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The investigation of hydrothermal gasification (HTG) of microalgae biomass
is carried out in order to produce biogas and upgrade its composition. Microalgae are
suitable microbes which able to mitigate the negative environmental and social
impacts of climate change, as well as capture and transform carbon dioxide into
valuable compounds, such as biofuels.

In our work we investigated the role of temperature (525-575°C), pressure
(250-280 bar), catalyst loading (5-15 w/w%) and ratio of homogenous catalysts
(K>CO3/KOH) on biogas composition, gasification efficiency and total gas yield.
Chlorella vulgaris is selected to cultivate and test as feedstock for HTG process. The
biogas composition (H2, CH4, CO», CO) and the biological composition (CNHO, ash,
volatile matter, fixed carbon) of the biomass arealso determined.

It is found that the application of homogenous catalyst mixture increasing
significantly the biogas and hydrogen yields at elevated temperature level. The highest
total gas yield is found to be 38.69 mmol g™ while the H» yield is 24.69 mmol g' dry
microalgae.

Through our work we attained high carbon gasification efficiency (>20%) and
hydrogen yield in several cases. The experimental results are statistically evaluated
and the main effects of influencing factors are determined.

INTRODUCTION

The application of fossil fuels affects unfavourably the environment due to
the related emission of greenhouse gases such as CO, which contribute significantly
to global climate change[1]. Moreover, the worldwide growing energy demand makes
necessary the investigation of environmentally friendly, clean and sustainable
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processing pathways and energy sources[2]. Biomass (e.g., microalgae) is considered
as a suitable substitute that provide abundant renewable energy.

Microalgae are cultivated in diluted suspension which brings difficulties at
downstream processing because the evaporation of excess water requires immense
energy which makes challenging economic operation[3]—[5]. Hydrothermal treatment
of biomass received great attention recently because eliminates biomass drying-step
and therefore contribute to more ecological processing of wet biomass[6].

Hydrothermal gasification (HTG) is a thermochemical process that produces
biogas, containing mainly H,, CH4, CO, and CO where the constituent ratio can be
controlled by reaction conditions. The process performed atelevated temperatures (up
to 600°C)[7] and therefore the reduction of operation temperature is desirable to
achieve energy efficient operation. One way to do so is applying catalysts.
Homogenous catalysts such as alkali metals (K,COs;, KOH, Na,COs, NaOH) already
reported in literature in case of model compounds such as humic acids, cellulose,
mannose, horse manure[8]-[13]. Catalysts can also be used for upgrading biogas
improving their quality [14]. In this study we investigated the role of temperature,
pressure, catalyst loading and the ratio of homogenous catalyst mixtures on biogas
composition, carbon gasification efficiency and biogas yield.

MATERIALS AND METHODS
Microalgae cultivation

Chlorella vulgaris was purchased from the Mosonmagyardvar Algal Culture
Collection (Széchényi Istvan University). BG1l medium was used for the
fermentations with the following composition (in g L™): NaNOs, 1.500; K;HPO.,
0.040; MgS04-7H»0, 0.075; CaCl,-2H»0, 0.036; Citric acid, 0.006; FeNH4SO4, 0.006;
EDTANay, 0.001; Na;COs, 0.020 and 1 ml of trace metals solution[15].

The microalgae were cultivated in 4.25 L stirred tank reactors. Artificial
irradiation was provided by an RGB-LED lighting platform (UTEX Culture
Collection of Algae) where the illumination duration was set to 16:8 hours light and
dark photoperiod. The light intensity was measured by a lux meter (IEC 6 LF 22,
CosiluxTungram) and it was kept constant at 352 umolphoton m™ s™'. The aeration
was set to 1.00 vvm, where the air was filtered with a sterile filter (0.2 um, PTFE,
Sartorius Midisart 2000). An autoclave (3870ELV, Tauttnauer) was used for the
sterilization of fermenter and media at 121°C for 20 minutes.

The fermentations were monitored by measuring optical density (OD) at 560
nm (Pharmacia LKB-Ultraspec Plus Spectrophotometer). Gravimetric method was
applied to determine the dry weight of microalgae. 10 ml suspension was filtered
through a nitrocellulose membrane (0.22 um, MILLIPORE), and dried at 105°C for 2
hours. The dry weight was determined by Eq. 1:
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where DW is the dry weight (g L"), A is the weight of the microalgae and the filter
(g), B is the weight of filter (g), SV is the volume of algae suspension (ml).
The biomass concentration was determined with calibration based on the

DW =

following equation:
DW=0.3903-0D,,,—0.156Q R* =0.9753. )

The elemental composition of microalgae biomass was determined by Liebig-
and Dumas-methods with LECO FP-528 analyzer. Proximate analysis was carried out
based on ASTM D3172 (DENKAL 1.4/1000).

Hydrothermal gasification

The overall flowsheet of microalgae cultivation and hydrothermal gasification
process performed in the experiments is shown in Figure 1. A 2 m length tubular
reactor was placed in an oven where the pressure was generated and maintained with
HPLC pumps (Jasco PU-980, Gilson Model 303). Throughout hydrothermal
gasification the residence time and biomass concentration held constant at 120 sec and
2.6wt.%, respectively.

The composition of the produced biogas was determined by gas
chromatography (HPS890A/TCD/FID, stainless steel column packed with Porapak
Q 80/100 mesh, 1/8 inch OD, 1.9 m).

The carbon gasification efficiency (GEc) was calculated by dividing the
carbon content of the gas product and carbon content of the biomass (Eq. 3.).

