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A subfamily G ⊆ F ⊆ 2[n] of sets is a non-induced (weak) 
copy of a poset P in F if there exists a bijection i : P → G
such that p ≤P q implies i(p) ⊆ i(q). In the case where in 
addition p ≤P q holds if and only if i(p) ⊆ i(q), then G is an 
induced (strong) copy of P in F . We consider the minimum 
number sat(n, P ) [resp. sat∗(n, P )] of sets that a family F ⊆
2[n] can have without containing a non-induced [induced] copy 
of P and being maximal with respect to this property, i.e., the 
addition of any G ∈ 2[n] \ F creates a non-induced [induced] 
copy of P .
We prove for any finite poset P that sat(n, P ) ≤ 2|P |−2, a 
bound independent of the size n of the ground set. For induced 
copies of P , there is a dichotomy: for any poset P either 
sat∗(n, P ) ≤ KP for some constant depending only on P or 
sat∗(n, P ) ≥ log2 n. We classify several posets according to 
this dichotomy, and also show better upper and lower bounds 
on sat(n, P ) and sat∗(n, P ) for specific classes of posets.
Our main new tool is a special ordering of the sets based 
on the colexicographic order. It turns out that if P is given, 
processing the sets in this order and adding the sets greedily 
into our family whenever this does not ruin non-induced 
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[induced] P -freeness, we tend to get a small size non-induced 
[induced] P -saturating family.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A subposet Q′ of Q is a weak or non-induced copy of the poset P in Q, if there exists 
a bijection i : P → Q′ with p ≤P p′ implying i(p) ≤Q i(p′). In the case where in addition 
p ≤P p′ holds if and only if i(p) ≤Q i(p′), then we say that Q′ is a strong or induced copy
of P in Q. If Q does not contain a non-induced [induced] copy of P , then we say that Q
is non-induced [induced] P -free. The extremal forbidden subposet problem asks for the 
maximum size of a non-induced [induced] P -free subposet of Q. To generalize results of 
Sperner [14] and Erdős [2], this was introduced by Katona and Tarján [9] in the case 
where Q = Bn is the poset of all subsets of an n-element set ordered by inclusion. It 
is conjectured (implicitly in the work of Katona and his co-authors, explicitly by Bukh 
[1], and Griggs and Lu [7]) that the size of a maximum poset divided by 

(
n

�n/2�
)

always 
tends to the size of a maximum number of complete and consecutive middle levels of the 
Boolean lattice whose union is P -free (in both the non-induced and induced cases), but 
this has been verified only in special cases; the fact that this limit is bounded follows from 
[2] and [12], respectively. For more on this topic see the recent survey [6] and Chapter 7 
of [5].

The corresponding saturation problem asks for the minimum possible sizes, denoted 
sat(Q, P ) [sat∗(Q, P )], of a non-induced [induced] P -free subposet of Q that is maximal 
with respect to being P -free. Such subposets are said to be non-induced [induced] P -
saturating and in case Q = Bn, we write sat(n, P ) and sat∗(n, P ). First, Gerbner et al. [4]
studied this problem for P = Ck, the chain on k elements, in which case sat(n, Ck) =
sat∗(n, Ck). They proved that 2(k−3)/2 ≤ sat(n, Ck) ≤ 2k−2 holds for all n, and showed 
that for k = 7 the upper bound can be further strengthened to sat(n, C7) ≤ 30. This 
latter upper bound was generalized by Morrison, Noel, and Scott [13], proving C ·2(1−δ)k

where δ = 1 − log2 15
4 ≈ 0.02. Later, the induced version sat∗(n, P ) was studied by 

Ferrara et al. [3] and by Martin, Smith, and Walker [11]. In [3], it was shown for a 
number of other posets P that sat(n, P ) is bounded by some constant independent of 
n, while sat∗(n, P ) was shown to be unbounded for all these posets. Ivan [8] has very 
recently improved lower bounds on sat∗(n, ��) and sat∗(n, N) for the butterfly and the 
N -posets.

Our first main result proves that non-induced saturation numbers are always bounded 
by a function of |P |, which is a constant independent of n.

Theorem 1.1. For any finite poset P , we have sat(n, P ) ≤ 2|P |−2.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Unlike in the case of the extremal forbidden subposet problem, the proof of Theo-
rem 1.1 does not follow from the fact that sat(n, Ck) is bounded.

Note that as shown by the result 2(k−3)/2 ≤ sat(n, Ck) of [4], an exponential rate 
of growth in k is best possible. One might wonder which k-element poset is hardest to 
saturate.

Conjecture 1.2. For any k-element poset P , we have sat(n, P ) ≤ sat(n, Ck).

Section 2 contains the proof of Theorem 1.1 along with specific better bounds for 
several poset classes.

Then we move on to induced saturation problems. We prove the following dichotomy 
result, which is implicitly contained in [3].

Theorem 1.3. For any poset P , either there exists a constant KP with sat∗(n, P ) ≤ KP

or for all n, sat∗(n, P ) ≥ log2 n.

We conjecture that the following strengthening of Theorem 1.3 holds.

Conjecture 1.4. For any poset P , either there exists a constant KP with sat∗(n, P ) ≤ KP

or for all n, sat∗(n, P ) ≥ n + 1.

In Section 3, we prove Theorem 1.3 and a number of lower and upper bounds on 
sat∗(n, P ) for several classes of posets P . In particular, with a new construction and 
with the recent lower bound by Ivan [8], we establish sat∗(n, ��) = Θ(n).

A collection of bounds can be found in Table 1. We list the best known bounds for all 
posets on at most 4 elements and some further general results. For the induced results 
we marked in which paper or statement the proof can be found, while the non-induced 
results follow from Proposition 2.1, or a short case analysis.

Notation. As we work in Bn, the poset of all subsets of an n-element set ordered by 
inclusion, we will speak about families F of subsets and we will say that these families 
are non-induced/induced P -saturating if so are the corresponding subposets of Bn. We 
use the standard notation [n] for the set of the first n positive integers and 2X for the 
power set of X. We say that two elements x, y ∈ [n] are separated by F if there is an 
F ∈ F such that |F ∩ {x, y}| = 1. The family F is separating if any two elements of [n]
are separated by F .

For two posets, P and Q, we denote their (incomparable) disjoint union by P +Q. We 
denote P + · · ·+P , the disjoint union of k copies of P , by kP . We denote the chain on k
elements by Ck, and the antichain of k elements by Ak, i.e., Ak = kC1. For an arbitrary 
poset P , we denote by Ṗ the poset obtained from P by adding to it an element that is 
larger than all elements of P .

