CAYLEY-HAMILTON THEOREM FOR MATRICES OVER AN ARBITRARY RING

Jenő Szigeti

Communicated by V. Drensky

ABSTRACT. For an $n \times n$ matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients:

$$(\lambda_0 I + C_0) + A(\lambda_1 I + C_1) + \cdots + A^{n-1}(\lambda_{n-1} I + C_{n-1}) + A^n(n! I + C_n) = 0,$$

where $\lambda_0 + \lambda_1 x + \cdots + \lambda_{n-1} x^{n-1} + n! x^n$ is the right characteristic polynomial of A in $R[x]$, $I \in M_n(R)$ is the identity matrix and the entries of the $n \times n$ matrices C_i, $0 \leq i \leq n$ are in $[R, R]$. If R is commutative, then

$$C_0 = C_1 = \cdots = C_{n-1} = C_n = 0$$

and our identity gives the $n!$ times scalar multiple of the classical Cayley-Hamilton identity for A.

2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.

Key words: The preadjoint and the right characteristic polynomial of an $n \times n$ matrix, the commutator subgroup $[R, R]$ of a ring R.

*The author was supported by OTKA of Hungary, grant no. T43034 and K61007.
1. Introduction. The Cayley-Hamilton theorem and the corresponding trace identity play a fundamental role in proving classical results about the polynomial and trace identities of the $n \times n$ matrix algebra $M_n(K)$ over a field K. In case of $\text{char}(K) = 0$, Kemer’s pioneering work (see [2], [3]) on the T-ideals of associative algebras revealed the importance of the identities satisfied by the $n \times n$ matrices over the Grassmann (exterior) algebra $E = K \{v_1, v_2, \ldots, v_i, \ldots \mid v_iv_j + v_jv_i = 0 \text{ for all } 1 \leq i < j\}$ generated by the infinite sequence of the anticommutative indeterminates $(v_i)_{i \geq 1}$. Accordingly, the importance of matrices over non-commutative rings is an evidence in the theory of PI-rings, nevertheless this fact has been obvious for a long time in other branches of algebra (structure theory of semisimple rings, K-theory, quantum matrices, etc.). Thus a Cayley-Hamilton type identity for such matrices seems to be of general interest.

For $n \times n$ matrices over a Lie-nilpotent ring R a Cayley-Hamilton type identity with one sided scalar coefficients (left or right) was found in [9] (see also in [10]), if R satisfies the PI

$$[[[\ldots [[x_1, x_2], x_3], \ldots], x_m], x_{m+1}] = 0,$$

then the degree of this identity is n^m. Since E is Lie nilpotent with $m = 2$, the above mentioned identity for a matrix $A \in M_n(E)$ is of degree n^2. In [1] Domokos presented a slightly modified version of this identity in which the coefficients are invariant under the conjugate action of $GL_n(K)$.

In the general case (when R is an arbitrary non-commutative ring) Paré and Schelter proved (see [4]) that any matrix $A \in M_n(R)$ satisfies a monic identity in which the leading term is A^k for some integer $k \leq 2^{2n-1}$ and the other summands are of the form $r_0Ar_1Ar_2\ldots r_{l-1}Ar_l$ with $r_0, r_1, \ldots, r_l \in R$ and $0 \leq l \leq k - 1$. An explicit monic identity for 2×2 matrices arising from the argument of [4] and a detailed study of the ideal in $R \langle x \rangle = R \ast k[x]$ consisting of the polynomials which have as a root the generic $n \times n$ matrix $X = [x_{ij}]$ was given by Robson in [8] ($R = k \langle x_{ij} \rangle$ is the free associative algebra over a field k and $R(x) = R \ast k[x]$ is the free associative k-algebra in one more indeterminate x). Further results in this direction can be found in [5], [6] and [7].

