LE2 and pLE2 abut to H•(MPX

Dol ) and their terms of degrees (0, 2)
and (2, 0) agree, we deduce the equality

pH1(Y, pR1h∗CM) ∼= H1(Y,R1h∗CM).

Let us set

dPX = dimC H1(Y,R1h∗CMPX )

(where we have reintroduced the superscript PX of M in order to emphasize the way 
in which the right-hand side depends on the specific irregular type that we work with). 
By the form of pLE

k,l
2 as showed above and the definition (5), we see that

dimQ GrP0 H2(MPX
Dol ,Q) = 1 (12)

dimQ GrP1 H2(MPX
Dol ,Q) = dPX (13)

dimQ GrP2 H2(MPX
Dol ,Q) = 1. (14)

Moreover, we have
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P 1H2(MPX
Dol ,Q) = Ker(j∗) (15)

where Y−1 ∈ Y is a generic point in the Hitchin base and the morphism

j∗ : H2(MPX
Dol ,Q) → H2(h−1(Y−1),Q)

is the induced morphism in cohomology by the inclusion

j : h−1(Y−1) → MPX
Dol .

Let us denote Euler-characteristic of a topogical space by χ.

Lemma 4. We have

dPX = 10 − χ(FPX
∞ ).

Proof. We see from degeneration of the perverse Leray spectral sequence at pLE2 that

1 + dPX = b2(MPX
Dol ). (16)

By Lemma 3 and additivity of χ with respect to stratifications we deduce

b0(MPX
Dol ) + b2(MPX

Dol ) + χ(FPX
∞ ) = χ(E(1)) = 12.

The assertion follows because MPX
Dol is connected. �

This Lemma and (12), (13), (14) coupled with (16) finish the proof of the Proposi-
tion. �
Remark 3. An alternative method of proof would be to make use of the relationship 
between the flag filtration and the perverse filtration [14, Theorem 4.1.1]. In our case 
however, the direct method works just as well. The lattice H1(Y, R1h∗ZM) is isomorphic 
to the generic Mordell–Weil group MW σ(h̃) of the identity component E(1)σ (singled 
out by a fixed section σ) of a Néron model of h̃ : E(1) → CP 1. Indeed, considering a cell 
decomposition of CP 1 such that no 1-cell contains ∞ we see that

H1(Y,R1h∗ZM) ∼= H1(CP 1, R1h∗ZE(1)).

Now, Kodaira’s short exact sequence [3, Section V.9]

0 → R1h∗ZE(1) → R1h∗OE(1) → OCP 1(E(1)σ) → 0

gives rise to the cohomology long exact sequence
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· · · →H0(CP 1, R1h∗OE(1)) → H0(CP 1,OCP 1(E(1)σ)) →

→ H1(CP 1, R1h∗ZE(1)) →H1(CP 1, R1h∗OE(1)).

In this sequence the two extremal terms vanish by relative duality [3, Section III.12]

R1h∗OE(1) ∼= (R0h∗ωE(1)/CP 1)∨ ∼= R0h∗K
∨
E(1) ⊗KCP 1 ,

the Künneth formula and rationality of E(1). Therefore, for generic choices of the eigen-
values (so that the singular fibres of MPX

Dol are irreducible) Proposition 1 also follows 
from the Shioda–Tate formula [33,34,39], which in our case reads

rankZ(MW σ(h̃)) = rankZ(NS(E(1))) − 1 − rankZH2(FPX
∞ ,Z),

because the Néron–Severi group NS(E(1)) of E(1) satisfies (again using rationality)

NS(E(1)) ∼= H2(E(1),Z) ∼= Z10.

4. Weight filtration

We now turn our attention to the right hand side of (1). Observe first that according 
to [32], for all X the space MPX

B is a smooth affine cubic surface defined by a polynomial

fPX(x1, x2, x3) = x1x2x3 + QPX(x1, x2, x3) (17)

for an affine quadric QPX . Each of these quadrics depends on some subset (possibly 
empty) of complex parameters

s0, s1, s2, s3, α, β. (18)

For a generic choice of these parameters, that we will assume from now on, the obtained 
affine cubic surfaces are smooth. Moreover, in case the cubics do not depend on any 
parameter, the affine cubic surfaces are always smooth. Denote by

FPX ∈ C[x0, x1, x2, x3]

the homogenization of fPX as a homogeneous cubic polynomial and consider the pro-
jective surface

MPX

B = Proj(C[x0, x1, x2, x3]/(FPX)), (19)

which is a compactification of MPX
B . In general, MPX

B is not smooth: it has some isolated 
singularities over x0 = 0. Let us set
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Table 3
Singularities of MPX

B and weight Hodge polynomial of 
MPX

B .

X Singularities of MPX
B WHPX(q, t)

V I ∅ 1 + 4qt2 + q2t2

V A1 1 + 3qt2 + q2t2

Vdeg A2 1 + 2qt2 + q2t2

III(D6) A2 1 + 2qt2 + q2t2

III(D7) A3 1 + qt2 + q2t2

III(D8) A4 1 + q2t2

IV A1 + A1 1 + 2qt2 + q2t2

II A1 + A1 + A1 1 + qt2 + q2t2

I A2 + A1 + A1 1 + q2t2

NPX =
∑
p

μ(p) (20)

where μ stands for the Milnor number of an isolated surface singularity and the summa-
tion ranges over all singular points of MPX

B .

Proposition 2. The non-trivial graded pieces of H∗ for W are

GrW0 H0(MPX
B ) ∼= C

GrW2 H2(MPX
B ,C) ∼= C4−NPX

GrW4 H2(MPX
B ,C) ∼= C.

In particular, we have

b2(MPX
B ) = 5 −NPX

and

WHPX(q, t) = 1 + (4 −NPX)qt2 + q2t2.

The singularities of MPX

B and the weight polynomial of MPX
B in the various cases 

are summarized in Table 3.