The poset on 4 elements in which two incomparable elements are both below two 
other elements that are incomparable is called the butterfly poset denoted by ��.
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Table 1
Summary of all posets with at most 4 elements as well as some additional examples and categories. F7: 
Ferrara et al. [3]; G6: Gerbner et al. [4]; I: Ivan [8]; MNS: Morrison, Noel, Scott [13]; MSW: Martin, Smith, 
Walker [11].

poset P sat(n, P ) sat∗(n, P )
C2, chain = 1 = 1
A2, antichain = 1 = n + 1
C3, chain = 2 = 2
C2 + C1, chain and single = 2 = 4 case analysis
∨ fork (or ∧) = 2 = n + 1 [F7]
A3, antichain = 2 = 3n − 1 [F7]
C4, chain = 4 = 4 [G6]
∨3, fork with three tines = 3 ≥ log2 n [F7]�, diamond = 3 ≥ √

n [MSW]
≤ n + 1 [F7]�−, diamond minus an edge = 3 = 4 case analysis�, butterfly = 4 ≥ n + 1 [I]
≤ 6n − 10 [Theorem 3.16]

Y = 3 ≥ log2 n [Theorem 3.6]
N = 3 ≥ √

n [I]
≤ 2n [F7]

2C2 = 3 ≥ n + 2 [Theorem 3.11]
≤ 2n [Proposition 3.9]

C3 + C1, chain and single = 3 ≤ 8 [Proposition 3.18]
∨ + 1, fork and single = 3 ≥ log2 n [F7]
C2 + A2 = 3 ≤ 8 [Proposition 3.18]
A4, antichain = 3 ≥ 3n − 1 [F7]

≤ 4n + 2 [F7]
C5, chain = 8 = 8 [G6]+[MNS]
C6, chain = 16 = 16 [G6]+[MNS]
Ck, chain (k ≥ 7) ≥ 2(k−3)/2 ≥ 2(k−3)/2 [G6]

≤ 20.98k ≤ 20.98k [MNS]
Ak, antichain = k − 1 ≥

(
1 − 1

log2 k

)
k

log2 kn [MSW]

≤ kn − k − 1
2 log2 k + O(1) [F7]

3C2 = 5 ≤ 14 [Proposition 3.13]
5C2 = 9 ≤ 42 [Proposition 3.18]
7C2 = 13 ≤ 60 [Proposition 3.18]
any poset on k elements ≤ 2k−2 — [Theorem 1.1]
UCTP (def. in Section 3.2) O(1) ≥ log2 n [F7]
UCTP with top chain O(1) ≥ log2 n [Theorem 3.6]
chain + shallower O(1) O(1) [Theorem 3.8]

Throughout the paper log stands for the logarithm in base 2.

2. Non-induced results

In this section we only consider non-induced results, therefore we omit this adjective 
throughout the section.

Note that if P is a poset on k elements, then sat(n, P ) ≥ k − 1 trivially holds if n is 
big enough. We show that this bound is often tight, due to the non-induced nature of 
the problem.

Proposition 2.1. If P is a poset on k elements, and ∃p ∈ P such that there is at most 
one larger and at most one smaller element than p in P , i.e., |{q : q <P p}|, |{q′ : p <P

q′}| ≤ 1, then sat(n, P ) = k − 1 for n ≥ k.



B. Keszegh et al. / Journal of Combinatorial Theory, Series A 184 (2021) 105497 5
Proof. Let p+, p− ∈ P \{p} be the only elements with p− < p < p+ (if they exist). Then, 
by definition, p+ is maximal and p− is minimal in P . Let m be the smallest integer such 
that Qm contains a copy of P \ {p}, and let i : P \ {p} → 2[m] be an embedding showing 
this. Note that m ≤ k−2 as Qk−2 contains a copy of Ck−1 which in turn contains a copy 
of any other poset of size at most k− 1. Let in : P \ {p} → 2[n] be defined as in(p−) = ∅, 
in(p+) = [n], and in(p′) = i(p) ∪ {m + 1} for any p′ /∈ {p, p+, p−}. If n ≥ m + 2, then in
is a bijection and its image is a copy of P \ {p} (here we use the fact that p+ is maximal 
and p− is minimal in P ). Clearly any F /∈ in[P \ {p}] extends the image of in to a copy 
of P as in(p−) = ∅ ⊂ F ⊂ [n] = in(p+) and so F is a suitable image of p. �

Before getting to the more involved proofs, let us state another simple observation.

Proposition 2.2. If P is a poset on k elements and Bk is P -free, then sat(n, P ) ≤ 2k−2.

Proof. Let f : 2[k−2] → 2[n] be defined as f(F ) = F if k − 2 /∈ F and f(F ) = F ∪ ([n] \
[k − 2]) otherwise. Then f is a poset isomorphism between Bk−2 and f(2[k−2]) =: F , 
so F is P -free. On the other hand, F is the Ck-saturating family from [4], so for any 
G /∈ F , the family F ∪ {G} contains a copy of Ck and thus a copy of P . �
2.1. Proof of Theorem 1.1

Let us define the colexicographic ordering (or colex ordering) on all finite subsets of 
Z+ as usual by A < B if and only if maxA�B ∈ B holds, where A�B is the symmetric 
difference (A \ B) ∪ (B \ A). Let P be any poset on k elements. Let n ≥ k and let 
F1, F2, . . . , F2n−1 be the enumeration of 2[n−1] (the sets not containing n) in colex order, 
let mi = maxFi, and let Gi = [n] \ Fi for every 1 ≤ i ≤ 2n−1 (the sets containing n). 
Note that every subset of [n] is either enumerated as an Fi or as a Gi. Let us consider 
the greedy colex process that tries to add these sets in order (see Algorithm 1).

Theorem 1.1 is an immediate consequence of the following.

Theorem 2.3. For 1 ≤ k ≤ n, let P be a k-element poset and let F := F2n−1 be the 
output of the greedy colex process (as defined in Algorithm 1). Then, F is P -saturating, 
F = F2k−3 and therefore |F| ≤ 2k−2. In particular, sat(n, P ) ≤ 2k−2 holds.

Proof. The fact that F is P -saturating (that it is both P -free and the addition of any 
element forms a copy of P ) is clear from the definition of the greedy process. Observe 
that if j < i, then Fi � Fj and consequently Gj � Gi. Finally, note that Gj ⊂ Fi for all 
i, j. Based on this we have the following lemma.

Lemma 2.4. For any i ≤ 2n−1 we have the following.

1. Fi ∈ Fi implies Fi \ {mi} ∈ Fj for some j < i.
2. Fi ∈ Fi implies Fi ∪ ([n] \ [mi]) ∈ Fj for some j < i.
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3. Gi ∈ Fi implies Gi ∪ {mi} ∈ Fj for some j < i.
4. Gi ∈ Fi implies Gi ∩ [mi] ∈ Fj for some j < i.

Algorithm 1: Greedy colex process.
Set F0 = ∅
for i < 2n−1 do

if Fi ∪ {Fi+1} is P -free then
F ′

i := Fi ∪ {Fi+1}
else

F ′
i := Fi

end if
if F ′

i ∪ {Gi+1} is P -free then
Fi+1 := F ′

i ∪ {Gi+1}
else

Fi+1 := F ′
i

end if
end for
Output F2n−1

Proof. To see (1), let j be defined such that Fj = Fi\{mi} and observe that j < i. We 
claim that for any H ∈ Fj−1, the pair (H, Fj) has the same relations as the pair (H, Fi). 
If H was enumerated as an ‘F ’, i.e., n /∈ H, then H < Fj means that H contains neither 
Fj nor Fi. In addition, such an H must be a subset of [mj ], and therefore, H ⊂ Fj ⇐⇒
H ⊂ Fi. Otherwise, H was enumerated as a ‘G’, i.e., n ∈ H, and thus contains [n] \ [mj ]. 
In particular, H is contained in neither Fj nor Fi and Fj ⊂ H ⇐⇒ Fi ⊂ H. Therefore, 
as Fi is included in Fi because its addition did not create a copy of P in Fi, the addition 
of Fj also does not create a copy of P in Fj , and so it was added to the family. Thus we 
must also have Fi \ {mi} = Fj ∈ Fj ⊆ Fi.