The aim of the present paper is to define the right characteristic polynomial

$$p(x) = \lambda_0 + \lambda_1 x + \cdots + \lambda_{n-1} x^{n-1} + n! x^n$$

in $R[x]$ of an $n \times n$ matrix $A \in M_n(R)$ and to derive a corresponding identity for A (here R is an arbitrary unitary ring). We obtain a Cayley-Hamilton identity.
with right matrix coefficients of the following form:
\[
(\lambda_0 I + C_0) + A(\lambda_1 I + C_1) + \cdots + A^{n-1}(\lambda_{n-1} I + C_{n-1}) + A^n(n! I + C_n) = 0,
\]
where \(I \in M_n(R) \) is the identity matrix and the entries of the \(n \times n \) matrices \(C_i, \)
\(0 \leq i \leq n \) are in the additive subgroup \([R, R]\) of \(R \) generated by the commutators
\([x, y] = xy - yx\) with \(x, y \in R \) (a more precise description of the entries in the \(C_i \)'s
can be deduced from the proof). Note that a similar identity with left matrix coefficients can be obtained analogously. If \(R \) is commutative, then
\[
C_0 = C_1 = \cdots = C_{n-1} = C_n = 0
\]
and our identity gives the \(n! \) times scalar multiple of the classical Cayley-Hamilton
identity for \(A \).

We shall make extensive use of the results of [9], in order to provide a self contained treatment, we recall all the necessary prerequisites from [9].

2. The characteristic polynomial. Let \(R \) be an arbitrary unitary ring, the preadjoint of an \(n \times n \) matrix
\[
A = [a_{ij}], a_{ij} \in R, 1 \leq i, j \leq n
\]
is defined as \(A^* = [a^*_{rs}] \in M_n(R), \) where
\[
a^*_{rs} = \sum_{\tau, \rho} \text{sgn}(\rho)a_{\tau(1)}\rho(\tau(1)) \cdots a_{\tau(s-1)}\rho(\tau(s-1))a_{\tau(s+1)}\rho(\tau(s+1)) \cdots a_{\tau(n)}\rho(\tau(n))
\]
and the sum is taken over all permutations \(\tau \) of the set \(\{1, \ldots, s - 1, s + 1, \ldots, n\} \) and \(\rho \) of the set \(\{1, 2, \ldots, n\} \) with \(\rho(s) = r \). The right determinant of \(A \) is the trace of the product matrix \(AA^* \):
\[
r \det(A) = \text{tr}(AA^*).
\]
Our development is based on the following crucial result of [9].

Theorem 2.1. The product \(AA^* \in M_n(R) \) can be written in the following form:
\[
AA^* = b_{11} I + C,
\]
where \(b_{11} \) is the \((1, 1)\) entry in \(AA^* = [b_{ij}] \) and \(C = [c_{ij}] \) is an \(n \times n \) matrix with
\(c_{11} = 0 \) and each \(c_{ij}, 1 \leq i, j \leq n \) is a sum of commutators of the form \([u, v]\)
\((u, v \in R)\).
Remark 2.2. The proof of Theorem 2.1 yields that each $c_{ij}, 1 \leq i, j \leq n, (i, j) \neq (1, 1)$ is a sum of commutators of the form $[\pm a', a''],$ where a' and a'' are products of certain entries of $A.$

Corollary 2.3. For the product $AA^* \in M_n(R)$ we have:

$$nAA^* = \text{tr}(AA^*)I + C',$$

where $C' = [c'_{ij}]$ is an $n \times n$ matrix with $\text{tr}(C') = 0$ and each $c'_{ij}, 1 \leq i, j \leq n$ is a sum of commutators of the form $[u, v]$ $(u, v \in R).$

Proof. The claim easily follows from

$$C' = nAA^* - \text{tr}(AA^*)I$$

$$= n(b_{11}I + C) - \text{tr}(AA^*)I$$

$$= (nb_{11} - \text{tr}(AA^*))I + nC$$

$$= ((b_{11} - b_{11}) + (b_{11} - b_{22}) + \cdots + (b_{11} - b_{nn}))I + nC$$

$$= (-c_{22} - \cdots - c_{nn})I + nC. \quad \Box$$

Let $R[x]$ denote the ring of polynomials of the single commuting indeterminate $x,$ with coefficients in $R.$ The right characteristic polynomial of A is the right determinant of the $n \times n$ matrix $xI - A$ in $M_n(R[x]):$

$$p(x) = \text{tr}((xI - A)(xI - A)^*) = \lambda_0 + \lambda_1 x + \cdots + \lambda_{d-1}x^{d-1} + \lambda_d x^d \in R[x].$$