Proof. We use the definition given in [15] of the weight filtration on the mixed Hodge 
structure on the cohomology of an affine variety in terms of a smooth projective com-
pactification. The form (17) of fPX implies that the compactifying divisor

D = MPX

B \MPX
B = (x0) ∩ (FPX) ⊂ CP 2

in MPX

B is defined by the equation

x1x2x3,
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so

D = L1 ∪ L2 ∪ L3 (21)

where each Li is a complex projective line such that each two of them Li, Lj for i < j

intersect each other transversely in a point pij. Said differently, the nerve complex of 
D consists of the edges (and vertices) of a triangle A(1)

2 . In particular, the body of this 
complex is homeomorphic to a circle S1. As we will see in Subsections 4.1–4.9, all singu-
larities of MPX

B are located at some of the points pij and are of type Ak for k = μ(pij). 
We obtain a smooth compactification M̃PX

B of MPX
B by taking the minimal resolution 

of the singularities pij of MPX

B . It follows that there exists a smooth compactification 
M̃PX

B of MPX
B by a normal crossing divisor

DPX (22)

consisting of reduced projective lines. We know that DPX contains the proper transform 
of each component of (21). More precisely, the nerve complex NPX of DPX arises from 
the graph A(1)

2 of (21) by replacing the edge corresponding to an intersection point pij by 
a diagram Aμ(pij). On the other hand, the generic plane section of M̃PX

B is a cubic curve, 
therefore the nerve complex NPX must appear on Kodaira’s list given in Subsection 2.3
(up to modifying the self-intersection numbers by blow-ups necessary to eliminate the 
singular points). From this we see that the nerve complex of DPX is a cycle of length 
NPX + 3

NPX = CNPX+3. (23)

For more details and the self-intersection numbers see [30, Lemma 1]. As customary, we 
will denote by NPX

0 and NPX
1 the set of 0- and 1-dimensional cells of NPX , respectively.

We are now ready to determine the Betti numbers of M̃PX
B .

Lemma 5. We have

b0

(
M̃PX

B

)
= 1 = b4

(
M̃PX

B

)
b1

(
M̃PX

B

)
= 0 = b3

(
M̃PX

B

)
b2

(
M̃PX

B

)
= 7.

Proof. The assertion for b0 is obvious, and then immediately follows by Poincaré duality 
for b4 too.

In case NPX = 0, i.e. MPX

B is a smooth projective cubic surface, it is known that 
MPX

B is given by a blow-up of CP 2 in six different points, and so carries the structure 
of a CW-complex with only even-dimensional cells, with 7 two-dimensional cells.
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The non-smooth surfaces MPX

B clearly belong to the 20-dimensional family of pro-
jective cubic surfaces. The points parameterizing smooth cubics form a dense set in C20

with respect to the analytic topology. We will see in Subsections 4.1–4.9 that the spaces 
MPX

B only admit singularities of type Ak. It is known that a smoothing of a projective 
surface with ADE singularities coincides up to diffeomorphism with a minimal resolution 
thereof. In our case, a smoothing is a smooth cubic surface. The smooth case treated in 
the previous paragraph therefore implies the general statement. �

Now, [15, Théorème (3.2.5)] implies that there exists a spectral sequence

WE−n,k+n
1 = Hk−n(Ỹ n) ⇒ Hk(MPX

B ,C)

endowed with the weight filtration, with first page WE1 of the form

k + n = 4 ⊕p∈NPX
1

H0(p,C) δ ⊕L∈NPX
0

H2(L,C)
δ4

H4
(
M̃PX

B ,C
)

k + n = 3 0 ⊕L∈NPX
0

H1(L,C)
δ3

H3
(
M̃PX

B ,C
)

k + n = 2 0 ⊕L∈NPX
0

H0(L,C)
δ2

H2
(
M̃PX

B ,C
)

k + n = 1 0 0 H1
(
M̃PX

B ,C
)

k + n = 0 0 0 H0
(
M̃PX

B ,C
)

−n = −2 −n = −1 −n = 0

Let us list a few properties (either obvious or directly following from [15, Théorème (3.2.5)]) 
related to this spectral sequence.

(1) In the notation of [15], we have Ỹ 1 =
∐

L∈NPX
0

L and Ỹ 2 =
∐

p∈NPX
1

p.
(2) The sequence degenerates at WE2.
(3) The filtration WN is induced by n ≤ N on the above diagram, and its shifted 

filtration W [k] defines the mixed Hodge structure on Hk(MPX
B , C).
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(4) Up to identifying H2(L, C) with H0(L, C) via the Lefschetz operator, the map δ is 
the differential of the simplicial complex NPX . In particular, as the body of NPX

is homeomorphic to S1, we have

dimC Ker(δ) = 1 = dimC Coker(δ). (24)

(5) The morphisms δ2, δ4 are induced by the Thom morphism of the normal bundles of 
the subvarieties L ↪→ M̃PX

B .
(6) We have WE−1,3

1 = 0 because the components L are 2-spheres, in particular simply 
connected.

(7) Lemma 5 shows that we have WE0,3
1 = 0 = WE0,1

1 , so the entire rows k + n = 1 and 
k + n = 3 are 0.

Lemma 6. The morphism δ4 is an epimorphism.

Proof. Assuming that δ4 vanish, the term H4
(
M̃PX

B ,C
)

in the spectral sequence could 
not be annihilated at any further page by any other term, so we would get

H4 (MPX
B ,C

)
�= 0.

This, however, would contradict that MPX
B is an oriented, non-compact 4-manifold.

It is also easy to derive the result directly using the explicit description of δ4 as wedge 
product by the Thom class ΦL of the tubular neighbourhood NL of L in M̃PX

B , as in 
Lemma 7 below. Indeed, the image of the class of a generator [ωL] of H2(L, C) is then 
represented in NL by the compactly supported 4-form

δ4([ωL]) = [ωL ∧ ΦL].

The normal bundle of L in M̃PX
B is orientable, and the above 4-form is cohomologous 

to a positive multiple of a volume form of NL. This implies the assertion. �
The Lemma and (24) now imply that in the top row of WE2 the only non-vanishing 

term will be the upper-left entry, and it is of dimension 1.

Lemma 7. The morphism δ2 is a monomorphism.

Proof. Consider a tubular neighbourhood NL of L in M̃PX
B , diffeomorphic to the normal 

bundle of L in M̃PX
B . We have the Thom morphism

ιL! : H0(L,C) → H2 (NL,C)

1 �→ ΦL

where
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ιL : L → NL

is the inclusion map and ΦL stands for the Thom class of L in NL. Let now

jL : NL → M̃PX
B

be the inclusion map. Notice that as ΦL is vertically of compact support, its class can 
be extended by 0 to define a class

jL!ΦL ∈ H2
(
M̃PX

B ,C
)
.