As the proofs of the other statements are similar, we just sketch them. To see (2), 
observe that [n] \ (Fi ∪ ([n] \ [mi])) ⊆ [mi − 1], thus Fi ∪ ([n] \ [mi]) = Gj for some j < i. 
It is left to the reader to check that for any H ∈ F ′

j the containment relation of the pair 
(H, Gj) is the same as that of the pair (H, Fi).

To see (3), observe that Gi ∪ {mi} = Gj for some j < i. It is left to the reader to 
check that for any H ∈ F ′

j , the containment relation of the pair (H, Gj) is the same as 
that of (H, Gi).

Finally, to see (4), observe that Gi ∩ [mi] ⊆ [mi − 1], thus Gi ∩ [mi] is Fj for some 
j < i. It is left to the reader to check that for any H ∈ Fj−1 the containment relation of 
the pair (H, Fj) is the same as that of the pair (H, Gi). �

Let us return to the proof of Theorem 2.3. Towards a contradiction, suppose that 
there exists some H ∈ F \ F2k−3 . We distinguish two cases.

Case I. H = Fi for some i > 2k−3.

Then write Fi = {h1, h2, . . . , h�} with h1 < h2 < · · · < h� = mi, where mi > k − 3. 
Repeated applications of Lemma 2.4 (1) imply that Hr = {h1, h2, . . . , hr} ∈ Fi holds 
for all r = �, � − 1, . . . , 1, 0, giving a decreasing chain of length � + 1 contained in F . 
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By Lemma 2.4 (2), Gj = Fi ∪ ([n]\[h�]) � Fi and Gj ∈ F . Repeated applications of 
Lemma 2.4 (3), starting with Gj , give an increasing chain of length mi− � +1 contained 
in F . Putting the two chains together gives a chain of length mi +2 ≥ k contained in F , 
a contradiction, because such a chain (and thus also F) contains a (non-induced) copy 
of P .

Case II. H = Gj for some j > 2k−3.

We apply Lemma 2.4 (4) to Gj to get an Fi � Gj such that Fi ∈ F . Then we get a 
chain of length mi +2 ≥ k as the union of two chains as in the previous case by repeated 
applications of Lemma 2.4 (1) and (3). �

One might notice that in this proof we have only used that a given family of subsets of 
[n] that is saturating for Ck (namely the sets in [k− 3] and their complements) could be 
ordered in a suitable way using the colex ordering. If this was true for other saturating 
families for Ck, then that would prove Conjecture 1.2. However, the families achieving 
the current best bound, sat(n, Ck) ≤ O(20.98k) [13], cannot be ordered like that in a 
straightforward way.

2.2. Complete bipartite posets

In this subsection we consider complete bipartite posets Ks,t on s + t elements 
a1, . . . , as, b1, . . . , bt with ai < bj for any 1 ≤ i ≤ s, 1 ≤ j ≤ t. Observe that if s
or t equals 1, then Proposition 2.1 yields sat(n, K1,t) = t and sat(n, Ks,1) = s.

Proposition 2.5. If s, t ≥ 2 and n ≥ s +t −3 hold, then s +t −1 ≤ sat(n, Ks,t) ≤ 2(s +t) −4.

Proof. The lower bound follows from sat(n, P ) ≥ |P | − 1. For the upper bound, let 
F0 = {∅, E1, E2, . . . , Es+t−3} with |Ei| = 1 for all 1 ≤ i ≤ s + t − 3. Let F1 = {[n] \ E :
E ∈ F0}, and finally let F = F0 ∪F1. First observe that F is Ks,t-free. Indeed, as s ≥ 2
and sets in F0 contain at most one other set from F , they can only play the role of some 
ai. Similarly, as t ≥ 2 and sets in F1 are contained in at most one other set from F , 
they can only play the role of some bj. So to form a copy of Ks,t we would need at least 
s − 1 non-empty sets from F0 and at least t − 1 sets other than [n] from F1, so by the 
pigeonhole principle we would need to pick some Ei and [n] \ Ei as well, but for these 
the containment does not hold.

To see that F is Ks,t-saturating, let G be any set from 2[n] \ F . If G contains at 
least s − 1 Ei’s, then these Ei’s and ∅ can form the bottom of Ks,t. Meanwhile G
and the sets of F1 that are not complements of these s − 1 Ei’s (there are exactly 
1 + (t + s − 3) − (s − 1) = t − 1 of them) can form the top of Ks,t. Otherwise, G
contains at most s − 2 Ei’s and therefore G is contained in the complement of at least 
(t + s − 3) − (s − 2) = t − 1 Ei’s. By symmetry, we can repeat the previous argument to 
get that t − 1 such complements F1, . . . , Ft−1, [n], ∅, G, and the Ej ’s in ∩t−1

j=1Fj form a 
copy of Ks,t. �
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2.3. Posets of graphs

In this subsection we consider the following class of posets. Let G = (V, E) be any 
finite multigraph without loops. Then let us define the poset P (G) on V ∪ E such that 
v < e if and only if v ∈ e, while V and E form two antichains.

Proposition 2.6. Let G be a graph with e edges and v vertices and let n ≥ e + v. Then 
we have e + v − 1 ≤ sat(n, P (G)) ≤ e + v.

Proof. The lower bound follows from |P | − 1 ≤ sat(n, P ). If the minimum degree δ is at 
most 1, then we have sat(n, P (G)) = e + v − 1 from Proposition 2.1.

Suppose from now on that δ ≥ 2 (which implies e ≥ 2). The construction for the 
upper bound is as follows. Let F0 = {∅, E1, E2, . . . , Ev−1, K} with |Ei| = 1 for all 
1 ≤ i ≤ v − 1 and K = [n] \ ∪v−1

i=1 Ei. Let us define Gi = [n] \ Ei for all 1 ≤ i ≤
v − 1. Let H1, H2, . . . , He−δ be sets of size n − 1 all containing ∪v−1

i=1 Ei. Put F1 =
{[n], G1, . . . , Gδ−2, H1, H2, . . . , He−δ} and consider F = F0 ∪ F1. Observe that |F| =
e + v = |P (G)| and all sets in F0 contain at most one other set in F , so in a copy of 
P only the e − 1 sets in F1 could play the role of edges of G and thus F is P (G)-free. 
Let F be any set not in F . We need to show that F ∪ {F} contains a copy of P (G). We 
distinguish two cases.

If F � K, then F is contained in K, [n] and G1, G2, . . . , Gδ−2, so F can play the role 
of a degree δ vertex in G, and K, [n] and G1, G2, . . . , Gδ−2 can play the role of the edges 
incident to that vertex. Then, for each 1 ≤ i ≤ δ− 2, Ei+1 can play the role of the other 
endvertex of the edge corresponding to Gi and E1 the role of the other endvertex of 
the edge corresponding to [n] and ∅ can play the role of the other endvertex of the edge 
corresponding to K. Finally, as all Hj ’s contain all Ei’s, this can be easily extended to 
a copy of P (G). (Note that if δ = 2, then there are no sets of the form Gi, but the proof 
works.)

Otherwise, suppose F � K or equivalently F contains at least one of the Ei’s, say 
E1. Then F can play the role of an edge e∗ ∈ E(G), and E1 and ∅ can play the role of 
the two end-vertices of e∗. We can choose arbitrarily which endvertex of e∗ corresponds 
to ∅.

Observe that there is no vertex incident to all edges as otherwise we would have δ = 1. 
Also, if there exists a vertex incident to all but one edge, then either δ = 1 or the graph 
is the triangle for which one can check F is saturating. This means we can assume that 
there are two disjoint edges in E(G) \ {e∗}.