Proposition 2.4. If $p(x) = \lambda_0 + \lambda_1 x + \cdots + \lambda_{d-1}x^{d-1} + \lambda_d x^d$ is the right characteristic polynomial of the $n \times n$ matrix $A \in M_n(R)$ then $d = n$ and $\lambda_d = n!.$

Proof. Take $(xI - A)^* = [h_{ij}(x)]$ and consider the trace of the product matrix $(xI - A)(xI - A)^*$:

$$p(x) = \sum_{1 \leq i,j \leq n} (xI - A)_{ij}h_{ji}(x)$$

$$= (x - a_{11})h_{11}(x) + \cdots + (x - a_{nn})h_{nn}(x) + \sum_{1 \leq i,j \leq n, i \neq j} (-a_{ij})h_{ji}(x).$$

In view of the definition of the preadjoint, we can see that the degree of $h_{ij}(x)$ is $n - 2$ if $i \neq j$ and the leading monomial of $h_{ii}(x)$ is $(n - 1)!x^{n-1}.$ Thus the leading monomial $n!x^n$ of $p(x)$ comes from

$$(x - a_{11})h_{11}(x) + \cdots + (x - a_{nn})h_{nn}(x). \quad \Box$$
Proposition 2.5. If the ring R is commutative, then we have
\[p(x) = n! \det(xI - A) \]
for the right characteristic polynomial $p(x)$ of the $n \times n$ matrix $A \in M_n(R)$. Thus $p(x)$ is the $n!$ times scalar multiple of the ordinary characteristic polynomial of A.

Proof. Now we have
\[p(x) = \text{tr}((xI - A)(xI - A)^*) = \text{tr}((xI - A)(n - 1)!\text{adj}(xI - A)) \]
\[= \text{tr}((n - 1)!\det(xI - A)I) = n(n - 1)!\det(xI - A). \]
We used the fact that now $(xI - A)^*$ can be expressed as
\[(xI - A)^* = (n - 1)!\text{adj}(xI - A) \]
by the ordinary adjoint of $xI - A$ (see also in [9]). \qed

3. The Cayley-Hamilton identity.

Theorem 3.1. If $p(x) = \lambda_0 + \lambda_1 x + \cdots + \lambda_{n-1} x^{n-1} + n!x^n$ is the right characteristic polynomial of the $n \times n$ matrix $A \in M_n(R)$, then we can construct $n \times n$ matrices C_i, $0 \leq i \leq n$ with entries in $[R, R]$ such that
\[(\lambda_0 I + C_0) + A(\lambda_1 I + C_1) + \cdots + A^{n-1}(\lambda_{n-1} I + C_{n-1}) + A^n(n! I + C_n) = 0. \]