The restriction of δ2 to the component H0(L, C) then maps

H0(L,C) � 1 �→ jL!ΦL ∈ H2
(
M̃PX

B ,C
)
.

Now, according to Proposition 6.24 [9], we have

jL!ΦL = PDNL
([L]) = PDM̃PX

B
([L]),

where PDV stands for Poincaré duality in V and [L] is the cohomology class defined by 
integration on L. Therefore, for any

(nL)L∈NPX
0

∈
⊕

L∈NPX
0

H0(L,C)

we have

δ2((nL)L∈NPX
0

) = PDM̃PX
B

⎛⎝ ∑
L∈NPX

0

nL[L]

⎞⎠ .

As Poincaré duality is perfect, the assertion is equivalent to showing that the classes [L]
for L ∈ NPX

0 are linearly independent in H2
(
M̃PX

B ,C
)
.

For this purpose, we fix a generic line � in the projective plane x0 = 0, and let

CP 2
t , t ∈ CP 1

denote the pencil of projective planes in CP 3 passing through �. We may assume that 
t = ∞ corresponds to the plane x0 = 0. For each t ∈ CP 1, the curve

Et = CP 2
t ∩MPX

B (25)

is an elliptic curve. The line � intersects for each k ∈ {1, 2, 3} the line Lk in a single point 
pk, which is (by genericity of �) different from all the intersection points pij. The elliptic 
pencil (25) has base locus B = {p1, p2, p3}. Let us consider the quadratic transformation
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ω : E → M̃PX
B (26)

with center B; E is then an elliptic surface over CP 1, in particular it is diffeomorphic to 
(6). The exceptional divisors ω−1(pk) are sections of Y , in particular they do not belong 
to the fiber E∞ over ∞. Let us denote by L̃ the proper transform of L with respect to 
ω. We may then write

ω∗[L] = [L̃] +
∑
k

mL,k[ω−1(pk)]

for some mL,k ∈ {0, 1}. The quotient

H2 (E,C) /H2
(
M̃PX

B ,C
)

is spanned by the classes [ω−1(pk)], k ∈ {1, 2, 3}. From this we see that if the classes 
[L], L ∈ NPX

0 were linearly dependent in H2
(
M̃PX

B ,C
)

then so would be the classes 
[L̃], L ∈ NPX

0 in H2 (E,C). Now, the fiber of the elliptic fibration E over t = ∞ is equal 
to

E∞ ∼= M̃PX
B \MPX

B = DPX = ∪L∈NPX
0

L̃.

We have already determined the type of E∞ in (23), in particular its intersection form 
is negative semi-definite, with non-trivial radical. The only possible vanishing linear 
combination of these classes would then be one in the radical of (23), generated by 
(1, . . . , 1). However, one sees immediately that the intersection number of

∑
L∈NPX

0

[L̃] (27)

and any [ω−1(pk)] is equal to 1, hence (27) is a non-zero class. Alternatively, the 
hyperplane class [H] must intersect the class (27) positively because the orthogonal com-
plement of [H] in H2 (E,C) is negative definite while the lattice of (23) has non-trivial 
radical. �

The spectral sequence degenerates at WE2 and the weight with respect to the filtration 
W [k] defining the mixed Hodge structure on H∗(MPX

B , C) is defined by

WE−n,k+n
2 �→ k + n.

Taking into account Lemma 6 we derive that the only non-vanishing graded pieces of 
the weight filtration on cohomology read as:
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GrW0 H0(MPX
B ,C) ∼= C

GrW2 H2(MPX
B ,C) = Coker

(
δ2 : ⊕L∈NPX

0
H0(L,C) → H2

(
M̃PX

B ,C
))

GrW4 H2(MPX
B ,C) = Ker

(
δ : ⊕p∈NPX

1
H0(p,C) → ⊕L∈NPX

0
H2(L,C)

)
= H1(S1,C) ∼= C.

In particular, we have

W 2H2(MPX
B ,C) = Im(i∗) (28)

where

i∗ : H2
(
M̃PX

B ,C
)
→ H2(MPX

B ,C)

is the morphism induced by inclusion

i : MPX
B → M̃PX

B .

Recalling (23) that NPX is a cycle of length NPX + 3, Lemmas 5 and 7 finish the proof 
of Proposition 2. �

It remains to compute NPX and compare the perverse and weight polynomials ex-
plicitly for each X. We will determine NPX using the explicit form of the quadratic 
terms QPX provided in [32]. Before turning to the study of the various cases, let us 
address a result that will be needed in some of the cases. Namely, assume that MPX

B
has a singularity at [0 : 0 : 0 : 1]. Plugging x3 = 1 into FPX we get

FPX(x0, x1, x2, 1) = f2(x0, x1, x2) + f3(x0, x1, x2)

with fi homogeneous of order i. If f2 is a non-degenerate quadratic form, then the Hessian 
of FPX at the singular point is non-degenerate, and so the singularity is of type A1. Up 
to exchanging x0 and x2, we have the following.

Lemma 8. [11, Lemma 3(c)] Assume that MPX

B has a singularity at [0 : 0 : 0 : 1] and 

that with the above notations we have f2 = x1x2. Then, if f3(1, 0, 0) �= 0 then MPX

B has 
a singularity of type A2 at [0 : 0 : 0 : 1]. If (1, 0, 0) is a ki-tuple intersection of xi = 0
with f3 = 0, i = 1, 2, then [0 : 0 : 0 : 1] is an Ak1+k2+1 singularity for

{k1, k2} = {1, 1}, {1, 2}, {1, 3}.

The study of the specific cases, based on Lemma 8, is contained in Subsections 4.1–4.9
below. We note that in Subsections 4.1, 4.2, 4.4, 4.5 and 4.8 we rederive the weight 
polynomials obtained in Section 6 of [17] using different methods.



28 Sz. Szabó / Advances in Mathematics 383 (2021) 107667
4.1. Case X = V I

In this case the quadric is of the form

QPV I = x2
1 + x2

2 + x2
3 − s1x1 − s2x2 − s3x3 + s4

with s1, s2, s3, s4 ∈ C. This is the generic quadric, so it is smooth at infinity, and

WHPV I(q, t) = 1 + 4qt2 + q2t2.