Now one can let the remaining v − 2 Ei’s play the role of the other vertices of G
arbitrarily. If e = 2, then [n] can play the role of the other edge and we are done. 
Otherwise, we need to define a mapping from {e : e ∈ E(G) \ e∗} to F1 such that if 
e = uαuβ and Eα, Eβ play the role of uα, uβ , then e is mapped neither to [n] \ Eα nor 
to [n] \ Eβ . Consider the auxiliary bipartite graph with parts {e : e ∈ E(G) \ e∗} and 
F1 such that for an edge e = uαuβ ∈ E(G), the vertex e is connected to S ∈ F1 if 
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and only if Eα ∪ Eβ is contained in S. By the observations in previous paragraph, we 
have |N(e)| ≥ max{|F1| − 2, 1} for any e, |N(e) ∪ N(e′)| ≥ |F1| − 1 for any e, e′ and 
|N(e) ∪N(e′)| ≥ |F1| for any non-adjacent e, e′ and | ∪e∈E(G)\{e∗} N(e)| = |F1|. These 
imply that Hall’s condition holds and so we can match the ei’s with sets of F1. This 
gives a copy of P (G) in F ∪ {F} as required. �

One might wonder whether the statement of Proposition 2.6 remains valid if we allow 
G to be a multigraph. We do not know, but the construction above does not necessarily 
work because, if e and e′ are parallel edges, then in the above reasoning we can have 
|N(e)| = |N(e′)| = |N(e) ∪N(e′)| = |F1| −2. In particular, the construction above is not 
saturating if G consists of 3 parallel edges on 2 vertices. Another problem that can occur 
is that for multigraphs we can have δ − 2 ≥ |V |, so we would not be able to introduce 
Gδ−2.

Note that if G is the cycle of length k, then P (G) is the generalized crown poset on 
2k elements a1, a2, . . . , ak, b1, b2, . . . , bk with ai < bi, bi+1 for i < k and ak < bk, b1. The 
special case k = 2 gives the multigraph on two vertices with two edges, for which P (G)
is the so-called butterfly poset. It is easy to check that in this case the upper bound gives 
the correct answer.

3. Induced results

In this section we only consider induced results, therefore we omit this adjective 
throughout the section. We start with a simple observation that is useful to determine 
sat∗(n, P ) exactly for small values.

Observation 3.1. If P has no largest element, then any P -saturating family must contain 
the full set, [n], and any such family is also automatically saturating for Ṗ . Similarly, if 
P has no smallest element, then any P -saturating family must contain ∅.

We remark that possibly the following stronger statement also holds, but we could 
not verify either direction, except in special cases (see Theorem 3.6).

Conjecture 3.2. sat∗(n, P ) is bounded if and only if sat∗(n, Ṗ ) is bounded.

3.1. Dichotomy

Call two families over [n] poset-isomorphic if there is a bijection between their sets 
that preserves union, intersection and complement. Such a bijection is called a poset-
isomorphism.

Definition 3.3. For a family F ⊆ 2[n], let A(F) be the algebra it generates using the 
operations union, intersection, complement. Write F ∼=1 F ′ if the following are satisfied.
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• F and F ′ are isomorphic as posets,
• F and F ′ have a poset-isomorphism which induces an isomorphism of A(F) and 

A(F ′),
• singletons in A(F) correspond to singletons in A(F ′), i.e., their one element sets are 

the same.

Note that the base sets of F and F ′ may have different sizes. Write F �1 F ′ if F
and F ′ are isomorphic posets, their isomorphism induces an isomorphism of A(F) and 
A(F ′), and all singleton atoms of A(F) are also singleton atoms in A(F ′).

For example, consider the following families over the 6-element base set {1, ..., 6}:
F1 = {{1}, {1, 2}}, F2 = {{1}, {1, 3}}, F3 = {{1}, {1, 2, 3}}, F4 = {{1}, {1, 2, 3, 4}}.
We have F1 ∼=1 F2 �1 F3 ∼=1 F4, while F5 = {{1}, {2}} and F6 = {{1, 3}, {2, 3}} would 
not be in relation with any of the other families, or with each other.

Proposition 3.4. If F �1 F ′ and F is P -saturating, then F ′ is also P -saturating. Thus, 
if F ∼=1 F ′, then F is P -saturating if and only if F ′ is P -saturating.

Note that the converse is not necessarily true; it can happen that F �1 F ′ and F ′

is P -saturating but F is not. For example, over the 4-element base set {1, 2, 3, 4} the 
family F ′ = {{1}, {2, 3, 4}} is C2-saturating, but F = {{1, 2}, {3, 4}} is not, as we can 
add {2, 3}.

Proof. Suppose that F ′ is not P -saturating. Since F and F ′ are isomorphic, F ′ is P -free, 
so the saturation needs to fail, i.e., for some F ′ /∈ F ′ there is no copy of P in F ′ ∪ {F ′}. 
Using the isomorphism between F and F ′, and A(F) and A(F ′), we can create an F
that is in the same relation to the sets of F as F ′ is to the sets of F ′: if F ′ is disjoint 
from an atom, make F also disjoint from the image of that atom; if F ′ contains an atom, 
make F also contain the image of that atom; if F ′ properly cuts into an atom, make F
also cut into the image of that atom. Here we use that if an atom is non-singleton in 
A(F ′), it is also non-singleton in A(F). Thus, since F ′ ∪ {F ′} is P -free, so is F ∪ {F}, 
contradicting the assumption. �
Corollary 3.5. If for a poset P there exists a P -saturating family F such that some 
atom of A(F) is not a singleton, i.e., some two elements are not separated by F , then 
sat∗(n, P ) ≤ |F|, and so sat∗(n, P ) = O(1).

Proof. We can make the non-singleton atom of A(F) arbitrarily large to obtain some 
F ′ �1 F over [n] that has the same size as F . By Proposition 3.4, F ′ is P -saturating. �

The contrapositive says that if sat∗(n, P ) = O(1), then all atoms are singletons in any 
P -saturating family, i.e., it is separating, but then its size is at least log2 n, which proves 
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Theorem 1.3. This last thought was used in Theorem 8 of [3] to obtain lower bounds on 
sat∗(n, P ) with P satisfying a property that we discuss in the next subsection.

3.2. UCTP posets with top chain

In [3], a poset property called the unique cover twin property (UCTP) was defined. 
In a poset y covers x if there is no z with x < z < y. A poset P is said to have 
UCTP if whenever y covers x, then there is a z that is comparable with one of x and 
y and is incomparable to the other one. That is either x is covered by not only y and 
thus the covering of x by y is not ‘unique’, or x is not the only one covered by x and 
thus x has a ‘twin’ covered by y. They have shown that for any poset P with UCTP, 
sat∗(n, P ) is unbounded. We extend their theorem for a slightly more general class of 
posets.

A poset is called UCTP with top chain if it consists of two parts: a poset P0 that has 
UCTP and a chain such that every element of P0 is smaller than every element of the 
chain. For technical reasons, we also require |P0| ≥ 2 (i.e., the poset itself is not a chain). 
For example, the poset on four elements defined by a < c; b < c; c < d (an upside-down 
‘Y’) is a UCTP with top chain for which it was not known before whether it has an 
unbounded induced saturation function.

Theorem 3.6. Let P be a poset that has UCTP with top chain. Then any P -saturating 
family is separating, thus sat∗(n, P ) ≥ log2 n.