Proof. We use the natural isomorphism between the rings $M_n(R[x])$ and $M_n(R)[x]$. The application of Corollary 2.3 gives that
\[n(xI - A)(B_0 + B_1 x + \cdots + B_{n-1} x^{n-1}) = p(x)I + C'(x), \]
where
\[(xI - A)^* = [h_{ij}(x)] = B_0 + B_1 x + \cdots + B_{n-1} x^{n-1} \]
with $B_0, B_1, \ldots, B_{n-1} \in M_n(R)$ (see the proof of Proposition 2.4) and $C'(x)$ is an $n \times n$ matrix with entries in $[R[x], R[x]]$ (and $\text{tr}(C'(x)) = 0$). Since for
\[f(x) = \sum_{\nu=1}^s u_{\nu}x^\nu \text{ and } g(x) = \sum_{\mu=1}^q v_{\mu}x^\mu \text{ in } R[x] \] the commutator
\[[f(x), g(x)] = f(x)g(x) - g(x)f(x) = \sum_{\nu, \mu} [u_{\nu}x^\nu, v_{\mu}x^\mu] = \sum_{\nu, \mu} [u_{\nu}, v_{\mu}]x^{\nu+\mu} \]
is a polynomial with coefficients in $[R, R]$, we can write that
\[C'(x) = C_0 + C_1x + \cdots + C_nx^n, \]
where C_0, C_1, \ldots, C_n are $n \times n$ matrices with entries in $[R, R]$. The matching of the coefficients of the powers of x in the above matrix equation gives that
\[
\begin{align*}
-nAB_0 &= \lambda_0 I + C_0, \\
nB_0 - nAB_1 &= \lambda_1 I + C_1, \\
& \vdots \\
nB_{n-2} - nAB_{n-1} &= \lambda_{n-1} I + C_{n-1}, \\
nB_{n-1} &= n! I + C_n.
\end{align*}
\]
The left multiplication of $nB_{i-1} - nAB_i = \lambda_i I + C_i$ by $A^i (B_{-1} = B_n = 0)$ gives the following sequence of matrix equations:
\[
\begin{align*}
-nAB_0 &= \lambda_0 I + C_0, \\
nAB_0 - nA^2B_1 &= A\lambda_1 + AC_1, \\
& \vdots \\
nA^{n-1}B_{n-2} - nA^nB_{n-1} &= A^{n-1}\lambda_{n-1} + A^{n-1}C_{n-1}, \\
nA^nB_{n-1} &= A^n n! + A^nC_n.
\end{align*}
\]
Thus we obtain that
\[
(\lambda_0 I + C_0) + A(\lambda_1 I + C_1) + \cdots + A^{n-1}(\lambda_{n-1} I + C_{n-1}) + A^n(n!I + C_n) =
\]
\[
= (-nAB_0) + (nAB_0 - nA^2B_1) + \cdots + (nA^{n-1}B_{n-2} - nA^nB_{n-1}) + (nA^nB_{n-1}) = 0 \quad \square
\]

In view of the construction of the C_i’s in the above proof, it is reasonable to call
\[P(x) = n(xI - A)(xI - A)^* = p(x)I + C_0 + C_1x + \cdots + C_nx^n \]
the \textit{generalized right characteristic polynomial} of $A \in M_n(R)$. Thus we have
\[np(x) = \text{tr}(P(x)). \]

Proposition 3.2. If R is an algebra over a field K of characteristic zero and $T \in GL_n(K)$ then we have
\[p_{TAT^{-1}}(x) = p_A(x) \quad \text{and} \quad P_{TAT^{-1}}(x) = TP_A(x)T^{-1} \]
for the right characteristic polynomial \(p_A(x) \in R[x] \) and the generalized right characteristic polynomial \(P_A(x) \in M_n(R)[x] \) of \(A \in M_n(R) \).

Proof. In [1] Domokos proved that \((TAT^{-1})^* = TA^*T^{-1} \), whence

\[
P_{TAT^{-1}}(x) = n(xI - TAT^{-1})(xI - TAT^{-1})^*
= nT(xI - A)T^{-1}(T(xI - A)T^{-1})^*
= nT(xI - A)T^{-1}T(xI - A)^*T^{-1}
= Tn(xI - A)(xI - A)^*T^{-1}
= TP_A(x)T^{-1}
\]

and

\[
np_{TAT^{-1}}(x) = \text{tr}(TP_A(x)T^{-1}) = \text{tr}(P_A(x)) = np_A(x)
\]

follows. Since \(\frac{1}{n} \in K \), we conclude that \(p_{TAT^{-1}}(x) = p_A(x) \). \(\square \)

REFERENCES

Institute of Mathematics
University of Miskolc
Miskolc, Hungary 3515

e-mail: jeno.szigeti@uni-miskolc.hu

Received July 15, 2006