4.2. Case X = V

In this case the quadric is of the form

QPV = x2
1 + x2

2 − (s1 + s2s3)x1 − (s2 + s1s3)x2 − s3x3 + s2
3 + s1s2s3 + 1

with s1, s2 ∈ C, s3 ∈ C×. We have

FPV = x1x2x3 + x0x
2
1 + x0x

2
2 − (s1 + s2s3)x2

0x1 − (s2 + s1s3)x2
0x2 − s3x

2
0x3

+ (s2
3 + s1s2s3 + 1)x3

0.

An easy computation gives that the only singular point of MPV

B over x0 = 0 is [0 : 0 :
0 : 1]. We consider the affine chart x3 �= 0 and normalize x3 = 1. Then, we have

f2 = x1x2 − s3x
2
0,

which is a non-degenerate quadratic form because s3 �= 0. We infer that this singular 
point is of type A1, in particular its Milnor number is 1, hence

WHPV (q, t) = 1 + 3qt2 + q2t2.

4.3. Case X = Vdeg

In this case the quadric is of the form

QPVdeg = x2
1 + x2

2 + s0x1 + s1x2 + 1

with s0, s1 ∈ C. The same analysis as in Subsection 4.2 shows that [0 : 0 : 0 : 1] is the 
only singular point. This time, however, we have

f2 = x1x2,

which is degenerate. On the other hand, we have
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f3 = x0x
2
1 + x0x

2
2 + s0x

2
0x1 + s1x

2
0x2 + x3

0,

in particular f3(1, 0, 0) = 1. Lemma 8 shows that the singularity is of type A2, of μ = 2, 
hence

WHPVdeg(q, t) = 1 + 2qt2 + q2t2.

4.4. Case X = IV

In this case the quadric is of the form

QPIV = x2
1 − (s2

2 + s1s2)x1 − s2
2x2 − s2

2x3 + s2
2 + s1s

3
2

with s1 ∈ C, s2 ∈ C×. We have

FPIV = x1x2x3 + x0x
2
1 − (s2

2 + s1s2)x2
0x1 − s2

2x
2
0x2 − s2

2x
2
0x3 + (s2

2 + s1s
3
2)x3

0,

and the singular points of MPIV

B over x0 = 0 are [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1]. 
In the first point, the second-order homogeneous term of FPIV in affine co-ordinates 
(x0, x1, x3) is given by

x1x3 − s2
2x

2
0,

which is non-degenerate because s2 �= 0, so this singular point is of type A1. In the second 
point, the second-order homogeneous term of FPIV in affine co-ordinates (x0, x1, x2) is 
given by

f2 = x1x2 − s2
2x

2
0,

which shows that this singular point is again of type A1. We infer that MPIV

B has two 
singular points, each of Milnor number 1, and

WHPIV (q, t) = 1 + 2qt2 + q2t2.

4.5. Case X = III(D6)

In this case the quadric is of the form

QPIII(D6) = x2
1 + x2

2 + (1 + αβ)x1 + (α + β)x2 + αβ

with α, β ∈ C×. The only singular point of MPIII(D6)
B is [0 : 0 : 0 : 1], with degree two 

term
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f2 = x1x2.

This time we have

f3 = x0x
2
1 + x0x

2
2 + (1 + αβ)x2

0x1(α + β)x2
0x2 + αβx3

0.

Now, we again see that f3(1, 0, 0) = αβ �= 0, so Lemma 8 implies that we have an 
A2-singularity, thus

WHPIII(D6)(q, t) = 1 + 2qt2 + q2t2.

4.6. Case X = III(D7)

This case is obtained from degeneration of Subsection 4.5 by setting the parameter 
β of QPIII(D6) (corresponding to the eigenvalue of the formal monodromy at one of the
irregular singular points) equal to 0. In this case (up to exchanging the variables x1, x2) 
the quadric is of the form

QPIII(D7) = x2
1 + x2

2 + αx1 + x2

with α ∈ C×. The only singular point of MPIII(D7)
B is [0 : 0 : 0 : 1], with homogeneous 

terms

f2 = x1x2, f3 = x0x
2
1 + x0x

2
2 + αx2

0x1 + x2
0x2.

This time f2 is degenerate and we have f3(1, 0, 0) = 0, so the singularity is neither of 
type A1 nor of type A2. Plugging x1 = 0 in f3 gives

f3(x0, 0, x2) = x0x
2
2 + x2

0x2.

As this form has non-trivial linear term in x2 at x0 = 1, we get that k1 = 1. Similarly, 
from

f3(x0, x1, 0) = x0x
2
1 + αx2

0x1

and α �= 0 we deduce k2 = 1. According to Lemma 8 the singular point is of type A3, of 
μ = 3, and we obtain

WHPIII(D7)(q, t) = 1 + qt2 + q2t2.
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4.7. Case X = III(D8)

This case is obtained from further degeneration of Subsection 4.6 by setting the pa-
rameter α of QPIII(D7) (corresponding to the eigenvalue of the formal monodromy at 
the only remaining unramified irregular singularity) equal to 0 too. We find the quadric1

QPIII(D8) = x2
1 + x2

2 + x2. (29)

The only singular point of MPIII(D8)
B is [0 : 0 : 0 : 1], with homogeneous terms

f2 = x1x2, f3 = x0x
2
1 + x0x

2
2 + x2

0x2.

Just as in Subsection 4.6, the term f2 is degenerate and f3(1, 0, 0) = 0. Moreover, as in 
Subsection 4.6, the intersection of f3 = 0 with x1 = 0 is of multiplicity k1 = 1. However, 
plugging x2 = 0 in f3 yields

f3(x0, x1, 0) = x0x
2
1,

which is of multiplicity k2 = 2 near x0 = 1, x1 = 0. Lemma 8 shows that this point is of 
type A4 and we deduce

WHPIII(D8)(q, t) = 1 + q2t2.