Proof. If the UCTP part of the poset does not have a largest element, then imagine that 
the smallest element of the chain belongs to it (this preserves the UCTP). From now on 
denote the UCTP part with P0, its top element with t and suppose that the top chain 
from t has k elements (including t), so for example for an upside-down ‘Y’ we have k = 2. 
Note that P0 has at least two elements apart from t.

For a contradiction, suppose that x and y are not separated by the family F . For any 
set S, denote by Sx = S ∪{x} and Sxy = S ∪{x, y}. Similarly, let Fxy = {F ∈ F | x, y ∈
F}, and also F0 = {F ∈ F | x, y /∈ F}. Note that F = F0 ∪ Fxy.

If Fxy is Ck-free, then add {x} to the family. As in F , only elements of Fxy are above 
x, in a copy of P no chain of length k is above x. Thus, if we get a copy of P , x needs 
to be in the top chain part, but that is impossible, since it does not have two elements 
under it.

Otherwise, let Sxy be a minimal set in Fxy that is part of a chain on k elements from 
Fxy. Add Sx to the family. Sx is in a copy of P in which Sx cannot be in the top chain 
Ck, as then we could remap the part of the chain starting from Sx into a chain starting 
from Sxy. This would still be a copy of P in F , contradicting that F is P -free. Finally, 
if Sx is in P0 \ {t}, then we again get a contradiction, just like in [3]. First, if Sxy is in a 
copy of P , then, as the set Sxy covers Sx, Sx must contain its ‘twin’ in P (that exists due 
to the UCTP), so the copy of P is not induced. Second, if Sxy is not in P , then we could 
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remap Sx into Sxy. As they are in the same relation to all other sets of F = F0 ∪ Fxy, 
we get a copy of P in F , contradicting that F is P -free. �

We note that if we reverse all the relations in a poset with UCTP we get another 
poset that has UCTP. This implies, that Theorem 3.6 we can exchange ‘UCTP with top 
chain’ by ‘UCTP with bottom chain’, whose definition is similar, just that instead of 
putting a chain above all elements, we put the chain below all elements.

3.3. Posets with one long chain

Let us define the generalized harp poset HP1,P2,...,Pk
to be the poset with a smallest 

element u and a largest element v such that HP1,P2,...,Pk
\ {u, v} is P1 + P2 + · · · + Pk, 

the disjoint union of the posets P1, P2, . . . , Pk.
We denote by M�,k the union of the middle k levels1 of B� on base set [�]. Denote by 

e∗(P ) the maximum number k such that the union of any k complete and consecutive 
levels of any Boolean lattice is P -free. In particular M�,k is P -free for every �. The 
converse is also essentially true:

Observation 3.7. If e∗(P ) = k then M�,k+1 contains P for every big enough �.

Proof. If e∗(P ) = k then by definition for some �′ and a, the levels a, a +1, . . . , a +k− 1
of B�′ contain P . In this case for any � ≥ 3�′ the family M�,k also contains P as one can 
consider level a, a + 1, . . . , a + k − 1 of {H : A ⊆ H ⊆ B} with A, B ⊆ [�], |B| − |A| = �′

(which is isomorphic as a poset to B�′) such that |A| + a equals the rank of the lowest 
level of M�,k. �
Theorem 3.8. If P is a poset with e∗(P ) ≤ k − 2, then sat∗(n, Ck + P ) ≤ KP for some 
constant independent of n.

It follows from Observation 3.1 that we also have sat∗(n, HCk,P ) ≤ KP .

Proof. If P is empty, then the statement is true by the result of [4] for chains, so from 
now on we will assume that P is non-empty. For any pair k, � of positive integers let 
F = F0

�,k−1 ∪ F1
�,k−1 ∪ {∅, [n]} with

F0
�,k−1 := {F : 1 /∈ F ∈ M�,k−1}, F1

�,k−1 := {F ∪ ([n] \ [�]) : 1 ∈ F ∈ M�,k−1}.

We choose � big enough so that � ≥ 10k and M�−2,k−1 contains P . This can be done 
by Observation 3.7.

1 If there are two sets of middle k levels then, to avoid ambiguity, let M�,k denote the lower set of middle 
k levels.



B. Keszegh et al. / Journal of Combinatorial Theory, Series A 184 (2021) 105497 13
Observe that F \ {∅, [n]} does not contain a chain of size k. Indeed, the mapping 
f : F → B� with f(F ) = F ∩ [�] is a poset-isomorphism from F to f(F), and f(F \
{∅, [n]}) = M�,k−1. Thus the only way to embed Ck would be if its top or bottom 
element was mapped to [n] or ∅, but this contradicts that there are no relations between 
Ck and P . Therefore F is induced (Ck + P )-free.

Next we show that for any G ∈ Bn \F , the family F ∪ {G} contains an induced copy 
of Ck +P . We consider several cases. In all cases, we will find a k-chain in F ∪{G} such 
that for some element x of the smallest set of the chain and an element y that does not 
belong to the largest set of the chain, the family Fx,y = {F ∈ F : x /∈ F, y ∈ F} is 
isomorphic as a poset to M�−2,k−1. If so, then by virtue of x and y the chain and Fx,y

are incomparable and Fx,y being isomorphic to M�−2,k−1 implies that Fx,y contains a 
copy of P .

Case I. G ∩ [�] ∈ M�,k−1.
Then 10k ≤ � implies 4k ≤ |G ∩ [�]| ≤ � − 4k, so we can fix x and y with x, y ∈

{2, 3, . . . , �}, x ∈ G ∩ [�], y ∈ [�] \ G. Let M1 � M2 � · · · � Mk−1 be a chain of 
length k − 1 in M�,k−1 such that G ∩ [�] = Mi for some i, x ∈ M1, y /∈ Mk−1 and 
1 /∈ Mi−1, 1 ∈ Mi+1. Such a chain exists as 4k ≤ |G ∩ [�]| ≤ � − 4k holds. If 1 /∈ G, then 
M1, M2, . . . , Mi−1, G ∩[�], G, Mi+1∪([n] \[�]), . . . , Mk−1∪([n] \[�]) is a k-chain in F∪{G}
and Fx,y is as desired. While if 1 ∈ G, then M1, . . . , Mi−1, G, G ∪ ([n] \ [�]), Mi+1 ∪ ([n] \
[�]), . . . , Mk−1 ∪ ([n] \ [�]) is a k-chain in F ∪ {G} and Fx,y is as desired.

Case II. G ∩ [�] /∈ M�,k−1.
Now there are lots of chains M1 � M2 � · · · � Mk−1 in M�,k−1 that are extendable 

with G ∩ [�]. If we can pick x, y ∈ {2, 3, . . . , �} with x belonging to all these sets and y
belonging to none of these sets, then we can proceed as in Case I. The only cases when 
we cannot pick x and y are G ∩ [�] ∈ {∅, {1}, {2, 3, . . . , �}, [�]}.

1. If G ∩ [�] = ∅ or G ∩ [�] = {1}, then we pick y ∈ {2, 3, . . . , �} and consider a chain 
M1 � M2 � · · · � Mk−1 in M�,k−1 with 1 ∈ M1, y /∈ Mk−1. Then the k-chain 
G, M1 ∪ ([n] \ [�]), . . .Mk−1 ∪ ([n] \ [�]) is incomparable to {F ∈ F : 1 /∈ F, y ∈ F}
(here we use G = ∅), which is isomorphic to M�−2,k−1.