GE, (%) = —Ceo 3)

m('>f3€d - m(',l‘esidue

where M ., is the carbon contentof biogas (g min™), M foeq 18 the carbon content

of biomass, M-, is the carbon content of residue. The total carbon content of the

residue was determined by Shimadzu TOC/VCSH.
The gasification yield was determined using the following equiation (Eq. 4.):

_ nbiogas 4
biogas E ( )
biomass

where Y,

biogas1S the total yield of biogas (mmol g™h), Myiogasis the mole number of gas

product (mmol), 73, .. is the mass of dried biomass (g).
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Fig. 1. Flowsheet of microalgae cultivation and hydrothermal gasification of C. vulgaris biomass.

Experimental design

Design of Experiments software Statistica 13.1 was used for planning the
experiments andstatistical evaluation of the experimental results. 2" fractional
factorial design was applied for the investigation of factors such as temperature (525-
575°C), pressure (250-280 bar), catalyst loading (5-15 wt.%) and catalysts (K2CO3
and KOH) ratio (2:1-1:2) on biogas composition, carbon gasification efficiency and
biogas yield.

RESULTS

The proximate and ultimate analyses are presented in Table 1, the results of
HTG experiments are listed in Table 2. Experiments were conducted under different
temperature, pressure, catalyst loading and catalyst ratios. Non catalytic hydrothermal
gasification of microalgae is also investigated for comparison purposes with catalytic
HTG. It is found that applying homogenous catalyst increases hydrogen yield, while
decreases CO and CO,content of biogas which is in agreement with the findings of
previous studies [9][13][16]. However, it turned out thatapplication of catalyst
mixtures increase further the hydrogen yield compared to unmixedcatalysts.Applying
elevated temperature and mixed homogenous catalystsraised hydrogen yield from
4.83 mmol g to 24.69 mmol g'. The highest H, yield was achieved at 575°C, 280
bar, 15 wt.% catalyst loading, 2:1 catalyst ratio and it was found to be 24.69 mmol g
"dry microalgae which is twice as high as reported with model compounds such as
mannose [11], horse manure [10] or different heterogeneous catalysts [9].

In our findings the highest hydrogen yield paired with the highest total gas
yield (38.69 mmol g). The highest hydrogen mol fraction was 66.83 mol% at 525
°C, 250 bar, 15 wt.% catalyst loading and 2:1 catalyst ratio, though the total biogas
yield was one of the lowest, only 12.55 mmol/g.
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Tab.1. Proximate and elemental analysis of microalgae biomass.

Proximate analysis (wt.%) Ultimate analysis (wt.%)
Biomass ; ;
Volatile Fixed Ash C N 0 0
matter carbon
Chiorella 74.20 19.43 637 | 5765 | 973 | 530 | 2732
vulgaris
Tab.2. 24D fractional factorial design and the results of hydrothermal gasification.
Run Temgerature Pressure loggitﬁg KzCO}/. (E;l ((1'111}(?1 (fn?)zl (1cnco)l C?)Ec Z;'::;
(°C) (bar) (WL%) KOH ratio %) %) %) %) (%) Ve)
0 550 250 - - 17.83 4.11 7.54 70.52 30.49 27.14
1 525 250 5 1:2 49.73 331 7.42 33.59 17.23 19.58
2 575 250 5 2:1 6439 | 924 8.68 1754 | 2595 | 3578
3 525 280 5 2:1 53.58 3.48 6.87 26.26 9.60 11.47
4 575 280 5 12 5413 | 551 8.66 3135 | 2635 | 2812
5 525 250 15 2:1 66.83 5.06 592 2153 8.54 12.55
6 575 250 15 12 65.68 | 6.45 8.56 19.31 2343 | 3244
7 525 280 15 12 50.03 | 3.17 6.36 3531 1585 | 16.03
8 575 280 15 2:1 63.81 8.12 6.44 2133 29.07 38.69

The methane yield of biomass was increased from 1.12 mmol g™' to 3.31 mmol
g algae which is almost a triple growth, while the total biogas yield was increased
by 42.56% applying homogenous catalyst mixtures.

Comparing the results to the non-catalytic hydrothermal gasification,
augmented hydrogen yields result in a decreasing carbon gasification efficiency. The
main reason for this phenomena can be explained bythat homogenous catalysts
diminish the CO content of biogas which ultimately decrease
the carbon gasification efficiency.
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Fig. 2. Predicted and observed values from statistical model.

The statistical analysis of experimental data shows that temperature has
significant effect on all independent variable (H,, CHs, CO», CO fraction, GEc and
Ybiogas). All dependent variables have significant effect on H, production (R?=0.947).
It is also turned out that both temperature and catalyst ratio are significant factors in
case of CO content. The predicted and the observed values are adequate, as showed
in Figure 2, and thus the experimental data fits well the applied statistical models
(R*>>0.9 in all cases).

CONCLUSIONS

This study aims to explore hydrothermal gasification of microalgae biomass
under different reaction parameters. C. vul/garis was cultured and converted into
biogas, and the impact of temperature (525-575°C), pressure (250-280 bar), catalyst
loading (5-15 wt.%) and catalyst ratio (K,CO3:KOH = 2:1;1:2)on the yield of the
process was investigated based on 2*! fractional factorial experimental design.

The investigated statistical models are satisfactory and fits well experimental
results.

The highest total biogas and hydrogen yield arefound to be 38.69 and
24.69mmol g’', respectively. It is demonstratedthat higher H, and biogas yield can be
achieved by catalyst mixtures compared to single homogenous or heterogeneous
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catalysts. The experimental data shows thatusing different reaction conditions, in situ
upgrading of biogas becomespossible due to the augmented concentration and yield
of Hy and CH..
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