4.8. Case X = II

In this case the quadric is of the form

QPII = −x1 − αx2 − x3 + α + 1

with α ∈ C×. We have

FPII = x1x2x3 − x2
0x1 − αx2

0x2 − x2
0x3 + (α + 1)x3

0,

and the singular points of MPII

B over x0 = 0 are [0 : 1 : 0 : 0], [0 : 0 : 1 : 0] and 
[0 : 0 : 0 : 1]. As in the corresponding affine co-ordinates the degree two terms are 
respectively given by

1 Notice that this differs from the result x1x2x3 + x2
1 − x2

2 − 1 obtained in [32, 3.6]. We are grateful to 
Masa-Hiko Saito for pointing out that in this case the monodromy data has the extra symmetry xi 	→ −xi

for i ∈ {1, 2}. Indeed, the two-fold Weyl group S2 × S2 acts on the monodromy data by passing to 
opposite Borel subgroups at the two irregular singular points, and only the diagonal S2 leaves invariant 
the constraints on the parameters. Now, introducing the invariant co-ordinates y1 = x2

1, y2 = x2
2, y3 = x1x2

and eliminating y2 we are led to the formula y1y3x3 +y2
1 −y2

3 −y1, which in turn transforms into (29) after 
some obvious changes of co-ordinates.
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x2x3 − x2
0, x1x3 − αx2

0, x1x2 − x2
0,

and α �= 0, we see that all these points are of type A1. As a conclusion, we get

WHPII(q, t) = 1 + qt2 + q2t2.

4.9. Case X = I

In this case the quadric is of the form

QPI = x1 + x2 + 1.

There are three singular points of MPI

B over x0 = 0: [0 : 1 : 0 : 0], [0 : 0 : 1 : 0] and 
[0 : 0 : 0 : 1]. At the first two of these, the degree two terms in the corresponding affine 
co-ordinates respectively read as

x2x3 + x2
0, x1x3 + x2

0,

so these singularities are of type A1. At [0 : 0 : 0 : 1] however, we have

f2 = x1x2, f3 = x2
0x1 + x2

0x2 + x3
0.

As f3(1, 0, 0) = 1 �= 0, by virtue of Lemma 8 this singularity is of type A2. In total we 
have three singular points, with Milnor numbers 1, 1, 2 respectively, therefore

WHPI(q, t) = 1 + q2t2.

5. Proof of Theorem 2

We start by reducing the statement to a special case, namely the nilpotent Painlevé 
VI case, i.e. the case where the parabolic divisor consists of four distinct points where 
the Higgs field has first order poles, and in addition the residue of the Higgs field at each 
such point is nilpotent.

Proposition 3. Assume that Theorem 2 holds in the nilpotent Painlevé VI case. Then it 
also holds in all cases X, with arbitrary choice of parameter values.

Proof. We first discuss continuous families of irregular Dolbeault spaces. It follows from 
Lemma 2 and [21], [22], [23] that for each X and each value of the parameters of the 
given family, the space MPX

Dol is diffeomorphic to the complement of the singular fiber at 
infinity FPX

∞ in a certain elliptic fibration. Specifically, consider the Hirzebruch surface

p : Tot(KCP 1(D)) → CP 1
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and its fiberwise compactification

P(OCP 1 + KCP 1(D))

by a section at infinity S∞. Then, there exists a birational morphism

� : CP 2#9CP
2 → P(OCP 1 + KCP 1(D))

resolving the base locus of a certain elliptic pencil depending on X and the parameter 
values. The fiber at infinity is then given by

FPX
∞ = �−1(S∞ ∪ p−1(D))

where p−1(D) is the scheme-theoretic fiber over D.
Geometrically, the choice of parameters for MPX

Dol is thus equivalent to that of the 
base locus of the associated elliptic pencil, and may be conveniently described by a point 
in a certain stratum SPX of the Hilbert scheme

Hilb8(Tot(KCP 1(D))) (30)

of 8 points on the twisted cotangent surface of the base curve. The parameters of the fam-
ily affect FPX

∞ continuously: to a continuous family of parameter values there corresponds 
a continuous family of base points in SPX . Fixing any X and arbitrarily parameter values 
for the system PX, it follows from connectedness of the Hilbert scheme of a connected 
surface that there exists a path

f : [0, 1] → Hilb8(Tot(KCP 1(D))) (31)

starting at the parameter values corresponding to the nilpotent Painlevé VI case and 
ending at the given parameter values of the given system X.

A crucial observation is that as we have seen in Lemma 3, for any X the group 
H1(MPX

Dol ∩ N, Q) is generated by the normal loop [γ] around S∞. Said differently, we 
may represent a generator of the first homology by a loop that depends neither on X
nor on the values of the parameters.

Now, we turn our attention to the Betti side: here, the group H1(MPX
B ∩ N, Q) is 

known to be generated by a longitudinal loop around the cycle (23), i.e. a lift of this 
cycle to the boundary of the 4-manifold MPX

B ∩ N under the map φ. The cycle (23)
consists of a suitable blow-up of the divisor (21). The blow-up is only needed to turn 
the compactifcation of MPX

B smooth, and has no effect on the first homology group. 
Again, we see that a generator of the first homology can be given by lifting under φ a 
loop independent of X and the parameter values. In different words, the image under φ
of a generator of H1(MPX

B ∩N, Q) is independent of X and the parameter values.
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Recall from Subsections 4.1–4.9 that the spaces MPX
B are given as certain cubic 

surfaces. To the path (31) there corresponds a continuous path of coefficients of the 
quadrics QPX appearing in (17). Now, the non-abelian Hodge and Riemann–Hilbert 
correspondences depend continuously on the parameters of the families. Thus, the cor-
respondences induce homotopic maps from the generator of H1(MPX

Dol ∩N, Q) to that of 
H1(MPX

B ∩N, Q). Invariance of the degree for homotopies of continuous maps from S1

to S1 then shows that if φ ◦ψ induces an isomorphism on H1 for the nilpotent Painlevé 
VI case then the same holds for arbitrarily parameter values of any system PX. �

There only remains to show the statement in the nilpotent Painlevé VI case. From 
now on we thus set X = V I and we take the residue orbits to be nilpotent with full 
flag parabolic structure and generic parabolic weights. For sake of simplicity we drop 
the superscript PV I from the notation. Let z and w = z−1 be the standard charts on 
CP 1, and let E denote a holomorphic vector bundle of degree 0 over CP 1. We consider 
parabolically stable logarithmic Higgs fields θ on E with singularities at 0, 1, t, ∞ having 
nilpotent residue at all these points. We have

tr(θ) ∈ H0(CP 1,K) = 0,

and

det(θ) ∈ H0(CP 1,K2(0 + 1 + t + ∞)) ∼= C.

The latter affine space is the Hitchin base appearing in (2). We fix an isomorphism

O ∼= K2(0 + 1 + t + ∞)

given by

1 �→ (dz)⊗2

z(z − 1)(z − t) .