2. If G ∩ [�] = [�] or G ∩ [�] = {2, 3, . . . , �}, then we pick x ∈ {2, 3, . . . , �} and consider a 
chain M1 � M2 � · · · � Mk−1 in M�,k−1 with x ∈ M1, 1 /∈ Mk−1. Then the k-chain 
M1, . . .Mk−1, G is incomparable to {F ∈ F : 1 ∈ F, x /∈ F} (here we use G = [n]), 
which is isomorphic to M�−2,k−1. �

3.4. The poset 2C2

In this subsection, we prove that for the poset 2C2 of two incomparable pairs, the in-
duced saturation number is unbounded. More precisely, we obtain n +2 ≤ sat∗(n, 2C2) ≤
2n. The upper bound is attained by the 2C2-saturating family consisting of all singletons 
and any maximal chain.



14 B. Keszegh et al. / Journal of Combinatorial Theory, Series A 184 (2021) 105497
First we prove the upper bound.

Proposition 3.9. For any integer n ≥ 3, sat∗(n, 2C2) ≤ 2n.

Proof. The family F consists of a full chain and the singletons. Without loss of generality, 
we may choose {∅, {1}, {1, 2}, {1, 2, 3}, . . . , [n], {2}, {3}, . . . , {n}}. It is clear that F has 
no induced copy of 2C2. Now consider a set S /∈ F . Let m be the maximum element 
in S and let � be the least element not in S. Because S /∈ F , we know that � < m. In 
addition, S must contain an element not in {1, 2} so 2 < m.

Consider F∪{S}. If � ∈ {1, 2}, then an induced copy of 2C2 is {{�}, {1, 2}, {m}, S}. If 
� ≥ 3, then an induced copy of 2C2 is {{�}, {1, 2, . . . , �}, {m}, S}. Thus, F is saturating 
induced 2C2-free. �

Let us now turn to the lower bound. For a family F and a set G let us define DF (G) =
{F ∈ F : F � G}.

Proposition 3.10. If F is induced 2C2-free, then for any F, F ′ ∈ F one of the following 
three possibilities hold.

• DF (F ) � DF (F ′),
• DF (F ′) � DF (F ),
• DF (F ) = DF (F ′).

Proof. If G ∈ DF (F ) \DF (F ′) and G′ ∈ DF (F ′) \DF (F ), then F, F ′, G, G′ form a copy 
of 2C2. �
Theorem 3.11. If F ⊆ 2[n] is saturating induced 2C2-free, then F contains a maximal 
chain in [n]. In particular, sat∗(n, 2C2) ≥ n + 2 holds.

Proof. Let F ⊆ 2[n] be a saturating induced 2C2-free family of sets. Clearly, [n] and ∅
both belong to F as they are comparable to every other set in 2[n]. For two sets F, F ′ ∈ F , 
we define the relation F < F ′ if DF (F ) � DF (F ′) holds. By Proposition 3.10 we obtain 
that we either have F < F ′ or F ′ < F or DF (F ) = DF (F ′). Clearly, < is transitive, 
thus we can enumerate the sets of F as [n] = F1, F2, . . . , Fm = ∅ such that i < j implies 
Fi > Fj or DF (Fi) = DF (Fj). For any j = 1, 2, . . . , m let Gj = ∩j

i=1Fi. In particular, 
we have G1 = F1 = [n] and Gm = Fm = ∅ and the Gj ’s form a chain.

Claim 3.12. For any h = 1, 2, . . . , m we have DF (Gh) ⊆ DF (Fh) ⊆ DF (Gh) ∪ {Gh}.

Proof of Claim. By definition, we have Gh = ∩h
i=1Fi ⊆ Fh and this clearly implies 

DF (Gh) ⊆ DF (Fh). Also, the way we enumerated the Fi’s implies DF (Fh) ⊆ DF (Fi) for 
all 1 ≤ i < h, so DF (Fh) = ∩h

i=1DF (Fi) ⊆ DF (Gh) ∪ {Gh}. �
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We show that if Gj+1 ⊆ X � Gj , then X must belong to F . Suppose not, then adding 
X to F creates an induced copy of 2C2 and thus there must exist a pair A ⊆ B in F
incomparable to X. Clearly, A < B, so A = Fk, B = F� for some � < k. If � ≤ j, then 
X � Gj ⊆ F� = B gives a contradiction. Finally suppose � ≥ j +1. Applying Claim 3.12
to h = j + 1 shows that

A ∈ DF (F�) ⊆ DF (Fj+1) ⊆ DF (Gj+1) ∪ {Gj+1} ⊆ D(X) ∪ {X},

which contradicts the assumption that A and X are incomparable.
This completes the proof of the fact that a maximal chain is contained in F . As 2C2

consists of two incomparable pairs, and in a chain all pairs of sets are comparable, by the 
saturation property, F must contain at least one set not in the maximal chain. Therefore 
|F| ≥ n + 2 holds. �

It is a natural question whether the lower bound can be improved to 2n by proving 
that any 2C2-saturating family contains an antichain of size n. We could neither prove, 
nor disprove this.

The posets kC2 for k ≥ 3

Define the (circular) interval lattice In as the collection of subsets of [n] that are of 
the form {i, . . . , j}, or their complement is of this form. Denote by Îk the collection of 
subsets of [n] that we get from Ik by replacing every occurrence of {k} with {k, . . . , n}. 
The families Îk are natural candidates for saturating C2 + . . . + C2, more precisely, the 
largest number of induced copies of C2’s that they contain is �2k

3 �C2. We have verified 
these claims by computer and also by hand, but our arguments are not particularly 
interesting, just mainly a case analysis, so we do not include them here.

Proposition 3.13. Î4 is saturating for 3C2, thus sat∗(n, 3C2) ≤ 14.

Proposition 3.14. Î7 is saturating for 5C2, thus sat∗(n, 5C2) ≤ 44.

Proposition 3.15. Î10 is not saturating for 7C2.

Proof. Let n = 10 and add the set {1, 3, 5, 7, 9}. �
Based on this, it is not clear what to conjecture, but with a computer we have found 

a saturating family also for 7C2 (see later).

3.5. Greedy colex process for induced saturation and butterfly

In this subsection we consider the induced version of Algorithm 1 that showed 
sat(n, P ) ≤ 2|P |−2 for any poset P . As a reminder, we build a family F ⊆ 2[n] as 
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follows. We enumerate the sets of 2[n−1] in colex order: F1, F2, . . . , F2n−1 . Then setting 
F0 = ∅, we repeat the following: once Fi−1 is defined, we add Fi if it does not create a 
copy of P , then we add Gi = [n] \ Fi if it does not create a copy of P . This gives Fi. 
Clearly, F = F2n−1 is saturating P -free.

The greedy colex process gave non-linear bounds on some posets, but performed well 
on others. In fact, for the butterfly poset, ��, the previous best upper bound on sat∗(n, ��)
due to Ferrara et al. [3] was quadratic in n, but we have managed to improve it to linear 
by analyzing the output of the greedy colex process. We need to define the resulting 
family. Let T1 = {∅}, T2 = {{1}, {2}, {1, 2}}, T3 = {{3}, {1, 3}, {2, 3}}. For k ≥ 2 let

T2k = {{1, 4, 6, . . . , 2k}, {2, 4, 6, . . . , 2k}, {1, 2, 4, 6, . . . , 2k}}

and

T2k+1 = {{3, 5, . . . , 2k + 1}, {1, 3, 5, . . . , 2k + 1}, {2, 3, 5, . . . , 2k + 1}}.

For any 1 ≤ j < n, let Tj,n = {[n] \ T : T ∈ Tj}. Finally, let Hn = ∪n−1
j=1 (Tj ∪ Tj,n).