On the other hand, we consider the holomorphic line bundle L = K(0 + 1 + t +∞) with 
the natural projection

pL : Tot(L) → CP 1

of its total space Tot(L) to CP 1 and denote by

ζ
dz

z(z − 1)(z − t)

the canonical section of p∗LL over p−1
L (C). Then the curve
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X̃ = {(z, ζ) : ζ2 + z(z − 1)(z − t) = 0} ⊂ Cz ×Cζ

has a smooth compactification in Tot(L) at z = ∞ by the point

w = 0, ζ = 0.

We continue to denote this compactification by X̃ and moreover denote by

p : X̃ → CP 1 (32)

(z, ζ) �→ z

the restriction of pL, a ramified double covering map with branch points {0, 1, t, ∞}. 
Topologically, X̃ is diffeomorphic to a smooth 2-torus. Let us introduce the bivalued 
holomorphic 1-form on C \ {0, 1, t}

ω = dz√
z(z − 1)(z − t)

so that

p∗ω = dz
ζ
.

Now, for instance near (z, ζ) = (0, 0) we have z = ζ2h(ζ) for some holomorphic function 
h with h(0) �= 0, so we have in a neighbourhood of this point

dz
ζ

= 2ζh(ζ)dζ + ζ2dh
ζ

= 2h(ζ)dζ + ζdh.

A similar argument near the other three ramification points shows that p∗ω is a univalued 
holomorphic 1-form on X̃, i.e. a generator of H0(X̃, KX̃).

For R >> 0, ϕ ∈ R/2πZ we let (ER,ϕ, θR,ϕ) be any rank 2 logarithmic Higgs bundle 
over CP 1 with

det(θR,ϕ) = −Re
√
−1ϕ ∈ H0(CP 1,K2(0 + 1 + t + ∞))

(the sign is introduced for convenience). We will fix R and let ϕ vary, and we assume 
that θR,ϕ depends smoothly and 2π-periodically on ϕ, thus providing a smooth section 
of (2) over |z| = R; such lifts clearly exist. The spectral curve of (ER,ϕ, θR,ϕ) defined as

X̃R,ϕ =
{

(z, ζ) : det
(
θR,ϕ − ζ

dz
z(z − 1)(z − t)

)
= 0

}
⊂ Tot(L)

is obtained by rescaling (32) in the ζ-direction by the factor 
√
Re

√
−1ϕ/2. In particular, 

for any (R, ϕ) the branch points of X̃R,ϕ are the distinct points {0, 1, t, ∞}, and the 
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curve X̃R,ϕ is smooth. Let z0 /∈ {0, 1, t, ∞} and fix ε0 > 0 such that B2ε0(z0) is disjoint 
from {0, 1, t, ∞}. According to [29, Theorem 1.4], for z ∈ Bε0(z0) there exists a smoothly 
varying frame e1(z), e2(z) of E with respect to which we have the asymptotic equality

θR,ϕ(z) −
(√

Re
√
−1ϕ/2 0

0 −
√
Re

√
−1ϕ/2

)
ω → 0

as R → ∞, with exponential rate. Because ω is bivalued, the vectors e1(z), e2(z) get 
interchanged as the position of the point z0 moves along a simple loop γ around one 
of the punctures. In different terms the monodromy transformation of the trivialization 
along any such γ is the transposition matrix

T =
(

0 1
1 0

)
.

We consider the connection associated by non-abelian Hodge theory to (ER,ϕ, θR,ϕ)
with respect to the gauge e1(z), e2(z). Its connection form is

aR,ϕ(z, z̄) = θR,ϕ(z) + θR,ϕ(z) + bR,ϕ

≈
√
R

(
e
√
−1ϕ/2ω + e−

√
−1ϕ/2ω̄ 0

0 −e
√
−1ϕ/2ω − e−

√
−1ϕ/2ω̄

)
+ bR,ϕ

where ≈ means that the difference of the two sides converges exponentially to 0 as 
R → ∞, and bR,ϕ is the connection form of the Chern-connection ∂R,ϕ of (ER,ϕ, hR,ϕ). 
It also follows from [29, Theorem 1.4] that[(

e
√
−1ϕ/2ω + e−

√
−1ϕ/2ω̄ 0

0 −e
√
−1ϕ/2ω − e−

√
−1ϕ/2ω̄

)
, bR,ϕ

]
→ 0 (33)

exponentially as R → ∞. Furthermore, as tr(θ) ≡ 0 the Higgs field induced by θR,ϕ

on det(ER,ϕ) is identically zero. It follows that the corresponding Hermitian–Einstein 
metric hdet(E) ≡ 1 and thus bR,ϕ takes values in su(2, C). As we will only be interested 
in the absolute value of the integral of aR,ϕ along loops and the monodromy of the 
Chern connection is unitary, we will see that the actual shape of bR,ϕ is irrelevant for 
our purposes.

In order to get a hold on ψ(ER,ϕ, θR,ϕ), we need to apply the Riemann–Hilbert cor-
respondence to the connection obtained in the previous paragraph. For this purpose, we 
now fix z0 and simple loops γ0, γ1, γt based at z0 winding about the punctures {0, 1, t}
respectively, in positive direction. The monodromy matrices of the connection d + aR,ϕ

associated to the punctures are given by

Bj(R,ϕ) = exp
∮

−aR,ϕ(z, z̄)

γj
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where j ∈ {0, 1, t}. Let us introduce the half-period integrals

πj =
∮
γj

ω.

By this we mean that we fix any one of the two lifts γ̃j of γj by (32) and set

πj =
∫
γ̃j

p∗ω.

By Baker–Campbell–Hausdorff formula and (33), as R → ∞ the monodromy matrix 
Bj(R, ϕ) is asymptotically equal to

TAj(R,ϕ) exp
√
R

(
−e

√
−1ϕ/2πj − e−

√
−1ϕ/2πj 0

0 e
√
−1ϕ/2πj + e−

√
−1ϕ/2πj

)
where

Aj(R,ϕ) ∈ SU(2) (34)

stands for the monodromy of the Chern connection, commuting with the matrix on its 
right. These properties show that necessarily

Aj(R,ϕ) =
(
e
√
−1μj 0
0 e−

√
−1μj

)
for some μj = μj(R, ϕ) ∈ R. We then get

Bj(R,ϕ) ≈
(

0 exp
(
−
√
−1μj + 2

√
R�(e

√
−1ϕ/2πj)

)
exp

(√
−1μj − 2

√
R�(e

√
−1ϕ/2πj)

)
0

)
,

and it follows that

B0(R,ϕ)B1(R,ϕ) ≈
(
d01(R,ϕ) 0

0 1
d01(R,ϕ)

)
,

with

d01(R,ϕ) = exp
(√

−1(μ1 − μ0) + 2
√
R�(e

√
−1ϕ/2(π0 − π1))

)
.