Theorem 3.16. For n ≥ 3 the greedy colex induced ��-free process produces Hn, in par-
ticular sat∗(n, ��) ≤ 6n − 10.

Proof. The cases n = 3, 4 can be verified by hand, then we apply induction on n and 
assume that the statement of the theorem holds for n. Observe that the mapping with 
Fi �→ Fi, [n] \Fi �→ [n + 1] \Fi is inclusion and non-inclusion preserving from 2[n] to the 
first half of the greedy colex order of 2[n+1]. This shows that when we run the greedy 
colex process on 2[n+1] (for the sets that do not contain n, n +1 and their complements), 
we obtain F2n−1 = f [Hn] = ∪n−1

i=1 (Ti ∪ Ti,n+1). So we need to show that in the second 
half of the process exactly sets of Tn ∪Tn,n+1 are added. Observe that in the second half 
of the process one considers the sets that contain exactly one of n and n + 1.

We deal with the sets according to their intersection with {1, 2, 3}. If F ∩{1, 2, 3} = ∅, 
then F, {3}, [n + 1] \ {1}, [n + 1] \ {2} form a butterfly, so F cannot be added. Similarly, 
if {1, 2, 3} ⊆ F , then F, [n + 1] \ {3}, {1}, {2} form a butterfly, so F cannot be added in 
this case, either.

For sets with |F ∩ {1, 2, 3}| = 1 or 2, let us consider the following six chains.

• Let C1 = {{1} ⊂ {1, 4} ⊂ {1, 4, 6} ⊂ ... ⊂ {1, 4, 6, ..., 2m − 2} ⊂ {1, 4, 6, ..., 2m} =
[n + 1] \ {2, 3, 5, ..., 2m − 1} ⊂ [n + 1] \ {2, 3, 5, ..., 2m − 3} ⊂ ... ⊂ [n + 1] \ {2, 3}} if 
n + 1 = 2m is even and let C1 = {{1} ⊂ {1, 4} ⊂ {1, 4, 6} ⊂ ... ⊂ {1, 4, 6, ..., 2m} ⊂
{1, 4, 6, ..., 2m, 2m +1} = [n +1] \{2, 3, 5, ..., 2m −1} ⊂ [n +1] \{2, 3, 5, ..., 2m −3} ⊂
... ⊂ [n + 1] \ {2, 3}} if n + 1 = 2m + 1 is odd.

• Let C2 = {{2} ⊂ {2, 4} ⊂ {2, 4, 6} ⊂ ... ⊂ {2, 4, 6, ..., 2m − 2} ⊂ {2, 4, 6, ..., 2m} =
[n + 1] \ {1, 3, 5, ..., 2m − 1} ⊂ [n + 1] \ {1, 3, 5, ..., 2m − 3} ⊂ ... ⊂ [n + 1] \ {1, 3}} if 
n + 1 = 2m is even and let C2 = {{2} ⊂ {2, 4} ⊂ {2, 4, 6} ⊂ ... ⊂ {2, 4, 6, ..., 2m} ⊂
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{2, 4, 6, ..., 2m, 2m +1} = [n +1] \{1, 3, 5, ..., 2m −1} ⊂ [n +1] \{1, 3, 5, ..., 2m −3} ⊂
... ⊂ [n + 1] \ {1, 3}} if n + 1 = 2m + 1 is odd.

• Let C3 = {{3} ⊂ {3, 5} ⊂ {3, 5, 7} ⊂ ... ⊂ {3, 5, 7, ..., 2m − 1} ⊂ {3, 5, 7, ..., 2m −
1, 2m} = [n + 1] \ {1, 2, 4, ..., 2m − 2} ⊂ [n + 1] \ {1, 2, 4, ..., 2m − 4} ⊂ ... ⊂ [n +
1] \ {1, 2}} if n + 1 = 2m is even and let C3 = {{3} ⊂ {3, 5} ⊂ {3, 5, 7} ⊂ ... ⊂
{3, 5, 7, ..., 2m + 1} ⊂ {3, 5, 7, ...2m − 1, 2m, 2m + 1} = [n + 1] \ {1, 2, 4, ..., 2m − 2} ⊂
[n + 1] \ {1, 2, 4, ..., 2m − 4} ⊂ ... ⊂ [n + 1] \ {1, 2}} if n + 1 = 2m + 1 is odd.

• Let C1,2 = {{1, 2} ⊂ {1, 2, 4} ⊂ {1, 2, 4, 6} ⊂ ... ⊂ {1, 2, 4, 6, ..., 2m − 2} ⊂
{1, 2, 4, 6, ..., 2m} = [n + 1] \ {3, 5, ..., 2m − 1} ⊂ [n + 1] \ {3, 5, ..., 2m − 3} ⊂ ... ⊂
[n + 1] \ {3}} if n + 1 = 2m is even and let C1,2 = {{1, 2} ⊂ {1, 2, 4} ⊂ {1, 2, 4, 6} ⊂
... ⊂ {1, 2, 4, 6, ..., 2m} ⊂ {1, 2, 4, 6, ..., 2m, 2m + 1} = [n + 1] \ {3, 5, ..., 2m − 1} ⊂
[n + 1] \ {3, 5, ..., 2m − 3} ⊂ ... ⊂ [n + 1] \ {3}} if n + 1 = 2m + 1 is odd.

• Let C1,3 = {{1, 3} ⊂ {1, 3, 5} ⊂ {1, 3, 5, 7} ⊂ ... ⊂ {1, 3, 5, 7, ..., 2m − 1} ⊂
{1, 3, 5, 7, ..., 2m −1, 2m} = [n +1] \{2, 4, ..., 2m −2} ⊂ [n +1] \{2, 4, ..., 2m −4} ⊂ ... ⊂
[n +1] \{2}} if n +1 = 2m is even and let C1,3 = {{1, 3} ⊂ {1, 3, 5} ⊂ {1, 3, 5, 7} ⊂ ... ⊂
{1, 3, 5, 7, ..., 2m +1} ⊂ {1, 3, 5, 7, ...2m −1, 2m, 2m +1} = [n +1] \{2, 4, ..., 2m −2} ⊂
[n + 1] \ {2, 4, ..., 2m − 4} ⊂ ... ⊂ [n + 1] \ {2}} if n + 1 = 2m + 1 is odd.

• Let C2,3 = {{2, 3} ⊂ {2, 3, 5} ⊂ {2, 3, 5, 7} ⊂ ... ⊂ {2, 3, 5, 7, ..., 2m − 1} ⊂
{2, 3, 5, 7, ..., 2m −1, 2m} = [n +1] \{1, 4, ..., 2m −2} ⊂ [n +1] \{1, 4, ..., 2m −4} ⊂ ... ⊂
[n +1] \{1}} if n +1 = 2m is even and let C2,3 = {{2, 3} ⊂ {2, 3, 5} ⊂ {2, 3, 5, 7} ⊂ ... ⊂
{2, 3, 5, 7, ..., 2m +1} ⊂ {2, 3, 5, 7, ...2m −1, 2m, 2m +1} = [n +1] \{1, 4, ..., 2m −2} ⊂
[n + 1] \ {1, 4, ..., 2m − 4} ⊂ ... ⊂ [n + 1] \ {1}} if n + 1 = 2m + 1 is odd.