Therefore, setting

x1(R,ϕ) = tr(B0(R,ϕ)B1(R,ϕ))
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we find

x1(R,ϕ) ≈ 2 cosh d01(R,ϕ)

= 2 cosh
(√

−1(μ1 − μ0) + 2
√
R�(e

√
−1ϕ/2(π0 − π1))

)
. (35)

Similarly, we find

x2(R,ϕ) = tr(Bt(R,ϕ)B0(R,ϕ))

≈ 2 cosh
(√

−1(μ0 − μt) + 2
√
R�(e

√
−1ϕ/2(πt − π0))

)
(36)

x3(R,ϕ) = tr(B1(R,ϕ)Bt(R,ϕ))

≈ 2 cosh
(√

−1(μt − μ1) + 2
√
R�(e

√
−1ϕ/2(π1 − πt))

)
(37)

where x2(R, ϕ) and x3(R, ϕ) are defined by the equalities in these formulas. It is known 
from [16] that these quantities fulfill the equation

x1x2x3 + x2
1 + x2

2 + x2
3 − s1x1 − s2x2 − s3x3 + s4 = 0

for some constants s1, s2, s3, s4 ∈ C. By generic choice of the parabolic weights, the 
constants sm are generic, and the cubic surface determined by the above polynomial is 
smooth. As we have seen in Subsection 4.1, in this case the compactifcation M introduced 
in (19) agrees with the smooth compactification M̃ introduced in Proposition 2. The 
compactifying divisor is a union of three lines (21) in general position. The statement 
that the nerve complex of the boundary is homotopic to S1 immediately follows. Let N
stand for the dual simplicial complex of D. The vertices of N are given by

v1 = [0 : 0 : x2 : x3], v2 = [0 : x1 : 0 : x3], v3 = [0 : x1 : x2 : 0], (38)

where for instance [0 : x1 : x2 : 0] means the corresponding line in

CP 2
∞ = {[0 : x1 : x2 : x3]} ⊂ CP 3.

Let the edges of N be denoted by

[v1v2], [v2v3], [v3v1], (39)

respectively corresponding to the following intersection points of the divisor components:

[0 : 0 : 0 : 1], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0].

Consider open tubular neighbourhoods

T1, T2, T3
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of the components (38) such that

T1 ∩ T2 ∩ T3 = ∅. (40)

Set

TB = T1 ∪ T2 ∪ T3, (41)

so that TB is an open tubular neighbourhood of D in M̃B; TB is a plumbed 4-manifold. 
Let

φ1, φ2, φ3

be a partition of unity subordinate to the cover (41), and consider the map

φ : TB → R3

x �→
(
φ1(x)
φ2(x)
φ3(x)

)
.

The image of φ is contained in the standard simplex Δ2 of dimension 2 because the 
family φj forms a partition of unity. Moreover, it follows from (40) that

Im(φ) ⊂
(
Δ2)1 ,

the 1-skeleton of Δ2. A closer look shows that we have the equality:

Im(φ) =
(
Δ2)1 = [v1v2] ∪ [v2v3] ∪ [v3v1], (42)

which is homotopy equivalent to S1.
We need to show that for any section (ER,ϕ, θR,ϕ) of h over |z| = R, the loop

φ ◦ ψ(ER,ϕ, θR,ϕ)

is a generator of π1(|N |). For this purpose, we need to study the asymptotic behaviour 
of the quotients

x1(R,ϕ)
x2(R,ϕ) ,

x3(R,ϕ)
x1(R,ϕ) ,

x2(R,ϕ)
x3(R,ϕ)

as R → +∞, and in particular the way this behaviour depends on ϕ ∈ [0, 2π]. For this 
purpose observe first that for d ∈ C with |�(d)| >> 0 we have

|2 cosh(d)| ≈ e|d|.
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Applying this asymptotic equivalence to (35), (36), (37) for R >> 0 we find

|x1(R,ϕ)| ≈ exp
(
2
√
R|�(e

√
−1ϕ/2(π0 − π1))|

)
,

|x2(R,ϕ)| ≈ exp
(
2
√
R|�(e

√
−1ϕ/2(πt − π0))|

)
,

|x3(R,ϕ)| ≈ exp
(
2
√
R|�(e

√
−1ϕ/2(π1 − πt))|

)
.

For generic t ∈ CP 1\{0, 1, ∞} the periods π0, π1, πt are not colinear in C, said differently 
they form the vertices of a non-degenerate triangle Δ with sides

a = π0 − π1, b = πt − π0, c = π1 − πt.

Consider the triangles e
√
−1ϕ/2Δ as ϕ ranges over [0, 2π). A straightforward geometric 

inspection shows that the lengths of the projection onto the real axis of the three sides 
of e

√
−1ϕ/2Δ obey the following rule.

Lemma 9. Let Δ ⊂ C be any non-degenerate triangle with sides a, b, c ∈ C such that 
a +b +c = 0. Let us denote by e

√
−1ϕ/2Δ the triangle obtained by rotating Δ by angle ϕ/2

in the positive direction, with sides e
√
−1ϕ/2a, e

√
−1ϕ/2b, e

√
−1ϕ/2c. Then, for each side 

a, b, c there exists exactly one value ϕa, ϕb, ϕc ∈ [0, 2π) such that e
√
−1ϕa/2a (respectively 

e
√
−1ϕb/2b, e

√
−1ϕc/2c) is purely imaginary. We have

�(e
√
−1ϕa/2b) = �(e

√
−1ϕa/2c).

In addition, the function

�(e
√
−1ϕ/2b) −�(e

√
−1ϕ/2c)

changes sign at ϕ = ϕa. Similar statements hold with a, b, c permuted.

We call ϕa, ϕb, ϕc the critical angle of the sides a, b, c respectively. By genericity, the 
critical angles ϕa, ϕb, ϕc are pairwise different. It follows from the lemma that the critical 
angles decompose S1 into three closed arcs

S1 = I1 ∪ I2 ∪ I3

pairwise intersecting each other in a critical angle, satisfying the property:

max(|�(e
√
−1ϕ/2(π0 − π1))|, |�(e

√
−1ϕ/2(πt − π0))|, |�(e

√
−1ϕ/2(π1 − πt))|)

is realized

• by |�(e
√
−1ϕ/2(π0 − π1))| for ϕ ∈ I1,



Sz. Szabó / Advances in Mathematics 383 (2021) 107667 41
• by |�(e
√
−1ϕ/2(πt − π0))| for ϕ ∈ I2,

• and by |�(e
√
−1ϕ/2(π1 − πt))| for ϕ ∈ I3.

Namely, I1 is the arc with end-points ϕb, ϕc not containing ϕa, and so on. Let us denote 
by Int(I) the interior of an arc I ⊂ S1, and for ease of notation let us set xj = Xj(R, ϕ). 
It follows that as R → +∞

• for ϕ ∈ Int(I1), we have

x1

x2
→ ∞,

x1

x3
→ ∞, [x0 : x1 : x2 : x3] → [0 : 1 : 0 : 0]

• for ϕ ∈ Int(I2), we have

x2

x1
→ ∞,

x2

x3
→ ∞, [x0 : x1 : x2 : x3] → [0 : 0 : 1 : 0],

• for ϕ ∈ Int(I3), we have

x3

x1
→ ∞,

x3

x2
→ ∞, [x0 : x1 : x2 : x3] → [0 : 0 : 0 : 1],

all convergence rates being exponential in 
√
R. These limits show that

• for ϕ ∈ Int(I1), we have

φ1 ◦ ψ(ER,ϕ, θR,ϕ) = 0,

• for ϕ ∈ Int(I2), we have

φ2 ◦ ψ(ER,ϕ, θR,ϕ) = 0,

• for ϕ ∈ Int(I3), we have

φ3 ◦ ψ(ER,ϕ, θR,ϕ) = 0.

Said differently,

• for ϕ ∈ Int(I1), we have

φ ◦ ψ(ER,ϕ, θR,ϕ) ∈ [v2v3],

• for ϕ ∈ Int(I2), we have

φ ◦ ψ(ER,ϕ, θR,ϕ) ∈ [v3v1],
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• for ϕ ∈ Int(I3), we have

φ ◦ ψ(ER,ϕ, θR,ϕ) ∈ [v1v2].

We infer that as ϕ ranges over [0, 2π] the corresponding elements

φ ◦ ψ(ER,ϕ, θR,ϕ) ∈ MB

describe a path which is a generator of π1(|N |) ∼= Z. This finishes the proof of Theorem 2.

6. Matching the filtrations in the Painlevé VI case

We keep the assumptions of Section 5, in particular the moduli spaces we consider 
are the ones corresponding to the Painlevé VI case, and we drop the superscripts PV I.

Lemma 10. The diffeomorphism

MDol → MB,

maps a generator of GrP2 H2(MDol, C) to a generator of GrW4 H2(MB, C).

Proof. We work dually in homology. Denote the class of the generic Hitchin fiber by

[HF ] = [h−1(Y−1)] ∈ H2(MDol,Q),

where Y−1 ∈ Y = C is a point in the Hitchin base; by (15) it is dual to a generator of 
GrP2 H2(MDol, Q). Let U be an affine open neighbourhood of [0 : 1 : 0 : 0] in MB and

z1 = r1e
iθ1 , z2 = r2e

iθ2

coordinates on U defining the two divisors v2, v3 crossing at [0 : 1 : 0 : 0]. Fixing a value 
R >> 0, it follows from the analysis of Section 5 that for ϕ ∈ I1 the image of the Hitchin 
fiber h−1(Re

√
−1ϕ) is contained in a tubular neighbourhood of the torus in U ∩ MB

defined by

C = {r1 = ε1, r2 = ε2} (43)

for some small constants 0 < ε1, ε2 << 1. Clearly, U ∩MB deformation retracts onto C, 
so we have

H2(U ∩MB,Q) ∼= Q.

Since h−1(Re
√
−1ϕ) is not a boundary in MDol, it follows that its image in MB is 

homologous to a non-zero rational multiple of the fundamental class of the torus C
in (43):
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[HF ] = q[C] (44)

for some q ∈ Q×.
On the other hand, up to terms containing at most one logarithmic factor locally near 

[0 : 1 : 0 : 0] a generator [η] of GrW4 H2(MPX
B , C) may be represented by a 2-form

η = f(z1, z̄1, z2, z̄2)
dz1

z1
∧ dz2

z2
(45)

= f

(
dr1
r1

∧ dr2
r2

+ i
dr1
r1

∧ dθ2 + idθ1 ∧
dr2
r2

− dθ1 ∧ dθ2

)
for some smooth function f on U . Now, the last term in the expression of the right-hand 
side of (45) evaluates to −4π2f(0, 0) on C, and the other terms vanish on it. In the 
spectral sequence WE2 the term Ker(δ) (giving rise to W4H

2(MB, C)) is generated by 
the triple (1, 1, 1), which means that for a generator η we must have

f(0, 0) �= 0.

This finishes the proof. �
Using the above preparatory results, we are ready to prove that the filtrations P and 

W match under non-abelian Hodge theory. For this purpose, by Propositions 1, 2 and 
equations (15) and (28) we need to show that the composition

H2
(
M̃B,C

)
i∗−→ H2(MB,C) = H2(MDol,C) j∗−→ H2

(
h−1(Re

√
−1ϕ),C

)
is the 0-map. The dual statement in homology is that the morphism

H2

(
h−1(Re

√
−1ϕ),C

)
→ H2

(
M̃B,C

)
induced by inclusion vanishes. Since H2(h−1(Re

√
−1ϕ), C) is generated by the fundamen-

tal class of h−1(Re
√
−1ϕ), it is sufficient to show that the image of h−1(Re

√
−1ϕ) is a 

2-boundary in M̃B. By (44), it is sufficient to show that C is a 2-boundary in M̃B. This 
latter assertion is easy to show: with the notations of Lemma 10 we have

C = ∂ ({r1 = ε} × {r2 ≤ ε}) .
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