Now observe that |CS ∩ (Tj ∪Tj,n+1)| = 1 for any S ⊆ {1, 2, 3}, |S| = 1, 2 and 2 ≤ j ≤ n, 
i.e., these chains partition Hn+1 \{∅, [n +1]} and all of them contain exactly one set that 
will be added in the second half of the greedy colex process. So if F ∩ {1, 2, 3} = S with 
|S| = 1, then [n +1] \S′, [n +1] \S′′, F, G form a butterfly where S′ and S′′ are the other 
two singleton subsets of {1, 2, 3}, and G is any member of CS that is incomparable to F . 
As the sizes of consecutive sets of these chains differ by 1, there are only two sets F with 
F ∩ {1, 2, 3} = S that are comparable to all sets of CS that are in F2n−1 : the unique set 
FS ∈ CS ∩ (Tn ∪ Tn,n+1) and the other set of the same size between the two sets of CS
neighboring FS . It is easy to verify that in the greedy colex process FS comes first, so it 
will be added, and the other will not as together with FS and [n + 1] \ S′, [n + 1] \ S′′ it 
would form a butterfly.

An analogous argument is valid for the case F ∩ {1, 2, 3} = S with |S| = 2, and sets 
{s1}, {s2}, F, G, where s1 and s2 are the two elements of S and G is any member of CS
that is incomparable to F . �

As Ivan has recently obtained the lower bound sat∗(n, ��) ≥ n + 1 [8], we get the 
following corollary.

Corollary 3.17. For the butterfly poset, we have sat∗(n, ��) = Θ(n).
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3.6. Experimental results

Here we report further upper bounds that were found by running the greedy colex 
process. Observe that if the algorithm for poset P and ground set [m] returns a family 
that does not separate m −1 and m, then Corollary 3.5 yields that the size of the resulting 
family is an upper bound on sat∗(n, P ) for any n ≥ m. When running our algorithm, we 
can also exploit the fact that if some set F whose largest element is m forms a copy of P
with some collection of sets from F2m−1 , then F \ {m} ∪{m′} will also form a copy of P
with the same collection of sets for any m < m′ < n; this significantly reduces the sets 
we have to test, sometimes even to linear in n. When checking P -freeness of a family F
for a P that is a disjoint union of chains, then it is sufficient to search for a copy of P in 
the Hasse-diagram of F , as any other copy could be transformed into one such (similarly 
as is done at the end of the proof of Theorem 3.6); this enabled us to run our code for 
large posets that are the disjoint union of chains by maintaining the Hasse-diagram of 
Fi.

In the next proposition we list some posets that we have found interesting. The posets 
C2 + 2C1 and C3 + C1 are there to have some concrete upper bound for all posets with 
at most 4 elements. The other posets are disjoint unions of chains that do not satisfy 
the conditions of Theorem 3.8, so we had no upper bound for them, except for 3C2 and 
5C2, covered by Propositions 3.13 and 3.14, respectively. From among the posets on 5
elements that are covered by neither Theorem 3.6 nor Theorem 3.8, the greedy colex 
process could find a constant upper bound only for some that are the disjoint union of 
smaller posets, such as 2C2 + C1. We obtained all the following bounds via computer 
and give a full description of the families that witness these bounds in the Appendix of 
the full version of the paper which is available on arXiv [10].

Proposition 3.18.

sat∗(n, 3C2) ≤ 14,

sat∗(n, 5C2) ≤ 42,

sat∗(n, 7C2) ≤ 60,

sat∗(n, 3C3) ≤ 28,

sat∗(n, 3C4) ≤ 52,

sat∗(n,C2 + 2C1) ≤ 8,

sat∗(n,C3 + C1) ≤ 8,

sat∗(n, 2C2 + C1) ≤ 12,

sat∗(n, 2C3 + C1) ≤ 28,

sat∗(n, 2C3 + C2) ≤ 20,

sat∗(n, 2C3 + 2C1) ≤ 26,

sat∗(n, 2C4 + C1) ≤ 60,

sat∗(n, 2C4 + 2C1) ≤ 68,

sat∗(n, 2C4 + C2) ≤ 54,

sat∗(n, 2C4 + C3) ≤ 38,

sat∗(n, 2C4 + 2C2) ≤ 46.

We also had many posets for which numerical evidence suggested certain upper 
bounds, that could be converted to theorems, just like in the case of Theorem 3.16. 
Most of the data supporting these bounds can be found among the source files of this 
paper on arXiv [10]. These bounds might not always be the right magnitude, e.g., for 
2C3 the greedy colex process gives a quadratic bound but we can prove a linear upper 
bound.
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Proposition 3.19. For any positive integer n we have sat∗(n, 2C3) ≤ 3n − 1.

Proof. For n ≤ 3, this is true because 2n ≤ 3n − 1. For n ≥ 3, consider a family that 
contains a full chain, all singletons and all co-singletons, e.g.,

Fn := {∅} ∪ {[j] : 1 ≤ j ≤ n} ∪ {{j} : 1 ≤ j ≤ n} ∪ {[n] \ {j} : 1 ≤ j ≤ n}.

We claim that Fn ⊆ 2[n] is 2C3-saturating. Indeed, if G /∈ Fn, then for s = |G| we 
have 2 ≤ s ≤ n − 2. Then there exists x, y ∈ [n] with x ∈ [s] \ G, y ∈ G \ [s]. Then 
{x}, [s], [n] \ {y} and {y}, G, [n] \ {x} are two incomparable 3-chains in F ∪ {G}. �

We do not know how sat∗(n, 2Ck), behaves (except for k = 2, see Theorem 3.11); 
we have neither a non-constant lower bound, nor a linear upper bound. The greedy 
colex process gives a cubic bound for 2C4. Even worse, for some posets it gives just an 
exponential bound (for n ≤ 10); one such example is �′, the poset on 5 elements given 
by A < B < C and A < B′ < C, C ′, obtainable from the diamond poset, �, with the 
addition of one more element. We can, however, also prove a linear upper bound for �′.

Proposition 3.20. For any positive integer, we have sat∗(n, �′) ≤ 2n.

Proof. For n ≤ 2, this is true because 2n ≤ 2n. For n ≥ 3, consider a family that contains 
a full chain, and all singletons, e.g.,

Fn := {∅} ∪ {[j] : 1 ≤ j ≤ n} ∪ {{j} : 1 ≤ j ≤ n}.

We claim that Fn is �′-saturating. Indeed, if G /∈ Fn, then it can be written as 
G = [i] ∪G′ with i +1 /∈ G′ = ∅. Then ∅, {1}, {i +1}, [i +1], G form a copy of �′ provided 
1 ≤ i. In case i = 0 and thus 1 /∈ G, then G = G′ and |G′| ≥ 2, so for the smallest 
element of G we have 1 < m and ∅, {1}, {m}, [m], G form a copy of �′. �

Another interesting case seems to be sat∗(n, 2Ck +2Ck−1), for which the greedy colex 
gave a linear upper bound for k ≤ 4; is it always unbounded? It might be easier to show 
that sat∗(n, 2Ck + C1) is bounded for every k ≥ 2.

Concluding remarks

Question 1. Is it decidable for a poset P whether sat∗(n, P ) is bounded or not?

This problem is obviously recursively enumerable, but we could find no witness for 
unboundedness. Note that the size of the witness for boundedness can be exponential in 
|P |. Could it be even larger?

Another question is whether the greedy colex process can always verify boundedness 
if it runs long enough.
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Question 2. If sat∗(n, P ) is bounded, does the greedy colex process find a bounded family? 
If yes, after which n will F2n−1 remain unchanged?

We also do not know how fast sat∗(n, P ) can grow as a function of n.

Question 3. Is sat∗(n, P ) = O(n) for every poset P?
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